Research Article
BibTex RIS Cite

Investigation of Photovoltaic Membrane Desalination Utilizing Storage Heat in Solar Cells

Year 2024, Issue: Erken Görünüm - Early Pub Issues, 1 - 10

Abstract

Solar-assisted Photovoltaic-Membrane Distillation (PMD) is a passive tool to cool and distillate salty water. A theoretical study was conducted in the current work using the COMSOL Multiphysics version 5.6 to develop the CFD model of the PMD. The meteorological data of Baghdad- Iraq was obtained using Meteonorm software V8.0.3.Effects of membrane thickness, space between evaporation and condensation layer, height of fins, number of fins, and inlet water temperature on cell temperature and water productivity were investigated. Thickness of 100 μm exhibited a minimum temperature polarization and maximum membrane coefficient. Space thickness of 2.5 mm exhibited a temperature difference of 4°C between evaporation and condensation layers. Integrating the PMD system into solar panel reduced the cell surface temperature by 7oC. Adding a heat sink of 5 fins with a fin height of 2 cm resulted in a maximum cell temperature of 50 oC and yielded water at point 0.615 kg/h.m2 rate.

Ethical Statement

Dear Sir We wish to submit an original research article entitled “Investigation of photovoltaic membrane desalination utilizing storage heat in the solar cells” for consideration by The IInternational Journal of Thermodynamics . We have no conflicts of interest to disclose. We believe this manuscript is appropriate for publication by The International Journal of Thermodynamics. • We believe that this work is important because it deals with using clean energy to produce freshwater from salty water. • This work aimed to distillate the brackish water utilizing the stored heat in PV panels. There are many experimental and theoretical studies about cooling solar cells and the production of potable water, and we did not find a work that solves the problem using the COMSOL software.

