Research Article
BibTex RIS Cite

Computer Subroutines for Rapid Calculation of the Liquid Entropies of Ammonia/NaSCN and Ammonia/LiNO3 Solutions

Year 2022, Volume: 25 Issue: 2, 77 - 87, 01.06.2022
https://doi.org/10.5541/ijot.1034035

Abstract

This paper proposes an alternative for the calculation of the liquid entropy of binary solutions is proposed in this paper in the form of correlation equations with higher computation speed. These correlation equations were obtained by using both the least squares method for the modelling of the reference liquid entropy and a classical matrix computer solving for modeling the liquid entropy. Goodness-of-fit parameters such as sum of squares of estimation errors (SSE), Pearson's factor (R-squared), root mean square error (RMSE) and relative error (ε) were computed and the different results were compared with those of the digitized data. The suggested correlations showed good accuracy in estimating the liquid entropy of ammonia/NaSCN and ammonia/LiNO3 solutions, with an average SSE of 1.23.10^(-4), R-squared of 0.99, RMSE of 2.90.10^(-3) and ε of 0.59 % for ammonia/LiNO3, and SSE of 1.57.10^(-4), R-squared of 0.99, RMSE of 3.2.10^(-3) and ε of 0.83 % for ammonia/NaSCN. These correlations are for the temperature range from 0 to 100 °C, and are decision support tools for combined systems for waste heat recovering at very low temperature and in which the couples ammonia / NaSCN and ammonia / LiNO3 must be used.

