Research Article
BibTex RIS Cite
Year 2022, Volume: 25 Issue: 2, 99 - 111, 01.06.2022
https://doi.org/10.5541/ijot.1059520

Abstract

References

  • A. E. Bergles, R. L. Bunn, and G. H. Junkhan, “Extended performance evaluation criteria for enhanced heat transfer surfaces,” Letters in Heat and Mass Transfer, vol. 1, no. 2, pp. 113–120, Nov. 1974, doi: 10.1016/0094-4548(74)90147-7.
  • W. M. Rohsenow, J. P. Hartnett, E. N. Ganic, and P. D. Richardson, Handbook of Heat Transfer Fundamentals (Second Edition), vol. 53, no. 1. 1986.
  • D. B. Berkowitz, Handbook on Syntheses of Amino Acids: General Routes for the Syntheses of Amino Acids, vol. 132, no. 50. 2010.
  • H. S. Dizaji and S. Jafarmadar, “Experiments on New Arrangements of Convex and Concave Corrugated Tubes through a Double-pipe Heat Exchanger,” Experimental Heat Transfer, vol. 29, no. 5, pp. 577–592, Sep. 2016, doi: 10.1080/08916152.2015.1046015.
  • H. M. Şahin, E. Baysal, and A. R. Dal, “Experimental and numerical investigation of thermal characteristics of a novel concentric type tube heat exchanger with turbulators,” International Journal of Energy Research, vol. 37, no. 9, pp. 1088–1102, Jul. 2013, doi: 10.1002/er.2919.
  • J. K. Dasmahapatra and M. R. Rao, “Laminar flow heat transfer to generalised power law fluids inside circular tubes fitted with regularly spaced twisted tape elements for uniform wall temperature condition,” in American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD, 1991, vol. 174, pp. 51–58.
  • S. Al-Fahed and W. Chakroun, “Effect of tube-tape clearance on heat transfer for fully developed turbulent flow in a horizontal isothermal tube,” International Journal of Heat and Fluid Flow, vol. 17, no. 2, pp. 173–178, Apr. 1996, doi: 10.1016/0142-727X(95)00096-9.
  • R. M. Manglik and A. E. Bergles, “Heat transfer enhancement and pressure drop in viscous liquid flows in isothermal tubes with twisted-tape inserts,” Wärme- und Stoffübertragung, vol. 27, no. 4, pp. 249–257, Apr. 1992, doi: 10.1007/BF01589923.
  • P. Zamankhan, “Heat transfer in counterflow heat exchangers with helical turbulators,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 10, pp. 2894–2907, Oct. 2010, doi: 10.1016/j.cnsns.2009.10.025.
  • H. Karakaya and A. Durmuş, “Heat transfer and exergy loss in conical spring turbulators,” International Journal of Heat and Mass Transfer, vol. 60, no. 1, pp. 756–762, May 2013, doi: 10.1016/j.ijheatmasstransfer.2013.01.054.
  • D. Yadav, Z. Upadhyay, A. Kushwaha, and A. Mishra, “Analysis Over Trio-Tube with Dual Thermal Communication Surface Heat Exchanger [T.T.H.Xr.],” in Lecture Notes in Mechanical Engineering, 2020, pp. 1–13.
  • D. Yadav, A. Kushwaha, and A. Mishra, “Design and Fabrication of Trio Tube Heat Exchanger Experimental Setup,” SSRN Electronic Journal, 2020, doi: 10.2139/ssrn.3576468.
  • M. Sheikholeslami and D. D. D. Ganji, “Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies,” Energy, vol. 116, pp. 341–352, Dec. 2016, doi: 10.1016/j.energy.2016.09.120.
  • M. Sheikholeslami, M. Gorji-Bandpy, and D. D. D. Ganji, “Effect of discontinuous helical turbulators on heat transfer characteristics of double pipe water to air heat exchanger,” Energy Conversion and Management, vol. 118, pp. 75–87, Jun. 2016, doi: 10.1016/j.enconman.2016.03.080.
  • M. Sheikholeslami and D. D. D. Ganji, “Heat transfer improvement in a double pipe heat exchanger by means of perforated turbulators,” Energy Conversion and Management, vol. 127, pp. 112–123, Nov. 2016, doi: 10.1016/j.enconman.2016.08.090.
  • K. Nanan, C. Thianpong, M. Pimsarn, V. Chuwattanakul, and S. Eiamsa-ard, “Flow and thermal mechanisms in a heat exchanger tube inserted with twisted cross-baffle turbulators,” Applied Thermal Engineering, vol. 114, pp. 130–147, Mar. 2017, doi: 10.1016/j.applthermaleng.2016.11.153.
  • N. Mashoofi, S. M. Pesteei, A. Moosavi, and H. Sadighi Dizaji, “Fabrication method and thermal-frictional behavior of a tube-in-tube helically coiled heat exchanger which contains turbulator,” Applied Thermal Engineering, vol. 111, pp. 1008–1015, Jan. 2017, doi: 10.1016/j.applthermaleng.2016.09.163.
  • D. Panahi et al., “Heat transfer enhancement of shell-and-coiled tube heat exchanger utilizing helical wire turbulator,” Applied Thermal Engineering, vol. 115, no. 2–3, pp. 607–615, Mar. 2017, doi: 10.1016/j.applthermaleng.2016.12.128.
  • S. P. Nalavade, C. L. Prabhune, and N. K. Sane, “Effect of novel flow divider type turbulators on fluid flow and heat transfer,” Thermal Science and Engineering Progress, vol. 9, pp. 322–331, Mar. 2019, doi: 10.1016/j.tsep.2018.12.004.
  • S. Khorasani, S. Jafarmadar, S. Pourhedayat, M. A. A. Abdollahi, and A. Heydarpour, “Experimental investigations on the effect of geometrical properties of helical wire turbulators on thermal performance of a helically coiled tube,” Applied Thermal Engineering, vol. 147, pp. 983–990, Jan. 2019, doi: 10.1016/j.applthermaleng.2018.09.092.