Supporting Institution

no have any Supporting Institution

Project Number

1

Thanks

thanks for International Journal of Thermodynamics

References

  • A. C. Lemay, S. Wagner, and B. P. Rand, “Current status and future potential of rooftop solar adoption in the United States,” Energy Policy, vol. 177, pp. 113571, Jun. 2023, doi: 10.1016/J.ENPOL.2023.113571.
  • M. Rabie, M. F. Elkady, and A. H. El-Shazly, “Hybrid membrane distillation/high concentrator photovoltaic system for freshwater production,” Energy Reports, vol. 8, pp. 112–119, 2022, doi: 10.1016/j.egyr.2021.11.067.
  • S. Aleid, “Design and Fabrication of Multi-functional Photovoltaic-Membrane Distillation Evaporative Crystallizer for Water Desalination, Electricity Generation, Salt Crystallization and Solar Cell Cooling ” M.S. thesis, Dept. Sci. and Tech., Abdullah Univ., Thuwal, Kingdom of Saudi Arabia,2019.
  • W.Wang, Y.Shi, C.Zhang, S.Hong, L. Shi, J. Chang, R. Li, Y.Jin, C. Ong, S. Zhuo, and P. Wang, “Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation,” Nat. Commun., vol. 10, pp. 3012, Jul. 2019, doi: 10.1038/s41467-019-10817-6.
  • Q. Zhao, H. Zhang, Z. Hu, and S. Hou, “A solar driven hybrid photovoltaic module/direct contact membrane distillation system for electricity generation and water desalination,” Energy Convers. Manag., vol. 221, pp. 113146,Oct.2020,doi:10.1016/j.enconman.2020.113146.
  • U. Kumar, "Integration of Membrane Distillation and Solar Thermal Systems for Co-production of Purified Water and Heat" Ph.D. dissertation, Dept. Eng. Tech., KTH School of Industrial Engineering and Management., English, 2017.
  • E. Chiavazzo, M. Morciano, F. Viglino, M. Fasano, and P. Asinari, “Passive solar high-yield seawater desalination by modular and low-cost distillation,” Nat. Sustain., vol. 1, no. 12, pp. 763–772, Dec. 2018, doi: 10.1038/s41893-018-0186-x.
  • A. A. B. Baloch, H. M. S. Bahaidarah, P. Gandhidasan, and F. A. Al-Sulaiman, “Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling,” Energy Convers. Manag., vol. 103, pp. 14–27, Oct. 2015, doi: 10.1016/j.enconman.2015.06.018.
  • C. G. Popovici, S. V. Hudişteanu, T. D. Mateescu, and N. C. Cherecheş, “Efficiency Improvement of Photovoltaic Panels by Using Air Cooled Heat Sinks,” Energy Procedia, vol. 85, pp. 425–432, Jan. 2016, doi: 10.1016/j.egypro.2015.12.223.
  • G. Li and L. Lu, “Modeling and performance analysis of a fully solar-powered stand-alone sweeping gas membrane distillation desalination system for island and coastal households,” Energy Convers. Manag., vol. 205, pp. 112375, Feb. 2020, doi: 10.1016/j.enconman.2019.112375.
  • W. Wang, “The Design and Fabrication of the Multistage-Membrane Distillation Device Integrated with Solar Cell for Simultaneous Water and Electricity Production via Sunlight Dissertation” Ph.D. dissertation, Dept Sci. and Tech., Abdullah Univ., Thuwal, Kingdom of Saudi Arabia,2020.
  • W. Z. Leow, Y. M. Irwan, I. Safwati, M. Irwanto, A. R. Amelia, Z. Syafiqah, M. I. Fahmi and N. Rosle, “Simulation study on photovoltaic panel temperature under different solar radiation using computational fluid dynamic method,” J. Phys. Conf. Ser. 1432 012052, Malaysia, Jan. 2020, vol. 1432, pp. 012052, doi: 10.1088/1742-6596/1432/1/012052.
  • J. M. Smith, Introduction to chemical engineering thermodynamics,6nd Ed.New York: McGraw-Hill,1950.
  • T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, “Fundamental of Heat and Mass Transfer,” in Fluid Mech. its Appl.,8nd ed. New York: McGraw-Hill, 2011, pp. 321–338. [Online]. Available: https://www.wiley.com/en-us/Fundamentals+of+Heat+and+Mass+Transfer%2C+8th+Edition-p-9781119353881,( Accessed Mar. 04, 2023).
  • M.D.Koretsky, Engineering and Chemical Thermodynamics, 2nd Ed.New York: Wiley, 2012.
  • A. O. Imdakm and T. Matsuura, “A Monte Carlo simulation model for membrane distillation processes: Direct contact (MD),” J. Memb. Sci., vol. 237, pp. 51–59, Jul. 2004, doi:10.1016/j.memsci.2004.03.005.
  • S. Srisurichan, R. Jiraratananon, and A. G. Fane, “Mass transfer mechanisms and transport resistances in direct contact membrane distillation process,” J. Memb. Sci., vol. 277, pp.186–194, Jun.2006, doi: 10.1016/j.memsci.2005.10.028.
  • N. Nishiyama and T. Yokoyama, “Permeability of porous media: Role of the critical pore size,” J. Geophys. Res. Solid Earth, vol. 122,pp. 6955–6971, Aug.2017, doi: 10.1002/2016JB013793.
  • W. Wang, S. Aleid, Y. Shi, C. Zhang, R. Li, M. Wu, S. Zhu, and P.Wang “Integrated solar-driven PV cooling and seawater desalination with zero liquid discharge,” Joule, vol. 5, pp. 1873–1887, Jul. 2021, doi: 10.1016/j.joule.2021.05.010.
Year 2024, Issue: Erken Görünüm - Early Pub Issues, 1 - 10

