BibTex RIS Cite

The Thermodynamics of Exercise Science

Year 2014, Volume: 17 Issue: 3, 134 - 143, 24.09.2014
https://doi.org/10.5541/ijot.528

Abstract

This article describes the “human body engine” via a thermodynamics-based model that considers the work associated with gas pressure, volume and temperature changes for the glucose-based equation of respiration. The efficacy of the model is supported by prior studies that: accurately predict the slow component of oxygen uptake kinetics; quantitatively explain observed race splitting strategies within endurance events; and accurately predict maximum velocities in endurance swimming. These prior studies are summarized by the review component of the present article which additionally presents new temperature-dependent efficiency implications especially relevant for heat-affected athletes. The new model implications support reported experimental observations and also potentially provide quantified clarity to an area of exercise physiology research known to be challenged by opposing experimental findings, thus providing further support for model efficacy. A 0.32% efficiency decline per 1 oC increase in core body temperature is predicted. The model is also applied to the “ice slurry ingestion” regime which reportedly offers significant performance advantages (greater than that predicted by the model based on core temperature change alone) for endurance athletes competing in the heat, and the model reconciles with such advantages when ice slurry effect on arterial exchange temperatures and partial pressures are incorporated.

References

  • J. M. Hagberg, J. O. Mullin, F. J. Nagle, Oxygen consumption during constant load exercise. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol., 45, 381-384, 1978.
  • D. J. Jacobsen, R. Coast, J. E. Donnelly, The effect of exercise intensity on the slow component of VO 2 in persons of different fitness levels. J. Sports Med. Phys. Fitness, 38, 124-131, 1998.
  • D. C. Poole, W. Schaffartzik, D. R. Knight, T. Derion, B. Kennedy, H. J. Guy, R. Prediletto, P. D. Wagner, Contribution of excising legs to the slow component of oxygen uptake kinetics in humans. J. Appl. Physiol., 71, 1245-1260, 1991.
  • B. J. Whipp, M. Mahler, Pulmonary gas exchange vol. II. New York: Academic, 1980.
  • B. J. Whipp, S. A. Ward, N. Lamarra, J. A. Davis, K. Wasserman, Parameters of ventilatory and gas exchange dynamics during exercise. J. Appl. Physiol., 52, 1506-1513, 19
  • J. A. Zoladz, B. Korzeniewski, Physiological background of the change point in VO 2 and the slow component of oxygen uptake kinetics. J. Physiol. Pharm., 52, 167-184, 2001.
  • R. J. Simeoni, and J. O’Reilly, “A thermodynamics-based mechanism for the slow component of oxygen uptake kinetics during high power exercise,” in Proc. 16 th National Congress, Australian Institute of Physics: Physics for the Nation, Canberra, 2005.
  • R. J. Simeoni, “Why athletes do not negative split some endurance events: A thermodynamics-based explanation,” in Proc. 5 th International Conf. on Bioinformatics and Biomedical Engineering, Wuhan, 2011.
  • G. Camus, G. Atchou, J. C. Bruckner, D. Giezendanner, P. E. di Prampero, Slow upward drift of VO 2 during constant-load cycling in untrained subjects. Eur. J. Appl. Physiol., 58, 197202, 1988.
  • S. R. Hopkins, D. C. McKenzie, Hypoxic ventilatory response and arterial desaturation during heavy work. J. Appl. Physiol., 67, 1119-1124, 1989.
  • S. K. Powers and E. T. Howley, Exercise Physiology: Theory and Application to Fitness and Performance, 5th ed. New York: McGraw-Hill, 2004.
  • J. C. Richards, D. C. McKenzie, D. E. R. Warburton, J. D. Road, A. W. Sheel, Prevalence of exercise-induced arterial hypoxemia in healthy women. Med. Sci. Sport. Ex., 36, 15141521, 2004.
  • R. Casaburi, T. W. Storer, I. Ben-Dov, K. Wasserman, Effect of endurance training on possible determinants of VO 2 during heavy exercise. J. Appl. Physiol., 62, 199-207, 1987.
  • C. Capelli, D. R. Pendergast, B. Termin, Energetics of swimming at maximal speeds in humans. Eur. J. Appl. Physiol., 78, 385-393, 1998.
  • C. E. K. Mady, S. Oliveira Junior, Human Body Energy Metabolism. Int. J. Thermodynamics, 16, 73-80, 2013.