References

  • L. G. Farshi, C. A. I. Ferreira, S. M. S. Mahmoudi and M. A. Rosen, "Using new properties data for enthalpy and entropy calculation of ammonia/salt solutions," in 4th IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants, Delft, 2013.
  • L. G. Farshi, C. A. I. Ferreira and S. M. S. Mahmoudi, "First and second law analysis of ammonia/salt absorption refrigeration systems," International Journal of Refrigeration, vol. 40, pp. 111-121, 2014, https://doi.org/10.1016/j.ijrefrig.2013.11.006.
  • C. P. Gupta, C. P. Sharma and R. K. Mehrotra, "Thermodynamic properties of solutions of sodium thiocyanate in liquid ammonia and their vapors," in Xiv International Congress of IIR, Moscou, pp. 170-178, 1995.
  • W. Koehler, W. Ibele, J. Soltes and E. Winter, "Entropy calculations for lithium bromide aqueous solutions and approximation equation," ASHRAE Trans, vol. 93, pp. 2379-88, 1987.
  • D. Cai, G. He, Q. Tian and W. Tang, "Exergy analysis of a novel air-cooled non-adiabatic absorption refrigeration cycle with NH3–NaSCN and NH3–LiNO3 refrigerant solutions," Energy Conversion and Management, vol. 88, pp. 66-78, 2014, https://doi.org/10.1016/j.enconman.2014.08.025.
  • S. Aphornratana and I. W. Eames, "Thermodynamic analysis of absorption refrigeration cycles using the second law of thermodynamics method," International Journal of Refrigeration, vol. 18, no. 4, pp. 244-252, 1995, https://doi.org/10.1016/0140-7007(95)00007-X.
  • L. Zhu and J. Gu, "Second law-based thermodynamic analysis of ammonia/sodium thiocyanate absorption system," Renewable Energy, vol. 35, no. 9, pp. 1940-1946, 2010, https://doi.org/10.1016/j.renene.2010.01.022.
  • A. Myat, K. Thu, Y.-D. Kim, A. Chakraborty, W. G. Chun and K. C. Ng, "A second law analysis and entropy generation minimization of an absorption chiller," Applied Thermal Engineering, vol. 31, no. 14-15, pp. 2405-2413, 2011, https://doi.org/10.1016/j.applthermaleng.2011.04.004.
  • S. Saheli and M. Yari, "Exergoeconomic assessment of two novel absorption-ejection heat pumps for the purposes of supermarkets simultaneous heating and refrigeration using NaSCN/NH3, LiNO3/NH3 and H2O/NH3 as working pairs," International Journal of Refrigeration, vol. 101, pp. 178-195, 2019, https://doi.org/10.1016/j.ijrefrig.2019.03.029.
  • H. Pourfarzad, M. Saremia and M. R. Ganjali, "A novel tri-generation energy system integrating solar energy and industrial waste heat," Journal of Thermal Engineering, vol. 7, no. 5, pp. 1067-1076, 2021, https://doi.org/10.18186/thermal.977910.
  • B. F. Tchanche, G. Lambrinos, A. Frangoudakis and G. Papadakis, "Low-grade heat conversion into power using organic Rankine cycles-A review of various applications.," Renewable and Sustainable Energy Reviews, vol. 15, pp. 3963-3979, 2011, https://doi.org/10.1016/j.rser.2011.07.024.
  • L. Cao, J. Wang, Y. Yang, Y. Wang, H. Li, J. Lou and Q. Rao, "Dynamic analysis and operation simulation for a combined cooling heating and power system driven by geothermal energy," Energy Conversion and Management, vol. 228, p. 113656, 2021.
  • P. H. d. S. Morais, A. Lodi, C. A. Aoki and M. Modesto, "Energy, exergetic and economic analyses of a combined solar biomass-ORC cooling cogeneration systems for a Brazilian small plant," Renewable Energy, vol. 157, pp. 1131-1147, 2020, https://doi.org/10.1016/j.renene.2020.04.147.
  • S. Jafary, S. Khalilarya, A. Shawabkeh, M. Wae-hayee and M. Hashemian, "A complete energetic and exergetic analysis of a solar powered trigeneration system with two novel orgaic Rankine cycle (ORC) configurations," Journal of Cleaner Production, 2020, https://doi.org/10.1016/j.jclepro.2020.124552.
  • T. K. Gogoi and P. Hazarika, "Comparative assessment of four novel solar based triple effect absorption refrigeration systems integrated with organic Rankine and Kalina cycles," Energy Conversion and Management, vol. 226, p. 113561, 2020, https://doi.org/10.1016/j.enconman.2020.113561.
  • C. CİMŞİT, "Organik Rankine Çevrim (ORC) İle Çalışan Tek Kademeli Absorbsiyonlu-Buhar Sıkıştırmalı Kaskad Soğutma Çevriminin Analizi," Firat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 1, pp. 29-37, 2019 <https://dergipark.org.tr/en/pub/fumbd/issue/43638/534749.
  • A. C. Cleland, "Computer subroutines for rapid evaluation of refrigerant thermodynamic properties," International Journal of Refrigeration, vol. 9, no. 6, pp. 346-351, 1986, https://doi.org/10.1016/0140-7007(86)90006-X.
  • J. Gu and Z. Gan, Entransy in Phase-Change Systems, SpringerBriefs in Applied Sciences and Technology, 2014, doi:10.1007/978-3-319-07428-3.
  • C. A. Infante Ferreira, "Thermodynamic and physical property data equations for ammonia-lithium nitrate and ammonia-sodium thiocyanate solutions," Solar Energy, vol. 32, no. 2, pp. 231-236, 1984, https://doi.org/10.1016/S0038-092X(84)80040-7.
  • J. J. F. Zemaitis, D. M. Clark, M. Rafal and N. C. Scrivner, Handbook of aqueous electrolyte thermodynamics: theory & application, New York: John Wiley & Sons, 2010, https://doi:10.1002/9780470938416. [21] J. P. Roberson, C. Y. Lee, R. G. Squires and L. F. Albright, "Vapor pressure of ammonia and monomethylamine in solutions for absorption refrigeration systems," ASHRAE Trans., vol. 72, no. 1, pp. 198-208, 1966.
  • G. C. Blytas and F. Daniels, "Concentrated Solutions of NaSCN in Liquid Ammonia. Solubility, Density, Vapor Pressure, Viscosity, Thermal Conductance, Heat of Solution and Heat Capacity," Journal of the American Chemical Society, vol. 84, no. 7, pp. 1075-1083, 1962, https://doi.org/10.1021/ja00866a001.
  • S. L. Sargent and W. A. Beckman, "Theoretical performance of an ammonia-sodium thiocyanate intermittent absorption refrigeration cycle," Solar Energy, vol. 12, no. 2, pp. 137-146, 1968, https://doi.org/10.1016/0038-092X(68)90001-7.
Year 2022, Volume: 25 Issue: 2, 77 - 87, 01.06.2022
https://doi.org/10.5541/ijot.1034035

