Research Article
BibTex RIS Cite
Year 2020, Volume: 23 Issue: 4, 252 - 258, 27.11.2020
https://doi.org/10.5541/ijot.764760

Abstract

Project Number

RFBR (project number 18-05-00079) and State Contract (АААА-А19-119042590024-1)

References

  • [1] W. Cao, F. Huang, Z. Wang, R. Lei, Y. Tian, Y. Hua, H. Wang, J. Zhang, S. Xu, “Controllable structural tailoring for enhanced luminescence in highly Er3+-doped germanosilicate glasses”, Opt. Lett., 43 (14), 3281-3284, (2018). doi: 10.1364/ol.43.003281
  • [2] X. Feng, F. Q. Li, A. X. Lin, X. X. Chai, F. Wang, Q. H. Zhu, Z. P. Wang, X. B. Sun, X. Sun, “Optically poled germanosilicate glass as a nonlinear material for second harmonic generation”, Laser Phys., 29 (3), 036002, (2019). doi: 10.1088/1555-6611/aaf05e
  • [3] M. Gökçe, D. Koçyiğit, “Spectroscopic investigations of Dy3+ doped borogermanate glasses for laser and wLED applications”, Opt. Mater., 89, 568-575, (2019). doi: 10.1016/j.optmat.2019.02.004
  • [4] F. Huang, F. E, R. Lei, Y. Li, B. Li, R. Ye, S. Xu, “Enhancing the Er3+: Infrared and mid-infrared emission performance in germanosilicate-zinc glasses”, J. Lumin., 213, 370-375, (2019). doi: 10.1016/j.jlumin.2019.05.050
  • [5] J. H. Kang, M. E. Davis, D. Xie, S. I. Zones, S. Smeets, L. B. McCusker, “Synthesis and characterization of CIT-13, a germanosilicate molecular sieve with extra-large pore openings”, Chem. Mater., 28 (17), 6250-6259, (2016). doi: 10.1021/acs.chemmater.6b02468
  • [6] P. F. Kashaykin, A. L. Tomashuk, V. F. Khopin, A. N. Guryanov, S. L. Semjonov, E. M. Dianov, “New radiation colour centre in germanosilicate glass fibres”, Quantum Electron., 48 (12), 1143-1146, (2018). doi: 10.1070/qel16850
  • [7] Z. E. Lin, J. Zhang, G. Y. Yang, “Synthesis and structure of KBGe2O6: The first chiral zeotype borogermanate with 7-ring channels”, Inorg. Chem., 42 (6), 1797-1799, (2003). doi: 10.1021/ic020511h
  • [8] C. -Y. Pan, H. -D. Mai, G. -Y. Yang, “A new zeotype borogermanate β-K2B2Ge3O10: synthesis, structure, property and conformational polymorphism”, Microporous Mesoporous Mater., 168, 183-187, (2013). doi: 10.1016/j.micromeso.2012.09.004
  • [9] R. Pan, J. W. Cheng, B. F. Yang, G. Y. Yang, “CsBxGe6-xO12 (x = 1): a zeolite sodalite-type borogermanate with a high Ge/B ratio by partial boron substitution”, Inorg. Chem., 56 (5), 2371-2374, (2017). doi: 10.1021/acs.inorgchem.6b03002
  • [10] D. -B. Xiong, J. -T. Zhao, H. -H. Chen, X. -X. Yang, “A borogermanate with three-dimensional open-framework layers”, Chem. Eur. J., 13 (35), 9862-9865, (2007). doi: 10.1002/chem.200701009
  • [11] H. Xu, J.-g. Jiang, B. Yang, L. Zhang, M. He, P. Wu, “Post-synthesis treatment gives highly stable siliceous zeolites through the isomorphous substitution of silicon for germanium in germanosilicates”, Angewandte Chemie International Edition, 53 (5), 1355-1359, (2014). doi: 10.1002/anie.201306527
  • [12] X. Xu, C. L. Hu, F. Kong, J. H. Zhang, J. G. Mao, J. Sun, “Cs2GeB4O9: a new second-order nonlinear-optical crystal”, Inorg. Chem., 52 (10), 5831-5837, (2013). doi: 10.1021/ic302774h
  • [13] L. T. Denisova, N. V. Belousova, N. A. Galiakhmetova, V. M. Denisov, “High-temperature heat capacity of YBiGeO5 and GdBiGeO5 in the range 373–1000 K”, Phys. Solid State, 59 (5), 1047-1050, (2017). doi: 10.1134/s1063783417050080
  • [14] L. T. Denisova, L. A. Irtyugo, Y. F. Kargin, N. V. Belousova, V. V. Beletskii, V. M. Denisov, “Synthesis and high-temperature heat capacity of Dy2Ge2O7 and Ho2Ge2O7”, Inorg. Mater., 54 (4), 361-365, (2018). doi: 10.1134/s0020168518040039
