Year 2025,
Volume: 28 Issue: 2, 79 - 88, 01.06.2025
Ankita Balpande
,
Prashant Maheshwary
,
Pramod Belkhode
References
-
S. Pandey, A. Kumar, and A. Sharma, “Sustainable solar drying: Recent advances in materials, innovative designs, mathematical modeling, and energy storage solutions,” Energy, vol. 308, Nov. 2024, Art. no. 132725, doi: 10.1016/j.energy.2024.132725.
-
L. Tang et al, “Drying hot red chilies: A comparative study of solar-gas-fired, tunnel, and conventional dryers,” Processes, vol. 12, no. 10, p. 2104, Sep. 2024, doi: 10.3390/pr12102104.
-
M. Das and E. K. Akpinar, “Investigation of the effects of solar tracking system on performance of the solar air dryer,” Renewable Energy, vol. 167, pp. 907–916, Apr. 2021, doi: 10.1016/j.renene.2020.12.010.
-
X. Li, M. Liu, L. Duanmu, and Y. Ji, “The optimization of solar heating system with seasonal storage based on a real project,” Procedia Engineering, vol. 121, pp. 1341–1348, Oct. 2015, doi: 10.1016/j.proeng.2015.09.017.
-
A. Lingayat, V. P. Chandramohan, and V. R. K. Raju, “Design, development and performance of indirect type solar dryer for banana drying,” Energy Procedia, vol. 109, pp. 409–416, Mar. 2017, doi: 10.1016/j.egypro.2017.03.041.
-
D. Wang, J. Liu, Y. Liu, Y. Wang, B. Li, and J. Liu, “Evaluation of the performance of an improved solar air heater with 'S' shaped ribs with gap,” Solar Energy, vol. 195, pp. 89–101, Jan. 2019, doi: 10.1016/j.solener.2019.11.034.
-
A. Amer, A. Ibrahim, A. Shahin, I. Elsebaee, R. Saad, M. F. Hassan, and Z. Hassan, “Performance evaluation of an automated hybrid solar system dryer for drying some aromatic herbs,” Drying Technology, vol. 42, no. 4, pp. 728–747, Jan. 2024, doi: 10.1080/07373937.2024.2308607.
-
M. A. Kherrafi, A. Benseddik, R. Saim, A. Bouregueba, A. Badji, C. Nettari, and I. Hasrane, “Advancements in solar drying technologies: Design variations, hybrid systems, storage materials and numerical analysis: A review,” Solar Energy, vol. 270, Mar. 2024, Art. no. 112383, doi: 10.1016/j.solener.2024.112383.
-
N. Kalita, P. Muthukumar, and A. Dalal, “Performance investigation of a hybrid solar dryer with electric and biogas backup air heaters for chilli drying,” Thermal Science and Engineering Progress, vol. 52, Jul. 2024, Art. no. 102646, doi: 10.1016/j.tsep.2024.102646.
-
C. K. Saha, N. K. Roy, J. Khatun, N. Tasnim, and M.S. Alam, “Solar hybrid dryers for fruits, vegetables, and fish: A comprehensive review on constructional features and techno-economic-environmental analysis,” Sustainable Energy Technologies and Assessments, vol. 68, Aug. 2024, Art. no. 103878, doi: 10.1016/j.seta.2024.103878.
-
D. D. Behera, R.C. Mohanty, and A.M. Mohanty, “Experimental investigation of a hybrid solar dryer for vegetable drying with and without phase change material,” J. Braz. Soc. Mech. Sci. Eng., vol. 46, p. 303, Apr. 2024, doi: 10.1007/s40430-024-04876-0.
-
M. Lehmad, N. Hidra, P. Lhomme, S. Mghazli, Y. EL Hachimi, and N. Abdenouri, “Environmental, economic and quality assessment of hybrid solar-electric drying of black soldier fly (Hermetia illucens) larvae,” Renewable Energy, vol. 226, May. 2024, Art. no. 120401, doi: 10.1016/j.renene.2024.120401.
-
K.M. Mahajan, V.H. Patil, and T.A. Koli, "Design analysis of an innovative solar biomass hybrid dryer for drying turmeric," Interactions, vol. 245, p. 145, July 2024, doi: 10.1007/s10751-024-01965-3.