Abstract

References

  • L. G. Farshi, C. A. I. Ferreira, S. M. S. Mahmoudi and M. A. Rosen, "Using new properties data for enthalpy and entropy calculation of ammonia/salt solutions," in 4th IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants, Delft, 2013.
  • L. G. Farshi, C. A. I. Ferreira and S. M. S. Mahmoudi, "First and second law analysis of ammonia/salt absorption refrigeration systems," International Journal of Refrigeration, vol. 40, pp. 111-121, 2014, https://doi.org/10.1016/j.ijrefrig.2013.11.006.
  • C. P. Gupta, C. P. Sharma and R. K. Mehrotra, "Thermodynamic properties of solutions of sodium thiocyanate in liquid ammonia and their vapors," in Xiv International Congress of IIR, Moscou, pp. 170-178, 1995.
  • W. Koehler, W. Ibele, J. Soltes and E. Winter, "Entropy calculations for lithium bromide aqueous solutions and approximation equation," ASHRAE Trans, vol. 93, pp. 2379-88, 1987.
  • D. Cai, G. He, Q. Tian and W. Tang, "Exergy analysis of a novel air-cooled non-adiabatic absorption refrigeration cycle with NH3–NaSCN and NH3–LiNO3 refrigerant solutions," Energy Conversion and Management, vol. 88, pp. 66-78, 2014, https://doi.org/10.1016/j.enconman.2014.08.025.
  • S. Aphornratana and I. W. Eames, "Thermodynamic analysis of absorption refrigeration cycles using the second law of thermodynamics method," International Journal of Refrigeration, vol. 18, no. 4, pp. 244-252, 1995, https://doi.org/10.1016/0140-7007(95)00007-X.
  • L. Zhu and J. Gu, "Second law-based thermodynamic analysis of ammonia/sodium thiocyanate absorption system," Renewable Energy, vol. 35, no. 9, pp. 1940-1946, 2010, https://doi.org/10.1016/j.renene.2010.01.022.
  • A. Myat, K. Thu, Y.-D. Kim, A. Chakraborty, W. G. Chun and K. C. Ng, "A second law analysis and entropy generation minimization of an absorption chiller," Applied Thermal Engineering, vol. 31, no. 14-15, pp. 2405-2413, 2011, https://doi.org/10.1016/j.applthermaleng.2011.04.004.
  • S. Saheli and M. Yari, "Exergoeconomic assessment of two novel absorption-ejection heat pumps for the purposes of supermarkets simultaneous heating and refrigeration using NaSCN/NH3, LiNO3/NH3 and H2O/NH3 as working pairs," International Journal of Refrigeration, vol. 101, pp. 178-195, 2019, https://doi.org/10.1016/j.ijrefrig.2019.03.029.
  • H. Pourfarzad, M. Saremia and M. R. Ganjali, "A novel tri-generation energy system integrating solar energy and industrial waste heat," Journal of Thermal Engineering, vol. 7, no. 5, pp. 1067-1076, 2021, https://doi.org/10.18186/thermal.977910.
  • B. F. Tchanche, G. Lambrinos, A. Frangoudakis and G. Papadakis, "Low-grade heat conversion into power using organic Rankine cycles-A review of various applications.," Renewable and Sustainable Energy Reviews, vol. 15, pp. 3963-3979, 2011, https://doi.org/10.1016/j.rser.2011.07.024.
  • L. Cao, J. Wang, Y. Yang, Y. Wang, H. Li, J. Lou and Q. Rao, "Dynamic analysis and operation simulation for a combined cooling heating and power system driven by geothermal energy," Energy Conversion and Management, vol. 228, p. 113656, 2021.
  • P. H. d. S. Morais, A. Lodi, C. A. Aoki and M. Modesto, "Energy, exergetic and economic analyses of a combined solar biomass-ORC cooling cogeneration systems for a Brazilian small plant," Renewable Energy, vol. 157, pp. 1131-1147, 2020, https://doi.org/10.1016/j.renene.2020.04.147.
  • S. Jafary, S. Khalilarya, A. Shawabkeh, M. Wae-hayee and M. Hashemian, "A complete energetic and exergetic analysis of a solar powered trigeneration system with two novel orgaic Rankine cycle (ORC) configurations," Journal of Cleaner Production, 2020, https://doi.org/10.1016/j.jclepro.2020.124552.
  • T. K. Gogoi and P. Hazarika, "Comparative assessment of four novel solar based triple effect absorption refrigeration systems integrated with organic Rankine and Kalina cycles," Energy Conversion and Management, vol. 226, p. 113561, 2020, https://doi.org/10.1016/j.enconman.2020.113561.
  • C. CİMŞİT, "Organik Rankine Çevrim (ORC) İle Çalışan Tek Kademeli Absorbsiyonlu-Buhar Sıkıştırmalı Kaskad Soğutma Çevriminin Analizi," Firat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 31, no. 1, pp. 29-37, 2019 <https://dergipark.org.tr/en/pub/fumbd/issue/43638/534749.
  • A. C. Cleland, "Computer subroutines for rapid evaluation of refrigerant thermodynamic properties," International Journal of Refrigeration, vol. 9, no. 6, pp. 346-351, 1986, https://doi.org/10.1016/0140-7007(86)90006-X.
  • J. Gu and Z. Gan, Entransy in Phase-Change Systems, SpringerBriefs in Applied Sciences and Technology, 2014, doi:10.1007/978-3-319-07428-3.
  • C. A. Infante Ferreira, "Thermodynamic and physical property data equations for ammonia-lithium nitrate and ammonia-sodium thiocyanate solutions," Solar Energy, vol. 32, no. 2, pp. 231-236, 1984, https://doi.org/10.1016/S0038-092X(84)80040-7.
  • J. J. F. Zemaitis, D. M. Clark, M. Rafal and N. C. Scrivner, Handbook of aqueous electrolyte thermodynamics: theory & application, New York: John Wiley & Sons, 2010, https://doi:10.1002/9780470938416. [21] J. P. Roberson, C. Y. Lee, R. G. Squires and L. F. Albright, "Vapor pressure of ammonia and monomethylamine in solutions for absorption refrigeration systems," ASHRAE Trans., vol. 72, no. 1, pp. 198-208, 1966.
  • G. C. Blytas and F. Daniels, "Concentrated Solutions of NaSCN in Liquid Ammonia. Solubility, Density, Vapor Pressure, Viscosity, Thermal Conductance, Heat of Solution and Heat Capacity," Journal of the American Chemical Society, vol. 84, no. 7, pp. 1075-1083, 1962, https://doi.org/10.1021/ja00866a001.
  • S. L. Sargent and W. A. Beckman, "Theoretical performance of an ammonia-sodium thiocyanate intermittent absorption refrigeration cycle," Solar Energy, vol. 12, no. 2, pp. 137-146, 1968, https://doi.org/10.1016/0038-092X(68)90001-7.
There are 22 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Njock Paul Julbin