  • [15] L. T. Denisova, Y. F. Kargin, L. A. Irtyugo, N. V. Belousova, V. V. Beletskii, V. M. Denisov, “Heat capacity of In2Ge2O7 and YInGe2O7 from 320 to 1000 K”, Inorg. Mater., 54 (12), 1245-1249, (2018). doi: 10.1134/s0020168518120026
  • [16] N. Kong, H. -H. Zhang, J. Wang, Z. -H. Liu, “Thermochemical properties of microporous materials for two borogermanates, β-K2[B2Ge3O10] and NH4[BGe3O8]”, J. Chem. Thermodyn., 92, 29-34, (2016). doi: 10.1016/j.jct.2015.08.032
  • [17] Y. Zhang, S. Lei, Z. -H. Liu, “Thermodynamic properties of microporous crystals for two hydrated borogermanates, K2[Ge(B4O9)]•2H2O and K4[B8Ge2O17(OH)2]”, J. Chem. Thermodyn., 61, 27-31, (2013). doi: 10.1016/j.jct.2013.01.027
  • [18] J. Leitner, P. Chuchvalec, D. Sedmidubský, A. Strejc, P. Abrman, “Estimation of heat capacities of solid mixed oxides”, Thermochim. Acta, 395 (1), 27-46, (2002). doi: 10.1016/S0040-6031(02)00177-6
  • [19] O. N. Koroleva, M. V. Shtenberg, V. A. Bychinsky, A. A. Tupitsyn, K. V. Chudnenko, “Methods for calculating and matching thermodynamic properties of silicate and borate compounds”, Bull. SUSU. Ser. Chem., 9 (1), 39-48, (2017). doi: 10.14529/chem170105
  • [20] M. V. Shtenberg, V. A. Bychinskii, O. N. Koroleva, N. M. Korobatova, A. A. Tupitsyn, S. V. Fomichev, V .A. Krenev, “Calculation of the formation enthalpies, standard entropies, and standard heat capacities of alkali and alkaline-earth germanates”, Russ. J. Inorg. Chem., 62 (11), 1464-1468, (2017). doi: 10.1134/S0036023617110183
  • [21] W. Zhuang, J. Liang, Z. Qiao, J. Shen, Y. Shi, G. Rao, “Estimation of the standard enthalpy of formation of double oxide”, J. Alloy Compd., 267 (1), 6-10, (1998). doi: 10.1016/S0925-8388(97)00570-7
  • [22] H. D. B. Jenkins, “Expanding thermodynamic databases using the thermodynamic difference rule (TDR). Exemplified by an application to retrieve new thermodynamic data for thorium compounds”, J. Chem. Thermodyn., 144, 106052, (2020). doi: 10.1016/j.jct.2020.106052
  • [23] H. D. B. Jenkins, L. Glasser, “Difference rule a new thermodynamic principle:  Prediction of standard thermodynamic data for inorganic solvates”, J. Am. Chem. Soc., 126 (48), 15809-15817, (2004). doi: 10.1021/ja040137f
  • [24] H. D. B. Jenkins, L. Glasser, “Thermodynamic Difference Rules: a prescription for their application and usage to approximate thermodynamic data”, J. Chem. Eng. Data, 55 (10), 4231-4238, (2010). doi: 10.1021/je100383t
  • [25] H. D. B. Jenkins, C. E. Housecroft, “The thermodynamics of uranium salts and their hydrates – Estimating thermodynamic properties for nuclear and other actinoid materials using the Thermodynamic Difference Rule (TDR)”, J. Chem. Thermodyn., 114, 116-121, (2017). doi: 10.1016/j.jct.2017.03.023
  • [26] G. F. Voronin, I. B. Kutsenok, “Universal method for approximating the standard thermodynamic functions of solids”, J. Chem. Eng. Data, 58 (7), 2083-2094, (2013). doi: 10.1021/je400316m
  • [27] I. A. Uspenskaya, L. A. Kulikov, “Method for the estimation of standard entropy of crystal phases at 298.15 K on the limited temperature rRange of heat capacity measurements”, J. Chem. Eng. Data, 60 (8), 2320-2328, (2015). doi: 10.1021/acs.jced.5b00217
  • [28] M. W. Chase, JANAF thermochemical tables the 4th edition. NIST Standard Reference Database 13., Washington, 1998.
  • [29] L. V. Gurvich, I. V. Veyts, V. A. Medvedev, et al., Thermodynamic properties of individual substances. Vol. 4, part 1, Hemisphere Publishing, New York, United States, 1989.
  • [30] V. S. Yungman, V. P. Glushko, Thermal constants of substances, Begell House, 1999.