  • A. E. Zohir, M. A. Habib, and M. A. Nemitallah, “Heat Transfer Characteristics in a Double-Pipe Heat Exchanger Equipped with Coiled Circular Wires,” Experimental Heat Transfer, vol. 28, no. 6, pp. 531–545, Nov. 2015, doi: 10.1080/08916152.2014.915271.
  • N. Budak, H. L. Yucel, and Z. Argunhan, “Experimental and Numerical Investigation of the Effect of Turbulator on Heat Transfer in a Concentric-type Heat Exchanger,” Experimental Heat Transfer, vol. 29, no. 3, pp. 322–336, May 2016, doi: 10.1080/08916152.2014.976723.
  • A. Kumar, S. Chamoli, M. Kumar, and S. Singh, “Experimental investigation on thermal performance and fluid flow characteristics in circular cylindrical tube with circular perforated ring inserts,” Experimental Thermal and Fluid Science, vol. 79, pp. 168–174, Dec. 2016, doi: 10.1016/j.expthermflusci.2016.07.002.
  • V. Singh, S. Chamoli, M. Kumar, and A. Kumar, “Heat transfer and fluid flow characteristics of heat exchanger tube with multiple twisted tapes and solid rings inserts,” Chemical Engineering and Processing: Process Intensification, vol. 102, pp. 156–168, Apr. 2016, doi: 10.1016/j.cep.2016.01.013.
  • A. Kumar, S. Singh, S. Chamoli, and M. Kumar, “Experimental Investigation on Thermo-Hydraulic Performance of Heat Exchanger Tube with Solid and Perforated Circular Disk Along with Twisted Tape Insert,” Heat Transfer Engineering, vol. 40, no. 8, pp. 616–626, May 2019, doi: 10.1080/01457632.2018.1436618.
  • R. Datt, M. S. Bhist, A. D. Kothiyal, R. Maithani, and A. Kumar, “Effect of square wing with combined solid ring twisted tape inserts on heat transfer and fluid flow of a circular tube heat exchanger,” International Journal of Green Energy, vol. 15, no. 12, pp. 663–680, Sep. 2018, doi: 10.1080/15435075.2018.1525552.
  • E. K. Akpinar, “Evaluation of heat transfer and exergy loss in a concentric double pipe exchanger equipped with helical wires,” Energy Conversion and Management, vol. 47, no. 18–19, pp. 3473–3486, Nov. 2006, doi: 10.1016/j.enconman.2005.12.014.
  • C. Maradiya, J. Vadher, and R. Agarwal, “The heat transfer enhancement techniques and their Thermal Performance Factor,” Beni-Suef University Journal of Basic and Applied Sciences, vol. 7, no. 1, pp. 1–21, Mar. 2018, doi: 10.1016/j.bjbas.2017.10.001.
  • M. Sheikholeslami, M. Gorji-Bandpy, and D. D. Ganji, “Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices,” Renewable and Sustainable Energy Reviews, vol. 49, pp. 444–469, Sep. 2015, doi: 10.1016/j.rser.2015.04.113.
  • M. Omidi, M. Farhadi, and M. Jafari, “A comprehensive review on double pipe heat exchangers,” Applied Thermal Engineering, vol. 110, pp. 1075–1090, Jan. 2017, doi: 10.1016/j.applthermaleng.2016.09.027.
  • H. Li et al., “A comprehensive review of heat transfer enhancement and flow characteristics in the concentric pipe heat exchanger,” Powder Technology, vol. 397, p. 117037, Jan. 2022, doi: 10.1016/j.powtec.2021.117037.
  • M. M. K. Bhuiya, M. S. U. Chowdhury, M. Shahabuddin, M. Saha, and L. A. Memon, “Thermal characteristics in a heat exchanger tube fitted with triple twisted tape inserts,” International Communications in Heat and Mass Transfer, vol. 48, pp. 124–132, Nov. 2013, doi: 10.1016/j.icheatmasstransfer.2013.08.024.
  • C. Ringsted, K. Eliasen, I. H. Gøthgen, and O. Siggaard-Andersen, Positive correlation between “the arterial oxygen extraction tension” and mixed venous po2 but lack of correlation between “the oxygen compensation factor” and cardiac output in 38 patients, vol. 50, no. S203. 1990.
  • F. W. Dittus and L. M. K. Boelter, “Heat transfer in automobile radiators of the tubular type,” International Communications in Heat and Mass Transfer, vol. 12, no. 1, pp. 3–22, 1985, doi: 10.1016/0735-1933(85)90003-X.
  • R. L. Webb, “Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design,” International Journal of Heat and Mass Transfer, vol. 24, no. 4, pp. 715–726, Apr. 1981, doi: 10.1016/0017-9310(81)90015-6.
  • S. Kline and F. McClintock, “Describing uncertainties in single-sample experiments,” Mechanical Engineering, vol. 75, pp. 3–8, 1953.
  • D. Wilkie, “Wilson Plot,” in A-to-Z Guide to Thermodynamics, Heat and Mass Transfer, and Fluids Engineering, Begellhouse, 2011.
  • J. Fernández-Seara, F. J. Uhía, J. Sieres, and A. Campo, “Experimental apparatus for measuring heat transfer coefficients by the Wilson plot method,” European Journal of Physics, vol. 26, no. 3, pp. N1–N11, May 2005, doi: 10.1088/0143-0807/26/3/N01.
  • M. M. Bhunia, K. Panigrahi, S. Das, K. K. Chattopadhyay, and P. Chattopadhyay, “Amorphous graphene – Transformer oil nanofluids with superior thermal and insulating properties,” Carbon, vol. 139, pp. 1010–1019, Nov. 2018, doi: 10.1016/j.carbon.2018.08.012.