-
L. Kumar and O. Prakash, "Optimal simulation approach for tomato flakes drying in hybrid solar dryer," Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 46, no. 1, pp. 5867–5887, Apr. 2024, doi: 10.1080/15567036.2024.2333983.
-
R. Pawar, S. Santara, A. Sircar, et al., “Design and development of hybrid solar–biomass drying system: An innovative approach,” MRS Energy & Sustainability, vol. 11, pp. 409–433, Apr. 2024, doi: 10.1557/s43581-024-00083-5.
-
M. Yazici and R. Kose, “Energy, exergy and economic investigation of novel hybrid dryer, indirect solar dryer and traditional shade drying,” Thermal Science and Engineering Progress, vol. 49, Mar. 2024, Art. no. 102502, doi: 10.1016/j.tsep.2024.102502.
-
G. Yuan, L. Hong, X. Li, L. Xu, W. Tang, and Z. Wang, “Experimental investigation of a solar dryer system for drying carpet,” Energy Procedia, vol. 70, pp. 626–633, May 2015, doi: 10.1016/j.egypro.2015.02.170.
-
R.S. Gill, S. Singh, and P.P. Singh, “Low cost solar air heater,” Energy Conversion and Management, vol. 57, pp. 131–142, May. 2012, doi: 10.1016/j.enconman.2011.12.019.
-
V.P. Katekar and S.S. Deshmukh, “A review of the use of phase change materials on performance of solar stills,” Journal of Energy Storage, vol. 30, Aug. 2020, Art. no. 101398, doi: 10.1016/j.est.2020.101398.
-
S.M. Salih, J.M. Jalil, and S.E. Najim, “Double-Pass Solar Air Heater (DP-SAH) utilizing Latent Thermal Energy Storage (LTES),” IOP Conference Series: Materials Science and Engineering, vol. 518, no. 3, May. 2019, Art. no. 032038, doi: 10.1088/1757-899X/518/3/032038.
-
S. Haldorai, S. Gurusamy, and M. Pradhapraj, “A review on thermal energy storage systems in solar air heaters,” International Journal of Energy Research, vol. 43, no. 12, pp. 6061–6077, Apr. 2019, doi: 10.1002/er.4379.
-
W. P. Missana, E. Park, and T. T. Kivevele, “Thermal performance analysis of solar dryer integrated with heat energy storage system and a low-cost parabolic solar dish concentrator for food preservation,” Journal of Energy, vol. 2020, Jul. 2020, Art. no. 9205283, doi: 10.1155/2020/9205283.
-
O. Ojike and W. I. Okonkwo, “Study of a passive solar air heater using palm oil and paraffin as storage media,” Case Stud. Therm. Eng., vol. 14, Sep. 2019, Art. no. 100454, doi: 10.1016/j.csite.2019.100454.
-
D. K. Yadav, S. Malakar, V. K. Arora, et al., “Evacuated Tube Solar Collector-Based Drying System: Analytical Modeling, Influencing Factors, and Recent Progress in Drying of Agri-Commodities,” Food Eng. Rev., vol. 16, pp. 567–594, Dec. 2024, doi: 10.1007/s12393-024-09382-6.
-
M. A. Eltawil, M. M. Azam, and A. O. Alghannam, “Solar PV powered mixed-mode tunnel dryer for drying potato chips,” Renewable Energy, vol. 116, Part A, pp. 594–605, Feb. 2018, doi: 10.1016/j.renene.2017.10.007.
-
S. Chouicha, A. Boubekri, D. Mennouche, and M. H. Berrbeuh, “Solar drying of sliced potatoes: An experimental investigation,” Energy Procedia, vol. 36, pp. 1276–1285, Aug. 2013, doi: 10.1016/j.egypro.2013.07.144.
-
P. P. Tripathy and S. Kumar, “Influence of sample geometry and rehydration temperature on quality attributes of potato dried under open sun and mixed-mode solar drying,” Int. J. Green Energy, vol. 6, no. 2, pp. 143–156, Apr. 2009, doi: 10.1080/15435070902784863.