  • E. Maglischo, Swimming fastest. Champaign, IL: Human Kinetics, 2003.
  • D. Dobko (Accessed 2010, Sept.). How to split your open water swim [Online]. Available: www.dobkanize.com.
  • K. W. Borch, F. Ingjer, S. Larsen, S. E. Tomten, Rate of accumulation of blood lactate during graded exercise as a predictor of anaerobic threshold. J. Sports Sci., 11, 49-55, 19 M. S. El-Sayed, K. P. George, D. Wilkinson, N. Mullan, R. Fenoglio, J. Flannigan, Fingertip and venous blood lactate concentration in response to graded treadmill exercise. J. Sports Sci., 11, 139-143, 1993.
  • B. S. Rushall and F. S. Pyke, Training for Sports and Fitness, Hong Kong: MacMillan Education Australia, 1997.
  • B. Grassi, V. Quaresima, C. Marconi, M. Ferrai, O. Cerretelli, Blood lactate and muscle deoxygenation during incremental exercise. J. Appl. Physiol., 87, 348-355, 1999.
  • R. J. Simeoni, Mathematics for Clinical Sciences 5th ed. Gold Coast: Griffith University Press, 2002.
  • M. J. Engelen, J. Porszasz, M. Riley, K. Wasserman, K. Maehara, T. J. Barstow, Effects of hypoxia on O2 uptake and heart rate kinetics during heavy exercise. J. Appl. Physiol., 81, 2500-2508, 1996.
  • S. Koga, T. Shiojiri, N. Kondo, T. J. Barstow, Effect of increased muscle temperature on oxygen uptake kinetics during exercise. J. Appl. Physiol. 83, 1333-1338, 1997.
  • J. K. Lee, S. M. Shirreffs, R. J. Maughan, Cold drink ingestion improves exercise endurance capacity in the heat. Med. Sci. Sport. Ex., 40, 1637-1644, 2008.
  • J. D. MacDougall, W. G. Reddan, C. R. Layton, J. A. Dempsey, Effects of metabolic hyperthermia on performance during heavy prolonged exercise. J. Appl. Physiol., 36, 538544, 1974.
  • J. J. Peiffer, C. R. Abbiss, G. Watson, K. Nosaka, P. B. Laursen, Effect of cold water immersion on repeated 1 km cycling performance in the heat. Med. Sci. Sport. Ex., 13, 112-116, 2010.
  • L. B. Rowell, Human cardiovascular adjustments to exercise and thermal stress. Physiol. Rev., 54, 75-159, 1974.
  • R. Siegel, J. Mate, M. B. Brearley, G. Watson, K. Nosaka, P. B. Laursen, Ice slurry ingestion increases core temperature capacity and running time in the heat. Med. Sci. Sport. Ex., 42, 717-725, 2010.
  • D. Schneditz, C. Ronco, N. Levin, Temperature control by the blood temperature monitor. Semin. Dial., 16, 477-482, 200 M. M. Merrick, L. S. Jutte, M. E. Smith, Cold modalities with different thermodynamic properties produce different surface and intramuscular temperatures. J. Athl. Train., 38, 28-33, 2003.
  • J. Hulihan, Ice cream headache. British Medical Journal, 314, 1364, 1997.
  • M. A. Greene, A. J. Boltax, G. A. Lustig, E. Rogow, Circularly dynamics during the cold pressor test. American J. Cardiology, 16, 54-60, 1965.
  • Z. Sun, X. Wang, C. E. Wood, J. Robert Cade, Neurohumoral control of cardiovascular function. American Journal of Physiology: Regulatory, integrative and Comparative Physiology, 288, R433-R439, 2005.
  • P. W. Rand, E. Lacombe, H. E. Hunt, W. H. Austin, Viscosity of normal human blood under normothermic and hypothermic conditions. J. Appl. Physiol., 19, 117-122, 1964.
  • A. Reis, N. Kirmaier, The viscosity-temperature function of blood and its physio-chemical information content. Biorheolohy, 13, 143-148, 1976.
  • D. M. Eckmann, S. Bowers, M. Stecker, A. T. Cheung, Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity. Anesth. Analg., 91, 539-545, 2000.
  • A. R. Pries, D. Neuhaus, P. Gaehtgens, Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol., 263 (Heart Circ. Physiol. 32), H1770-H1778, 1992.
  • Z. Sun, Cold weather hikes blood pressure, UF Scientist warns, Science Daily, University of Florida Health Science Centre, Feb. 2005.
  • R. Havriluk, Variability in measurement of swimming forces: A meta-analysis of passive and active drag. Research Quart. Exercise Sport, 78, 32-39, 2007.
  • R. Havriluk, “Performance level differences in swimming drag coefficient,” in Proc. 7 th IOC Olympic World Congress on Sport Sciences, Athens, 2003.
  • Swimright (Accessed 2013, April 11). The physics and biomechanics of swimming [Online]. Available: www.swimright23.webs.com/dragresistance.htm.
Year 2014, Volume: 17 Issue: 3, 134 - 143, 24.09.2014
https://doi.org/10.5541/ijot.528