Enhancing the thermal performance of a double pipe heat exchanger in turbulent flow conditions

Year 2022, Volume: 25 Issue: 2, 99 - 111, 01.06.2022
https://doi.org/10.5541/ijot.1059520

Abstract

Heat exchangers with high thermal performance are required for industrial applications. Using heat transfer methodology in conjunction with simple design changes and assembly functions of heat exchangers could be an effective way to accomplish this. An experimental analysis was performed in this study to improve the heat transfer performance of a double pipe heat exchanger by implanting a flat strip spring turbulator (FST) within the heat exchanger's inner tube. The experimental investigation of the Double pipe heat exchanger in conjunction with three sets of FST turbulators (pitch: 15 cm, 10 cm, and 5 cm) for turbulent flow (Re 9000-38000) was carried out. The Nusselt number, friction factor ratio, and thermal performance factor of heat exchangers with FST at various pitches are found to be between 60 and 170, 1.44 and 1.76, and 0.94 and 1.06, respectively. The highest heat transfer achieved by using a flat spring turbulator is 20% for a pitch value of 5cm. In comparison to other sets of FST, a double pipe heat exchanger with FST pitch value of 10 cm has greater thermohydraulic performance. When compared to previous research, the experimental results obtained from this work at higher Reynolds numbers the friction factor are within a well-accepted range.