Abstract

Project Number

1

References

  • A. C. Lemay, S. Wagner, and B. P. Rand, “Current status and future potential of rooftop solar adoption in the United States,” Energy Policy, vol. 177, pp. 113571, Jun. 2023, doi: 10.1016/J.ENPOL.2023.113571.
  • M. Rabie, M. F. Elkady, and A. H. El-Shazly, “Hybrid membrane distillation/high concentrator photovoltaic system for freshwater production,” Energy Reports, vol. 8, pp. 112–119, 2022, doi: 10.1016/j.egyr.2021.11.067.
  • S. Aleid, “Design and Fabrication of Multi-functional Photovoltaic-Membrane Distillation Evaporative Crystallizer for Water Desalination, Electricity Generation, Salt Crystallization and Solar Cell Cooling ” M.S. thesis, Dept. Sci. and Tech., Abdullah Univ., Thuwal, Kingdom of Saudi Arabia,2019.
  • W.Wang, Y.Shi, C.Zhang, S.Hong, L. Shi, J. Chang, R. Li, Y.Jin, C. Ong, S. Zhuo, and P. Wang, “Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation,” Nat. Commun., vol. 10, pp. 3012, Jul. 2019, doi: 10.1038/s41467-019-10817-6.
  • Q. Zhao, H. Zhang, Z. Hu, and S. Hou, “A solar driven hybrid photovoltaic module/direct contact membrane distillation system for electricity generation and water desalination,” Energy Convers. Manag., vol. 221, pp. 113146,Oct.2020,doi:10.1016/j.enconman.2020.113146.
  • U. Kumar, "Integration of Membrane Distillation and Solar Thermal Systems for Co-production of Purified Water and Heat" Ph.D. dissertation, Dept. Eng. Tech., KTH School of Industrial Engineering and Management., English, 2017.
  • E. Chiavazzo, M. Morciano, F. Viglino, M. Fasano, and P. Asinari, “Passive solar high-yield seawater desalination by modular and low-cost distillation,” Nat. Sustain., vol. 1, no. 12, pp. 763–772, Dec. 2018, doi: 10.1038/s41893-018-0186-x.
  • A. A. B. Baloch, H. M. S. Bahaidarah, P. Gandhidasan, and F. A. Al-Sulaiman, “Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling,” Energy Convers. Manag., vol. 103, pp. 14–27, Oct. 2015, doi: 10.1016/j.enconman.2015.06.018.
  • C. G. Popovici, S. V. Hudişteanu, T. D. Mateescu, and N. C. Cherecheş, “Efficiency Improvement of Photovoltaic Panels by Using Air Cooled Heat Sinks,” Energy Procedia, vol. 85, pp. 425–432, Jan. 2016, doi: 10.1016/j.egypro.2015.12.223.
  • G. Li and L. Lu, “Modeling and performance analysis of a fully solar-powered stand-alone sweeping gas membrane distillation desalination system for island and coastal households,” Energy Convers. Manag., vol. 205, pp. 112375, Feb. 2020, doi: 10.1016/j.enconman.2019.112375.
  • W. Wang, “The Design and Fabrication of the Multistage-Membrane Distillation Device Integrated with Solar Cell for Simultaneous Water and Electricity Production via Sunlight Dissertation” Ph.D. dissertation, Dept Sci. and Tech., Abdullah Univ., Thuwal, Kingdom of Saudi Arabia,2020.
  • W. Z. Leow, Y. M. Irwan, I. Safwati, M. Irwanto, A. R. Amelia, Z. Syafiqah, M. I. Fahmi and N. Rosle, “Simulation study on photovoltaic panel temperature under different solar radiation using computational fluid dynamic method,” J. Phys. Conf. Ser. 1432 012052, Malaysia, Jan. 2020, vol. 1432, pp. 012052, doi: 10.1088/1742-6596/1432/1/012052.
  • J. M. Smith, Introduction to chemical engineering thermodynamics,6nd Ed.New York: McGraw-Hill,1950.
  • T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, “Fundamental of Heat and Mass Transfer,” in Fluid Mech. its Appl.,8nd ed. New York: McGraw-Hill, 2011, pp. 321–338. [Online]. Available: https://www.wiley.com/en-us/Fundamentals+of+Heat+and+Mass+Transfer%2C+8th+Edition-p-9781119353881,( Accessed Mar. 04, 2023).
  • M.D.Koretsky, Engineering and Chemical Thermodynamics, 2nd Ed.New York: Wiley, 2012.
  • A. O. Imdakm and T. Matsuura, “A Monte Carlo simulation model for membrane distillation processes: Direct contact (MD),” J. Memb. Sci., vol. 237, pp. 51–59, Jul. 2004, doi:10.1016/j.memsci.2004.03.005.
  • S. Srisurichan, R. Jiraratananon, and A. G. Fane, “Mass transfer mechanisms and transport resistances in direct contact membrane distillation process,” J. Memb. Sci., vol. 277, pp.186–194, Jun.2006, doi: 10.1016/j.memsci.2005.10.028.
  • N. Nishiyama and T. Yokoyama, “Permeability of porous media: Role of the critical pore size,” J. Geophys. Res. Solid Earth, vol. 122,pp. 6955–6971, Aug.2017, doi: 10.1002/2016JB013793.
  • W. Wang, S. Aleid, Y. Shi, C. Zhang, R. Li, M. Wu, S. Zhu, and P.Wang “Integrated solar-driven PV cooling and seawater desalination with zero liquid discharge,” Joule, vol. 5, pp. 1873–1887, Jul. 2021, doi: 10.1016/j.joule.2021.05.010.
There are 19 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Online First
Authors