Abstract

References

  • J. M. Hagberg, J. O. Mullin, F. J. Nagle, Oxygen consumption during constant load exercise. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol., 45, 381-384, 1978.
  • D. J. Jacobsen, R. Coast, J. E. Donnelly, The effect of exercise intensity on the slow component of VO 2 in persons of different fitness levels. J. Sports Med. Phys. Fitness, 38, 124-131, 1998.
  • D. C. Poole, W. Schaffartzik, D. R. Knight, T. Derion, B. Kennedy, H. J. Guy, R. Prediletto, P. D. Wagner, Contribution of excising legs to the slow component of oxygen uptake kinetics in humans. J. Appl. Physiol., 71, 1245-1260, 1991.
  • B. J. Whipp, M. Mahler, Pulmonary gas exchange vol. II. New York: Academic, 1980.
  • B. J. Whipp, S. A. Ward, N. Lamarra, J. A. Davis, K. Wasserman, Parameters of ventilatory and gas exchange dynamics during exercise. J. Appl. Physiol., 52, 1506-1513, 19
  • J. A. Zoladz, B. Korzeniewski, Physiological background of the change point in VO 2 and the slow component of oxygen uptake kinetics. J. Physiol. Pharm., 52, 167-184, 2001.
  • R. J. Simeoni, and J. O’Reilly, “A thermodynamics-based mechanism for the slow component of oxygen uptake kinetics during high power exercise,” in Proc. 16 th National Congress, Australian Institute of Physics: Physics for the Nation, Canberra, 2005.
  • R. J. Simeoni, “Why athletes do not negative split some endurance events: A thermodynamics-based explanation,” in Proc. 5 th International Conf. on Bioinformatics and Biomedical Engineering, Wuhan, 2011.
  • G. Camus, G. Atchou, J. C. Bruckner, D. Giezendanner, P. E. di Prampero, Slow upward drift of VO 2 during constant-load cycling in untrained subjects. Eur. J. Appl. Physiol., 58, 197202, 1988.
  • S. R. Hopkins, D. C. McKenzie, Hypoxic ventilatory response and arterial desaturation during heavy work. J. Appl. Physiol., 67, 1119-1124, 1989.
  • S. K. Powers and E. T. Howley, Exercise Physiology: Theory and Application to Fitness and Performance, 5th ed. New York: McGraw-Hill, 2004.
  • J. C. Richards, D. C. McKenzie, D. E. R. Warburton, J. D. Road, A. W. Sheel, Prevalence of exercise-induced arterial hypoxemia in healthy women. Med. Sci. Sport. Ex., 36, 15141521, 2004.
  • R. Casaburi, T. W. Storer, I. Ben-Dov, K. Wasserman, Effect of endurance training on possible determinants of VO 2 during heavy exercise. J. Appl. Physiol., 62, 199-207, 1987.
  • C. Capelli, D. R. Pendergast, B. Termin, Energetics of swimming at maximal speeds in humans. Eur. J. Appl. Physiol., 78, 385-393, 1998.
  • C. E. K. Mady, S. Oliveira Junior, Human Body Energy Metabolism. Int. J. Thermodynamics, 16, 73-80, 2013.
  • E. Maglischo, Swimming fastest. Champaign, IL: Human Kinetics, 2003.
  • D. Dobko (Accessed 2010, Sept.). How to split your open water swim [Online]. Available: www.dobkanize.com.
  • K. W. Borch, F. Ingjer, S. Larsen, S. E. Tomten, Rate of accumulation of blood lactate during graded exercise as a predictor of anaerobic threshold. J. Sports Sci., 11, 49-55, 19 M. S. El-Sayed, K. P. George, D. Wilkinson, N. Mullan, R. Fenoglio, J. Flannigan, Fingertip and venous blood lactate concentration in response to graded treadmill exercise. J. Sports Sci., 11, 139-143, 1993.
  • B. S. Rushall and F. S. Pyke, Training for Sports and Fitness, Hong Kong: MacMillan Education Australia, 1997.