-
A. Djebli, S. Hanini, O. Badaoui, B. Haddad, and A. Benhamou, “Modeling and comparative analysis of solar drying behavior of potatoes,” Renewable Energy, vol. 145, pp. 1494–1506, Jan. 2020, doi: 10.1016/j.renene.2019.07.083.
-
S. Kesavan, T.V. Arjunan, and S. Vijayan, “Thermodynamic analysis of a triple-pass solar dryer for drying potato slices,” J. Therm. Anal. Calorim., vol. 136, pp. 159–171, Apr. 2019, doi: 10.1007/s10973-018-7747-0.
-
M. Y. Nasri and A. Belhamri, “Effects of the climatic conditions and the shape on the drying kinetics, application to solar drying of potato-case of Maghreb's region,” J. Clean. Prod., vol. 183, pp. 1241–1251, May 2018, doi: 10.1016/j.jclepro.2018.02.103.
-
D. Aydin, S. E. Ezenwali, M. Y. Alibar, and X. Chen, “Novel modular mixed-mode dryer for enhanced solar energy utilization in agricultural crop drying applications,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 43, no. 16, pp. 1958–1974, Sep. 2019, doi: 10.1080/15567036.2019.1663306.
-
A. Fudholi, K. Sopian, M. H. Ruslan, M. A. Alghoul, and M. Y. Sulaiman, “Review of solar dryers for agricultural and marine products,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 1–30, Jan. 2010, doi: 10.1016/j.rser.2009.07.032.
-
H.-H. Chen, C. E. Hernandez, and T.-C. Huang, “A study of the drying effect on lemon slices using a closed-type solar dryer,” Solar Energy, vol. 78, no. 1, pp. 97–103, Jan. 2005, doi: 10.1016/j.solener.2004.06.011.
-
P. R. Olivkar, V. P. Katekar, S. S. Deshmukh, and S. V. Palatkar, “Effect of sensible heat storage materials on the thermal performance of solar air heaters: State-of-the-art review,” Renewable and Sustainable Energy Reviews, vol. 157, Apr. 2022, Art. no. 112085, doi: 10.1016/j.rser.2022.112085.
-
M. A. Eltawil, M. M. Azam, and A. O. Alghannam, “Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (MenthaViridis),” Journal of Cleaner Production, vol. 181, pp. 352–364, Apr. 2018, doi: 10.1016/j.jclepro.2018.01.229.
-
G. Srinivasan, D. K. Rabha, and P. Muthukumar, “A review on solar dryers integrated with thermal energy storage units for drying agricultural and food products,” Solar Energy, vol. 229, pp. 22–38, Nov. 2021, doi: 10.1016/j.solener.2021.07.075.
-
N. K. S. Gowda, R. U. Suganthi, V. Malathi, and A. Raghavendra, “Efficacy of heat treatment and sun drying of aflatoxin-contaminated feed for reducing the harmful biological effects in sheep,” Animal Feed Sci. Technol., vol. 133, no. 1–2, pp. 167–175, Feb. 2007, doi: 10.1016/j.anifeedsci.2006.08.009.
-
D. K. Rabha and P. Muthukumar, “Performance studies on a forced convection solar dryer integrated with a paraffin wax–based latent heat storage system,” Solar Energy, vol. 149, pp. 214–226, Jun. 2017, doi: 10.1016/j.solener.2017.04.012.
-
E. L. Rulazi, J. Marwa, B. Kichonge, and T. Kivevele, “Development and Performance Evaluation of a Novel Solar Dryer Integrated with Thermal Energy Storage System for Drying of Agricultural Products,” ACS Omega, vol. 8, no. 45, pp. 43304–43317, Nov. 2023, doi: 10.1021/acsomega.3c07314.