Evaluation of thermodynamic properties of alkaline borogermanates and germanosilicates using the regression analysis method

Year 2020, Volume: 23 Issue: 4, 252 - 258, 27.11.2020
https://doi.org/10.5541/ijot.764760

Abstract

A novel method for calculating the thermodynamic properties of ternary oxides using borogermanates and germanosilicates as examples is proposed. Using regression coefficients obtained for germanates, borates and silicates, the heat capacity, formation enthalpy, entropy and Gibbs free energy of alkaline borogermanates and germanosilicates were calculated. The obtained enthalpy of formation values are in good agreement with experimental data. In the regression equation, the alkaline oxide thermodynamic potential coefficients were found to depend on the class of compound.

Project Number

RFBR (project number 18-05-00079) and State Contract (АААА-А19-119042590024-1)

References

  • [1] W. Cao, F. Huang, Z. Wang, R. Lei, Y. Tian, Y. Hua, H. Wang, J. Zhang, S. Xu, “Controllable structural tailoring for enhanced luminescence in highly Er3+-doped germanosilicate glasses”, Opt. Lett., 43 (14), 3281-3284, (2018). doi: 10.1364/ol.43.003281
  • [2] X. Feng, F. Q. Li, A. X. Lin, X. X. Chai, F. Wang, Q. H. Zhu, Z. P. Wang, X. B. Sun, X. Sun, “Optically poled germanosilicate glass as a nonlinear material for second harmonic generation”, Laser Phys., 29 (3), 036002, (2019). doi: 10.1088/1555-6611/aaf05e
  • [3] M. Gökçe, D. Koçyiğit, “Spectroscopic investigations of Dy3+ doped borogermanate glasses for laser and wLED applications”, Opt. Mater., 89, 568-575, (2019). doi: 10.1016/j.optmat.2019.02.004
  • [4] F. Huang, F. E, R. Lei, Y. Li, B. Li, R. Ye, S. Xu, “Enhancing the Er3+: Infrared and mid-infrared emission performance in germanosilicate-zinc glasses”, J. Lumin., 213, 370-375, (2019). doi: 10.1016/j.jlumin.2019.05.050
  • [5] J. H. Kang, M. E. Davis, D. Xie, S. I. Zones, S. Smeets, L. B. McCusker, “Synthesis and characterization of CIT-13, a germanosilicate molecular sieve with extra-large pore openings”, Chem. Mater., 28 (17), 6250-6259, (2016). doi: 10.1021/acs.chemmater.6b02468
  • [6] P. F. Kashaykin, A. L. Tomashuk, V. F. Khopin, A. N. Guryanov, S. L. Semjonov, E. M. Dianov, “New radiation colour centre in germanosilicate glass fibres”, Quantum Electron., 48 (12), 1143-1146, (2018). doi: 10.1070/qel16850
  • [7] Z. E. Lin, J. Zhang, G. Y. Yang, “Synthesis and structure of KBGe2O6: The first chiral zeotype borogermanate with 7-ring channels”, Inorg. Chem., 42 (6), 1797-1799, (2003). doi: 10.1021/ic020511h
  • [8] C. -Y. Pan, H. -D. Mai, G. -Y. Yang, “A new zeotype borogermanate β-K2B2Ge3O10: synthesis, structure, property and conformational polymorphism”, Microporous Mesoporous Mater., 168, 183-187, (2013). doi: 10.1016/j.micromeso.2012.09.004
  • [9] R. Pan, J. W. Cheng, B. F. Yang, G. Y. Yang, “CsBxGe6-xO12 (x = 1): a zeolite sodalite-type borogermanate with a high Ge/B ratio by partial boron substitution”, Inorg. Chem., 56 (5), 2371-2374, (2017). doi: 10.1021/acs.inorgchem.6b03002
  • [10] D. -B. Xiong, J. -T. Zhao, H. -H. Chen, X. -X. Yang, “A borogermanate with three-dimensional open-framework layers”, Chem. Eur. J., 13 (35), 9862-9865, (2007). doi: 10.1002/chem.200701009
  • [11] H. Xu, J.-g. Jiang, B. Yang, L. Zhang, M. He, P. Wu, “Post-synthesis treatment gives highly stable siliceous zeolites through the isomorphous substitution of silicon for germanium in germanosilicates”, Angewandte Chemie International Edition, 53 (5), 1355-1359, (2014). doi: 10.1002/anie.201306527
  • [12] X. Xu, C. L. Hu, F. Kong, J. H. Zhang, J. G. Mao, J. Sun, “Cs2GeB4O9: a new second-order nonlinear-optical crystal”, Inorg. Chem., 52 (10), 5831-5837, (2013). doi: 10.1021/ic302774h
  • [13] L. T. Denisova, N. V. Belousova, N. A. Galiakhmetova, V. M. Denisov, “High-temperature heat capacity of YBiGeO5 and GdBiGeO5 in the range 373–1000 K”, Phys. Solid State, 59 (5), 1047-1050, (2017). doi: 10.1134/s1063783417050080
