AN INVERSE MATHEMATICAL APPROACH FOR THERMAL STRESSES IN A SOLID SPHERE
Year 2015,
Volume: 18 Issue: 3, 206 - 211, 01.04.2015
Vinayak Kulkarni
,
K. Deshmukh
Asha Bhave
Abstract
The present work deals with the determination of unknown temperature and thermal stresses in a solid sphere. A solid sphere is subjected to arbitrary known interior temperature under steady state. The Legendre's transform are used for heat transfer analysis to determine temperature change within solid sphere. The solution of Navier's equation in terms of Goodier's thermoelastic displacement potential and the Boussinesq's harmonic function for spherical co-ordinate system have been used for thermal stress analysis. The results for temperature change, displacement and stresses have been computed numerically and illustrated graphically.
References
- Cialkowski N.J., Grysa K.W., “On a certain Inverse problem of temperature and thermal Stresses fields”, Acta Mechanica, 36, 169-185, 1981.
- Haghighi G., Eghtesad M., Malekzadeh P., Necsulescu D.S., “Two dimensional inverse heat transfer analysis of functionally graded materials in estimating time dependent surface heat flux”, Numerical heat transfer, Part A: Applications, 54, 744-762, 2008.
- Huang C H., Cheng S.C., “Three dimensional inverse problem of estimating the volumetric heat generation for a composite material”, Numerical heat transfer, Part A: Applications, 39, 383-403, 2001.
- Choulli M., Zeghal A., “Laplace transform approach for an inverse problem”, Transport Theory and Statistical Physics, 24, 1353-1367, 1995.
- Taler J., “Theory of transient experimental technique for surface heat transfer”, Int. J. Heat Mass Transfer, 42, 1123-1140, 1999.
- Noda N., Hetnarski R. ,Tanigawa Y., “Thermal Stresses in spherical bodies”, in Thermal Stresses, 2nd edition, New York, Taylor & Francis, 2003, Chp.7, p.295-341.
- Mohammadium M., Rahimi A.B., “Estimation of heat flux using temperature distribution at a point by conjugate gradient method”, Int. J. Thermal Sciences, 50, 2443-2450, 2011.
- Kulkarni V.S., Deshmukh K.C., “An inverse quasi- static steady state thermal stresses in a thick circular plate”, J. Franklin Institute, 345, 29-38, 2008.
- Ozisik M.N., “Heat conduction in spherical coordinate system” in Boundary value problems of heat conduction, Scranton, Pennsylvania, International Company, 1968, pp.194-236.
Year 2015,
Volume: 18 Issue: 3, 206 - 211, 01.04.2015
Vinayak Kulkarni
,
K. Deshmukh
Asha Bhave
References
- Cialkowski N.J., Grysa K.W., “On a certain Inverse problem of temperature and thermal Stresses fields”, Acta Mechanica, 36, 169-185, 1981.
- Haghighi G., Eghtesad M., Malekzadeh P., Necsulescu D.S., “Two dimensional inverse heat transfer analysis of functionally graded materials in estimating time dependent surface heat flux”, Numerical heat transfer, Part A: Applications, 54, 744-762, 2008.
- Huang C H., Cheng S.C., “Three dimensional inverse problem of estimating the volumetric heat generation for a composite material”, Numerical heat transfer, Part A: Applications, 39, 383-403, 2001.
- Choulli M., Zeghal A., “Laplace transform approach for an inverse problem”, Transport Theory and Statistical Physics, 24, 1353-1367, 1995.
- Taler J., “Theory of transient experimental technique for surface heat transfer”, Int. J. Heat Mass Transfer, 42, 1123-1140, 1999.
- Noda N., Hetnarski R. ,Tanigawa Y., “Thermal Stresses in spherical bodies”, in Thermal Stresses, 2nd edition, New York, Taylor & Francis, 2003, Chp.7, p.295-341.
- Mohammadium M., Rahimi A.B., “Estimation of heat flux using temperature distribution at a point by conjugate gradient method”, Int. J. Thermal Sciences, 50, 2443-2450, 2011.
- Kulkarni V.S., Deshmukh K.C., “An inverse quasi- static steady state thermal stresses in a thick circular plate”, J. Franklin Institute, 345, 29-38, 2008.
- Ozisik M.N., “Heat conduction in spherical coordinate system” in Boundary value problems of heat conduction, Scranton, Pennsylvania, International Company, 1968, pp.194-236.