Revolutionizing Potato Drying: Performance Insights from Hybrid Solar Drying Systems
Year 2025,
Volume: 28 Issue: 2, 79 - 88, 01.06.2025
Ankita Balpande
,
Prashant Maheshwary
,
Pramod Belkhode
Abstract
This study investigates the performance of a hybrid solar dryer designed for the efficient drying of potato slices, aiming to address the challenges associated with conventional drying methods. The primary objectives were to evaluate the moisture removal rate (MRR) of the hybrid solar dryer and compare its effectiveness with traditional solar drying techniques. Through a series of experiments conducted from May to December 2024, the hybrid dryer demonstrated an impressive average MRR of 182.8 g/h, significantly outperforming both conventional (typically 150–180 g/h) and indirect solar dryers. The findings revealed that the hybrid system not only reduced drying time but also preserved the quality of the dried products, ensuring minimal nutrient loss. The MRR ranged from 158.4 g/h in December to 198.3 g/h in May, showcasing stable performance despite climatic fluctuations. Comparative analyses highlighted the superior efficiency of the hybrid design, making it a viable solution for food preservation, particularly in regions with ample sunlight. Additionally, the study emphasizes the importance of sustainable food processing technologies in enhancing food security and reducing agricultural waste. This research contributes valuable insights into the development of innovative drying solutions that can be effectively implemented in various agricultural settings, promoting better utilization of solar energy for food preservation. Future studies could explore further optimizations and integrations to enhance the performance of solar drying systems.
References
-
S. Pandey, A. Kumar, and A. Sharma, “Sustainable solar drying: Recent advances in materials, innovative designs, mathematical modeling, and energy storage solutions,” Energy, vol. 308, Nov. 2024, Art. no. 132725, doi: 10.1016/j.energy.2024.132725.
-
L. Tang et al, “Drying hot red chilies: A comparative study of solar-gas-fired, tunnel, and conventional dryers,” Processes, vol. 12, no. 10, p. 2104, Sep. 2024, doi: 10.3390/pr12102104.
-
M. Das and E. K. Akpinar, “Investigation of the effects of solar tracking system on performance of the solar air dryer,” Renewable Energy, vol. 167, pp. 907–916, Apr. 2021, doi: 10.1016/j.renene.2020.12.010.
-
X. Li, M. Liu, L. Duanmu, and Y. Ji, “The optimization of solar heating system with seasonal storage based on a real project,” Procedia Engineering, vol. 121, pp. 1341–1348, Oct. 2015, doi: 10.1016/j.proeng.2015.09.017.
-
A. Lingayat, V. P. Chandramohan, and V. R. K. Raju, “Design, development and performance of indirect type solar dryer for banana drying,” Energy Procedia, vol. 109, pp. 409–416, Mar. 2017, doi: 10.1016/j.egypro.2017.03.041.
-
D. Wang, J. Liu, Y. Liu, Y. Wang, B. Li, and J. Liu, “Evaluation of the performance of an improved solar air heater with 'S' shaped ribs with gap,” Solar Energy, vol. 195, pp. 89–101, Jan. 2019, doi: 10.1016/j.solener.2019.11.034.
-
A. Amer, A. Ibrahim, A. Shahin, I. Elsebaee, R. Saad, M. F. Hassan, and Z. Hassan, “Performance evaluation of an automated hybrid solar system dryer for drying some aromatic herbs,” Drying Technology, vol. 42, no. 4, pp. 728–747, Jan. 2024, doi: 10.1080/07373937.2024.2308607.
-
M. A. Kherrafi, A. Benseddik, R. Saim, A. Bouregueba, A. Badji, C. Nettari, and I. Hasrane, “Advancements in solar drying technologies: Design variations, hybrid systems, storage materials and numerical analysis: A review,” Solar Energy, vol. 270, Mar. 2024, Art. no. 112383, doi: 10.1016/j.solener.2024.112383.
-
N. Kalita, P. Muthukumar, and A. Dalal, “Performance investigation of a hybrid solar dryer with electric and biogas backup air heaters for chilli drying,” Thermal Science and Engineering Progress, vol. 52, Jul. 2024, Art. no. 102646, doi: 10.1016/j.tsep.2024.102646.
-
C. K. Saha, N. K. Roy, J. Khatun, N. Tasnim, and M.S. Alam, “Solar hybrid dryers for fruits, vegetables, and fish: A comprehensive review on constructional features and techno-economic-environmental analysis,” Sustainable Energy Technologies and Assessments, vol. 68, Aug. 2024, Art. no. 103878, doi: 10.1016/j.seta.2024.103878.
-
D. D. Behera, R.C. Mohanty, and A.M. Mohanty, “Experimental investigation of a hybrid solar dryer for vegetable drying with and without phase change material,” J. Braz. Soc. Mech. Sci. Eng., vol. 46, p. 303, Apr. 2024, doi: 10.1007/s40430-024-04876-0.