Hussian A. Abdul Kareem 0009-0004-8484-1049

Abdulhadi Khalifa 0000-0002-3024-8926

Ahmed Hamad 0000-0002-9885-2054

Project Number 1
Early Pub Date May 21, 2024
Publication Date
Submission Date November 15, 2023
Acceptance Date March 13, 2024
Published in Issue Year 2024 Issue: Erken Görünüm - Early Pub Issues

Cite

APA A. Abdul Kareem, H., Khalifa, A., & Hamad, A. (2024). Investigation of Photovoltaic Membrane Desalination Utilizing Storage Heat in Solar Cells. International Journal of Thermodynamics(Erken Görünüm - Early Pub Issues), 1-10. https://doi.org/10.5541/ijot.1390518
AMA A. Abdul Kareem H, Khalifa A, Hamad A. Investigation of Photovoltaic Membrane Desalination Utilizing Storage Heat in Solar Cells. International Journal of Thermodynamics. May 2024;(Erken Görünüm - Early Pub Issues):1-10. doi:10.5541/ijot.1390518
Chicago A. Abdul Kareem, Hussian, Abdulhadi Khalifa, and Ahmed Hamad. “Investigation of Photovoltaic Membrane Desalination Utilizing Storage Heat in Solar Cells”. International Journal of Thermodynamics, no. Erken Görünüm - Early Pub Issues (May 2024): 1-10. https://doi.org/10.5541/ijot.1390518.
EndNote A. Abdul Kareem H, Khalifa A, Hamad A (May 1, 2024) Investigation of Photovoltaic Membrane Desalination Utilizing Storage Heat in Solar Cells. International Journal of Thermodynamics Erken Görünüm - Early Pub Issues 1–10.
IEEE H. A. Abdul Kareem, A. Khalifa, and A. Hamad, “Investigation of Photovoltaic Membrane Desalination Utilizing Storage Heat in Solar Cells”, International Journal of Thermodynamics, no. Erken Görünüm - Early Pub Issues, pp. 1–10, May 2024, doi: 10.5541/ijot.1390518.
ISNAD A. Abdul Kareem, Hussian et al. “Investigation of Photovoltaic Membrane Desalination Utilizing Storage Heat in Solar Cells”. International Journal of Thermodynamics Erken Görünüm - Early Pub Issues (May 2024), 1-10. https://doi.org/10.5541/ijot.1390518.
JAMA A. Abdul Kareem H, Khalifa A, Hamad A. Investigation of Photovoltaic Membrane Desalination Utilizing Storage Heat in Solar Cells. International Journal of Thermodynamics. 2024;:1–10.
MLA A. Abdul Kareem, Hussian et al. “Investigation of Photovoltaic Membrane Desalination Utilizing Storage Heat in Solar Cells”. International Journal of Thermodynamics, no. Erken Görünüm - Early Pub Issues, 2024, pp. 1-10, doi:10.5541/ijot.1390518.
Vancouver A. Abdul Kareem H, Khalifa A, Hamad A. Investigation of Photovoltaic Membrane Desalination Utilizing Storage Heat in Solar Cells. International Journal of Thermodynamics. 2024(Erken Görünüm - Early Pub Issues):1-10.