  • B. Grassi, V. Quaresima, C. Marconi, M. Ferrai, O. Cerretelli, Blood lactate and muscle deoxygenation during incremental exercise. J. Appl. Physiol., 87, 348-355, 1999.
  • R. J. Simeoni, Mathematics for Clinical Sciences 5th ed. Gold Coast: Griffith University Press, 2002.
  • M. J. Engelen, J. Porszasz, M. Riley, K. Wasserman, K. Maehara, T. J. Barstow, Effects of hypoxia on O2 uptake and heart rate kinetics during heavy exercise. J. Appl. Physiol., 81, 2500-2508, 1996.
  • S. Koga, T. Shiojiri, N. Kondo, T. J. Barstow, Effect of increased muscle temperature on oxygen uptake kinetics during exercise. J. Appl. Physiol. 83, 1333-1338, 1997.
  • J. K. Lee, S. M. Shirreffs, R. J. Maughan, Cold drink ingestion improves exercise endurance capacity in the heat. Med. Sci. Sport. Ex., 40, 1637-1644, 2008.
  • J. D. MacDougall, W. G. Reddan, C. R. Layton, J. A. Dempsey, Effects of metabolic hyperthermia on performance during heavy prolonged exercise. J. Appl. Physiol., 36, 538544, 1974.
  • J. J. Peiffer, C. R. Abbiss, G. Watson, K. Nosaka, P. B. Laursen, Effect of cold water immersion on repeated 1 km cycling performance in the heat. Med. Sci. Sport. Ex., 13, 112-116, 2010.
  • L. B. Rowell, Human cardiovascular adjustments to exercise and thermal stress. Physiol. Rev., 54, 75-159, 1974.
  • R. Siegel, J. Mate, M. B. Brearley, G. Watson, K. Nosaka, P. B. Laursen, Ice slurry ingestion increases core temperature capacity and running time in the heat. Med. Sci. Sport. Ex., 42, 717-725, 2010.
  • D. Schneditz, C. Ronco, N. Levin, Temperature control by the blood temperature monitor. Semin. Dial., 16, 477-482, 200 M. M. Merrick, L. S. Jutte, M. E. Smith, Cold modalities with different thermodynamic properties produce different surface and intramuscular temperatures. J. Athl. Train., 38, 28-33, 2003.
  • J. Hulihan, Ice cream headache. British Medical Journal, 314, 1364, 1997.
  • M. A. Greene, A. J. Boltax, G. A. Lustig, E. Rogow, Circularly dynamics during the cold pressor test. American J. Cardiology, 16, 54-60, 1965.
  • Z. Sun, X. Wang, C. E. Wood, J. Robert Cade, Neurohumoral control of cardiovascular function. American Journal of Physiology: Regulatory, integrative and Comparative Physiology, 288, R433-R439, 2005.
  • P. W. Rand, E. Lacombe, H. E. Hunt, W. H. Austin, Viscosity of normal human blood under normothermic and hypothermic conditions. J. Appl. Physiol., 19, 117-122, 1964.
  • A. Reis, N. Kirmaier, The viscosity-temperature function of blood and its physio-chemical information content. Biorheolohy, 13, 143-148, 1976.
  • D. M. Eckmann, S. Bowers, M. Stecker, A. T. Cheung, Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity. Anesth. Analg., 91, 539-545, 2000.
  • A. R. Pries, D. Neuhaus, P. Gaehtgens, Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol., 263 (Heart Circ. Physiol. 32), H1770-H1778, 1992.
  • Z. Sun, Cold weather hikes blood pressure, UF Scientist warns, Science Daily, University of Florida Health Science Centre, Feb. 2005.
  • R. Havriluk, Variability in measurement of swimming forces: A meta-analysis of passive and active drag. Research Quart. Exercise Sport, 78, 32-39, 2007.
  • R. Havriluk, “Performance level differences in swimming drag coefficient,” in Proc. 7 th IOC Olympic World Congress on Sport Sciences, Athens, 2003.
  • Swimright (Accessed 2013, April 11). The physics and biomechanics of swimming [Online]. Available: www.swimright23.webs.com/dragresistance.htm.
There are 40 citations in total.