-
M. Lehmad, N. Hidra, P. Lhomme, S. Mghazli, Y. EL Hachimi, and N. Abdenouri, “Environmental, economic and quality assessment of hybrid solar-electric drying of black soldier fly (Hermetia illucens) larvae,” Renewable Energy, vol. 226, May. 2024, Art. no. 120401, doi: 10.1016/j.renene.2024.120401.
-
K.M. Mahajan, V.H. Patil, and T.A. Koli, "Design analysis of an innovative solar biomass hybrid dryer for drying turmeric," Interactions, vol. 245, p. 145, July 2024, doi: 10.1007/s10751-024-01965-3.
-
L. Kumar and O. Prakash, "Optimal simulation approach for tomato flakes drying in hybrid solar dryer," Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 46, no. 1, pp. 5867–5887, Apr. 2024, doi: 10.1080/15567036.2024.2333983.
-
R. Pawar, S. Santara, A. Sircar, et al., “Design and development of hybrid solar–biomass drying system: An innovative approach,” MRS Energy & Sustainability, vol. 11, pp. 409–433, Apr. 2024, doi: 10.1557/s43581-024-00083-5.
-
M. Yazici and R. Kose, “Energy, exergy and economic investigation of novel hybrid dryer, indirect solar dryer and traditional shade drying,” Thermal Science and Engineering Progress, vol. 49, Mar. 2024, Art. no. 102502, doi: 10.1016/j.tsep.2024.102502.
-
G. Yuan, L. Hong, X. Li, L. Xu, W. Tang, and Z. Wang, “Experimental investigation of a solar dryer system for drying carpet,” Energy Procedia, vol. 70, pp. 626–633, May 2015, doi: 10.1016/j.egypro.2015.02.170.
-
R.S. Gill, S. Singh, and P.P. Singh, “Low cost solar air heater,” Energy Conversion and Management, vol. 57, pp. 131–142, May. 2012, doi: 10.1016/j.enconman.2011.12.019.
-
V.P. Katekar and S.S. Deshmukh, “A review of the use of phase change materials on performance of solar stills,” Journal of Energy Storage, vol. 30, Aug. 2020, Art. no. 101398, doi: 10.1016/j.est.2020.101398.
-
S.M. Salih, J.M. Jalil, and S.E. Najim, “Double-Pass Solar Air Heater (DP-SAH) utilizing Latent Thermal Energy Storage (LTES),” IOP Conference Series: Materials Science and Engineering, vol. 518, no. 3, May. 2019, Art. no. 032038, doi: 10.1088/1757-899X/518/3/032038.
-
S. Haldorai, S. Gurusamy, and M. Pradhapraj, “A review on thermal energy storage systems in solar air heaters,” International Journal of Energy Research, vol. 43, no. 12, pp. 6061–6077, Apr. 2019, doi: 10.1002/er.4379.
-
W. P. Missana, E. Park, and T. T. Kivevele, “Thermal performance analysis of solar dryer integrated with heat energy storage system and a low-cost parabolic solar dish concentrator for food preservation,” Journal of Energy, vol. 2020, Jul. 2020, Art. no. 9205283, doi: 10.1155/2020/9205283.
-
O. Ojike and W. I. Okonkwo, “Study of a passive solar air heater using palm oil and paraffin as storage media,” Case Stud. Therm. Eng., vol. 14, Sep. 2019, Art. no. 100454, doi: 10.1016/j.csite.2019.100454.
-
D. K. Yadav, S. Malakar, V. K. Arora, et al., “Evacuated Tube Solar Collector-Based Drying System: Analytical Modeling, Influencing Factors, and Recent Progress in Drying of Agri-Commodities,” Food Eng. Rev., vol. 16, pp. 567–594, Dec. 2024, doi: 10.1007/s12393-024-09382-6.
-
M. A. Eltawil, M. M. Azam, and A. O. Alghannam, “Solar PV powered mixed-mode tunnel dryer for drying potato chips,” Renewable Energy, vol. 116, Part A, pp. 594–605, Feb. 2018, doi: 10.1016/j.renene.2017.10.007.