Koumı Ngoh Simon This is me

Ndame Ngangue Max Keller This is me

Sosso Mayı Olivier Thierry This is me

Nzengwa Robert This is me

Publication Date June 1, 2022
Published in Issue Year 2022 Volume: 25 Issue: 2

Cite

APA Paul Julbin, N., Simon, K. N., Max Keller, N. N., Olivier Thierry, S. M., et al. (2022). Computer Subroutines for Rapid Calculation of the Liquid Entropies of Ammonia/NaSCN and Ammonia/LiNO3 Solutions. International Journal of Thermodynamics, 25(2), 77-87. https://doi.org/10.5541/ijot.1034035
AMA Paul Julbin N, Simon KN, Max Keller NN, Olivier Thierry SM, Robert N. Computer Subroutines for Rapid Calculation of the Liquid Entropies of Ammonia/NaSCN and Ammonia/LiNO3 Solutions. International Journal of Thermodynamics. June 2022;25(2):77-87. doi:10.5541/ijot.1034035
Chicago Paul Julbin, Njock, Koumı Ngoh Simon, Ndame Ngangue Max Keller, Sosso Mayı Olivier Thierry, and Nzengwa Robert. “Computer Subroutines for Rapid Calculation of the Liquid Entropies of Ammonia/NaSCN and Ammonia/LiNO3 Solutions”. International Journal of Thermodynamics 25, no. 2 (June 2022): 77-87. https://doi.org/10.5541/ijot.1034035.
EndNote Paul Julbin N, Simon KN, Max Keller NN, Olivier Thierry SM, Robert N (June 1, 2022) Computer Subroutines for Rapid Calculation of the Liquid Entropies of Ammonia/NaSCN and Ammonia/LiNO3 Solutions. International Journal of Thermodynamics 25 2 77–87.
IEEE N. Paul Julbin, K. N. Simon, N. N. Max Keller, S. M. Olivier Thierry, and N. Robert, “Computer Subroutines for Rapid Calculation of the Liquid Entropies of Ammonia/NaSCN and Ammonia/LiNO3 Solutions”, International Journal of Thermodynamics, vol. 25, no. 2, pp. 77–87, 2022, doi: 10.5541/ijot.1034035.
ISNAD Paul Julbin, Njock et al. “Computer Subroutines for Rapid Calculation of the Liquid Entropies of Ammonia/NaSCN and Ammonia/LiNO3 Solutions”. International Journal of Thermodynamics 25/2 (June 2022), 77-87. https://doi.org/10.5541/ijot.1034035.
JAMA Paul Julbin N, Simon KN, Max Keller NN, Olivier Thierry SM, Robert N. Computer Subroutines for Rapid Calculation of the Liquid Entropies of Ammonia/NaSCN and Ammonia/LiNO3 Solutions. International Journal of Thermodynamics. 2022;25:77–87.
MLA Paul Julbin, Njock et al. “Computer Subroutines for Rapid Calculation of the Liquid Entropies of Ammonia/NaSCN and Ammonia/LiNO3 Solutions”. International Journal of Thermodynamics, vol. 25, no. 2, 2022, pp. 77-87, doi:10.5541/ijot.1034035.
Vancouver Paul Julbin N, Simon KN, Max Keller NN, Olivier Thierry SM, Robert N. Computer Subroutines for Rapid Calculation of the Liquid Entropies of Ammonia/NaSCN and Ammonia/LiNO3 Solutions. International Journal of Thermodynamics. 2022;25(2):77-8.