Details

Primary Language English
Journal Section Regular Original Research Article
Authors

R. J. Simeoni

Publication Date September 24, 2014
Published in Issue Year 2014 Volume: 17 Issue: 3

Cite

APA Simeoni, R. J. (2014). The Thermodynamics of Exercise Science. International Journal of Thermodynamics, 17(3), 134-143. https://doi.org/10.5541/ijot.528
AMA Simeoni RJ. The Thermodynamics of Exercise Science. International Journal of Thermodynamics. September 2014;17(3):134-143. doi:10.5541/ijot.528
Chicago Simeoni, R. J. “The Thermodynamics of Exercise Science”. International Journal of Thermodynamics 17, no. 3 (September 2014): 134-43. https://doi.org/10.5541/ijot.528.
EndNote Simeoni RJ (September 1, 2014) The Thermodynamics of Exercise Science. International Journal of Thermodynamics 17 3 134–143.
IEEE R. J. Simeoni, “The Thermodynamics of Exercise Science”, International Journal of Thermodynamics, vol. 17, no. 3, pp. 134–143, 2014, doi: 10.5541/ijot.528.
ISNAD Simeoni, R. J. “The Thermodynamics of Exercise Science”. International Journal of Thermodynamics 17/3 (September 2014), 134-143. https://doi.org/10.5541/ijot.528.
JAMA Simeoni RJ. The Thermodynamics of Exercise Science. International Journal of Thermodynamics. 2014;17:134–143.
MLA Simeoni, R. J. “The Thermodynamics of Exercise Science”. International Journal of Thermodynamics, vol. 17, no. 3, 2014, pp. 134-43, doi:10.5541/ijot.528.
Vancouver Simeoni RJ. The Thermodynamics of Exercise Science. International Journal of Thermodynamics. 2014;17(3):134-43.