-
S. Chouicha, A. Boubekri, D. Mennouche, and M. H. Berrbeuh, “Solar drying of sliced potatoes: An experimental investigation,” Energy Procedia, vol. 36, pp. 1276–1285, Aug. 2013, doi: 10.1016/j.egypro.2013.07.144.
-
P. P. Tripathy and S. Kumar, “Influence of sample geometry and rehydration temperature on quality attributes of potato dried under open sun and mixed-mode solar drying,” Int. J. Green Energy, vol. 6, no. 2, pp. 143–156, Apr. 2009, doi: 10.1080/15435070902784863.
-
A. Djebli, S. Hanini, O. Badaoui, B. Haddad, and A. Benhamou, “Modeling and comparative analysis of solar drying behavior of potatoes,” Renewable Energy, vol. 145, pp. 1494–1506, Jan. 2020, doi: 10.1016/j.renene.2019.07.083.
-
S. Kesavan, T.V. Arjunan, and S. Vijayan, “Thermodynamic analysis of a triple-pass solar dryer for drying potato slices,” J. Therm. Anal. Calorim., vol. 136, pp. 159–171, Apr. 2019, doi: 10.1007/s10973-018-7747-0.
-
M. Y. Nasri and A. Belhamri, “Effects of the climatic conditions and the shape on the drying kinetics, application to solar drying of potato-case of Maghreb's region,” J. Clean. Prod., vol. 183, pp. 1241–1251, May 2018, doi: 10.1016/j.jclepro.2018.02.103.
-
D. Aydin, S. E. Ezenwali, M. Y. Alibar, and X. Chen, “Novel modular mixed-mode dryer for enhanced solar energy utilization in agricultural crop drying applications,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 43, no. 16, pp. 1958–1974, Sep. 2019, doi: 10.1080/15567036.2019.1663306.
-
A. Fudholi, K. Sopian, M. H. Ruslan, M. A. Alghoul, and M. Y. Sulaiman, “Review of solar dryers for agricultural and marine products,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 1–30, Jan. 2010, doi: 10.1016/j.rser.2009.07.032.
-
H.-H. Chen, C. E. Hernandez, and T.-C. Huang, “A study of the drying effect on lemon slices using a closed-type solar dryer,” Solar Energy, vol. 78, no. 1, pp. 97–103, Jan. 2005, doi: 10.1016/j.solener.2004.06.011.
-
P. R. Olivkar, V. P. Katekar, S. S. Deshmukh, and S. V. Palatkar, “Effect of sensible heat storage materials on the thermal performance of solar air heaters: State-of-the-art review,” Renewable and Sustainable Energy Reviews, vol. 157, Apr. 2022, Art. no. 112085, doi: 10.1016/j.rser.2022.112085.
-
M. A. Eltawil, M. M. Azam, and A. O. Alghannam, “Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (MenthaViridis),” Journal of Cleaner Production, vol. 181, pp. 352–364, Apr. 2018, doi: 10.1016/j.jclepro.2018.01.229.
-
G. Srinivasan, D. K. Rabha, and P. Muthukumar, “A review on solar dryers integrated with thermal energy storage units for drying agricultural and food products,” Solar Energy, vol. 229, pp. 22–38, Nov. 2021, doi: 10.1016/j.solener.2021.07.075.
-
N. K. S. Gowda, R. U. Suganthi, V. Malathi, and A. Raghavendra, “Efficacy of heat treatment and sun drying of aflatoxin-contaminated feed for reducing the harmful biological effects in sheep,” Animal Feed Sci. Technol., vol. 133, no. 1–2, pp. 167–175, Feb. 2007, doi: 10.1016/j.anifeedsci.2006.08.009.
-
D. K. Rabha and P. Muthukumar, “Performance studies on a forced convection solar dryer integrated with a paraffin wax–based latent heat storage system,” Solar Energy, vol. 149, pp. 214–226, Jun. 2017, doi: 10.1016/j.solener.2017.04.012.
-
E. L. Rulazi, J. Marwa, B. Kichonge, and T. Kivevele, “Development and Performance Evaluation of a Novel Solar Dryer Integrated with Thermal Energy Storage System for Drying of Agricultural Products,” ACS Omega, vol. 8, no. 45, pp. 43304–43317, Nov. 2023, doi: 10.1021/acsomega.3c07314.