  • [14] L. T. Denisova, L. A. Irtyugo, Y. F. Kargin, N. V. Belousova, V. V. Beletskii, V. M. Denisov, “Synthesis and high-temperature heat capacity of Dy2Ge2O7 and Ho2Ge2O7”, Inorg. Mater., 54 (4), 361-365, (2018). doi: 10.1134/s0020168518040039
  • [15] L. T. Denisova, Y. F. Kargin, L. A. Irtyugo, N. V. Belousova, V. V. Beletskii, V. M. Denisov, “Heat capacity of In2Ge2O7 and YInGe2O7 from 320 to 1000 K”, Inorg. Mater., 54 (12), 1245-1249, (2018). doi: 10.1134/s0020168518120026
  • [16] N. Kong, H. -H. Zhang, J. Wang, Z. -H. Liu, “Thermochemical properties of microporous materials for two borogermanates, β-K2[B2Ge3O10] and NH4[BGe3O8]”, J. Chem. Thermodyn., 92, 29-34, (2016). doi: 10.1016/j.jct.2015.08.032
  • [17] Y. Zhang, S. Lei, Z. -H. Liu, “Thermodynamic properties of microporous crystals for two hydrated borogermanates, K2[Ge(B4O9)]•2H2O and K4[B8Ge2O17(OH)2]”, J. Chem. Thermodyn., 61, 27-31, (2013). doi: 10.1016/j.jct.2013.01.027
  • [18] J. Leitner, P. Chuchvalec, D. Sedmidubský, A. Strejc, P. Abrman, “Estimation of heat capacities of solid mixed oxides”, Thermochim. Acta, 395 (1), 27-46, (2002). doi: 10.1016/S0040-6031(02)00177-6
  • [19] O. N. Koroleva, M. V. Shtenberg, V. A. Bychinsky, A. A. Tupitsyn, K. V. Chudnenko, “Methods for calculating and matching thermodynamic properties of silicate and borate compounds”, Bull. SUSU. Ser. Chem., 9 (1), 39-48, (2017). doi: 10.14529/chem170105
  • [20] M. V. Shtenberg, V. A. Bychinskii, O. N. Koroleva, N. M. Korobatova, A. A. Tupitsyn, S. V. Fomichev, V .A. Krenev, “Calculation of the formation enthalpies, standard entropies, and standard heat capacities of alkali and alkaline-earth germanates”, Russ. J. Inorg. Chem., 62 (11), 1464-1468, (2017). doi: 10.1134/S0036023617110183
  • [21] W. Zhuang, J. Liang, Z. Qiao, J. Shen, Y. Shi, G. Rao, “Estimation of the standard enthalpy of formation of double oxide”, J. Alloy Compd., 267 (1), 6-10, (1998). doi: 10.1016/S0925-8388(97)00570-7
  • [22] H. D. B. Jenkins, “Expanding thermodynamic databases using the thermodynamic difference rule (TDR). Exemplified by an application to retrieve new thermodynamic data for thorium compounds”, J. Chem. Thermodyn., 144, 106052, (2020). doi: 10.1016/j.jct.2020.106052
  • [23] H. D. B. Jenkins, L. Glasser, “Difference rule a new thermodynamic principle:  Prediction of standard thermodynamic data for inorganic solvates”, J. Am. Chem. Soc., 126 (48), 15809-15817, (2004). doi: 10.1021/ja040137f
  • [24] H. D. B. Jenkins, L. Glasser, “Thermodynamic Difference Rules: a prescription for their application and usage to approximate thermodynamic data”, J. Chem. Eng. Data, 55 (10), 4231-4238, (2010). doi: 10.1021/je100383t
  • [25] H. D. B. Jenkins, C. E. Housecroft, “The thermodynamics of uranium salts and their hydrates – Estimating thermodynamic properties for nuclear and other actinoid materials using the Thermodynamic Difference Rule (TDR)”, J. Chem. Thermodyn., 114, 116-121, (2017). doi: 10.1016/j.jct.2017.03.023
  • [26] G. F. Voronin, I. B. Kutsenok, “Universal method for approximating the standard thermodynamic functions of solids”, J. Chem. Eng. Data, 58 (7), 2083-2094, (2013). doi: 10.1021/je400316m
  • [27] I. A. Uspenskaya, L. A. Kulikov, “Method for the estimation of standard entropy of crystal phases at 298.15 K on the limited temperature rRange of heat capacity measurements”, J. Chem. Eng. Data, 60 (8), 2320-2328, (2015). doi: 10.1021/acs.jced.5b00217
  • [28] M. W. Chase, JANAF thermochemical tables the 4th edition. NIST Standard Reference Database 13., Washington, 1998.
  • [29] L. V. Gurvich, I. V. Veyts, V. A. Medvedev, et al., Thermodynamic properties of individual substances. Vol. 4, part 1, Hemisphere Publishing, New York, United States, 1989.
  • [30] V. S. Yungman, V. P. Glushko, Thermal constants of substances, Begell House, 1999.
There are 30 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Regular Original Research Article
Authors

