In order to achieve satisfactory incineration, it is required that the combustion reaction occurs in high temperature, resulting in gaseous components with high exergetic potential that can be used for electromechanical power generation. This study makes an exergetic analysis, feasibility study and thermoeconomic evaluation for implanting a cogeneration system integrated to a solid waste incinerator from the Biotery located in the State University of Maringa. First and Second Laws of Thermodynamics are employed, by applying mass, energy, exergy and economic balances of the proposed system. Based on this evaluation it is possible to verify that the integration of a Rankine cycle using a micro-turbine of 123 kW with the incinerator is technically viable. The power generation costs was estimated ~11% lower than from the supplier and the operational costs of the incineration can either be decreased in ~ 22% to present investment return in up to 4.2 years. These cost reductions could make possible the continuous operation of the equipment, supplying conditions for the correct disposal of the solid waste generated by the university and Maringa city.
Primary Language | English |
---|---|
Journal Section | Regular Original Research Article |
Authors | |
Publication Date | December 4, 2014 |
Published in Issue | Year 2014 Volume: 17 Issue: 4 |