Mikhail Shtenberg

Valery Bychinsky This is me

Alexey Tupitsyn This is me

Olga Koroleva This is me

Project Number RFBR (project number 18-05-00079) and State Contract (АААА-А19-119042590024-1)
Publication Date November 27, 2020
Published in Issue Year 2020 Volume: 23 Issue: 4

Cite

APA Shtenberg, M., Bychinsky, V., Tupitsyn, A., Koroleva, O. (2020). Evaluation of thermodynamic properties of alkaline borogermanates and germanosilicates using the regression analysis method. International Journal of Thermodynamics, 23(4), 252-258. https://doi.org/10.5541/ijot.764760
AMA Shtenberg M, Bychinsky V, Tupitsyn A, Koroleva O. Evaluation of thermodynamic properties of alkaline borogermanates and germanosilicates using the regression analysis method. International Journal of Thermodynamics. November 2020;23(4):252-258. doi:10.5541/ijot.764760
Chicago Shtenberg, Mikhail, Valery Bychinsky, Alexey Tupitsyn, and Olga Koroleva. “Evaluation of Thermodynamic Properties of Alkaline Borogermanates and Germanosilicates Using the Regression Analysis Method”. International Journal of Thermodynamics 23, no. 4 (November 2020): 252-58. https://doi.org/10.5541/ijot.764760.
EndNote Shtenberg M, Bychinsky V, Tupitsyn A, Koroleva O (November 1, 2020) Evaluation of thermodynamic properties of alkaline borogermanates and germanosilicates using the regression analysis method. International Journal of Thermodynamics 23 4 252–258.
IEEE M. Shtenberg, V. Bychinsky, A. Tupitsyn, and O. Koroleva, “Evaluation of thermodynamic properties of alkaline borogermanates and germanosilicates using the regression analysis method”, International Journal of Thermodynamics, vol. 23, no. 4, pp. 252–258, 2020, doi: 10.5541/ijot.764760.
ISNAD Shtenberg, Mikhail et al. “Evaluation of Thermodynamic Properties of Alkaline Borogermanates and Germanosilicates Using the Regression Analysis Method”. International Journal of Thermodynamics 23/4 (November 2020), 252-258. https://doi.org/10.5541/ijot.764760.
JAMA Shtenberg M, Bychinsky V, Tupitsyn A, Koroleva O. Evaluation of thermodynamic properties of alkaline borogermanates and germanosilicates using the regression analysis method. International Journal of Thermodynamics. 2020;23:252–258.
MLA Shtenberg, Mikhail et al. “Evaluation of Thermodynamic Properties of Alkaline Borogermanates and Germanosilicates Using the Regression Analysis Method”. International Journal of Thermodynamics, vol. 23, no. 4, 2020, pp. 252-8, doi:10.5541/ijot.764760.
Vancouver Shtenberg M, Bychinsky V, Tupitsyn A, Koroleva O. Evaluation of thermodynamic properties of alkaline borogermanates and germanosilicates using the regression analysis method. International Journal of Thermodynamics. 2020;23(4):252-8.