References

  • A. E. Bergles, R. L. Bunn, and G. H. Junkhan, “Extended performance evaluation criteria for enhanced heat transfer surfaces,” Letters in Heat and Mass Transfer, vol. 1, no. 2, pp. 113–120, Nov. 1974, doi: 10.1016/0094-4548(74)90147-7.
  • W. M. Rohsenow, J. P. Hartnett, E. N. Ganic, and P. D. Richardson, Handbook of Heat Transfer Fundamentals (Second Edition), vol. 53, no. 1. 1986.
  • D. B. Berkowitz, Handbook on Syntheses of Amino Acids: General Routes for the Syntheses of Amino Acids, vol. 132, no. 50. 2010.
  • H. S. Dizaji and S. Jafarmadar, “Experiments on New Arrangements of Convex and Concave Corrugated Tubes through a Double-pipe Heat Exchanger,” Experimental Heat Transfer, vol. 29, no. 5, pp. 577–592, Sep. 2016, doi: 10.1080/08916152.2015.1046015.
  • H. M. Şahin, E. Baysal, and A. R. Dal, “Experimental and numerical investigation of thermal characteristics of a novel concentric type tube heat exchanger with turbulators,” International Journal of Energy Research, vol. 37, no. 9, pp. 1088–1102, Jul. 2013, doi: 10.1002/er.2919.
  • J. K. Dasmahapatra and M. R. Rao, “Laminar flow heat transfer to generalised power law fluids inside circular tubes fitted with regularly spaced twisted tape elements for uniform wall temperature condition,” in American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD, 1991, vol. 174, pp. 51–58.
  • S. Al-Fahed and W. Chakroun, “Effect of tube-tape clearance on heat transfer for fully developed turbulent flow in a horizontal isothermal tube,” International Journal of Heat and Fluid Flow, vol. 17, no. 2, pp. 173–178, Apr. 1996, doi: 10.1016/0142-727X(95)00096-9.
  • R. M. Manglik and A. E. Bergles, “Heat transfer enhancement and pressure drop in viscous liquid flows in isothermal tubes with twisted-tape inserts,” Wärme- und Stoffübertragung, vol. 27, no. 4, pp. 249–257, Apr. 1992, doi: 10.1007/BF01589923.
  • P. Zamankhan, “Heat transfer in counterflow heat exchangers with helical turbulators,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 10, pp. 2894–2907, Oct. 2010, doi: 10.1016/j.cnsns.2009.10.025.
  • H. Karakaya and A. Durmuş, “Heat transfer and exergy loss in conical spring turbulators,” International Journal of Heat and Mass Transfer, vol. 60, no. 1, pp. 756–762, May 2013, doi: 10.1016/j.ijheatmasstransfer.2013.01.054.
  • D. Yadav, Z. Upadhyay, A. Kushwaha, and A. Mishra, “Analysis Over Trio-Tube with Dual Thermal Communication Surface Heat Exchanger [T.T.H.Xr.],” in Lecture Notes in Mechanical Engineering, 2020, pp. 1–13.
  • D. Yadav, A. Kushwaha, and A. Mishra, “Design and Fabrication of Trio Tube Heat Exchanger Experimental Setup,” SSRN Electronic Journal, 2020, doi: 10.2139/ssrn.3576468.
  • M. Sheikholeslami and D. D. D. Ganji, “Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies,” Energy, vol. 116, pp. 341–352, Dec. 2016, doi: 10.1016/j.energy.2016.09.120.
  • M. Sheikholeslami, M. Gorji-Bandpy, and D. D. D. Ganji, “Effect of discontinuous helical turbulators on heat transfer characteristics of double pipe water to air heat exchanger,” Energy Conversion and Management, vol. 118, pp. 75–87, Jun. 2016, doi: 10.1016/j.enconman.2016.03.080.
  • M. Sheikholeslami and D. D. D. Ganji, “Heat transfer improvement in a double pipe heat exchanger by means of perforated turbulators,” Energy Conversion and Management, vol. 127, pp. 112–123, Nov. 2016, doi: 10.1016/j.enconman.2016.08.090.
  • K. Nanan, C. Thianpong, M. Pimsarn, V. Chuwattanakul, and S. Eiamsa-ard, “Flow and thermal mechanisms in a heat exchanger tube inserted with twisted cross-baffle turbulators,” Applied Thermal Engineering, vol. 114, pp. 130–147, Mar. 2017, doi: 10.1016/j.applthermaleng.2016.11.153.
  • N. Mashoofi, S. M. Pesteei, A. Moosavi, and H. Sadighi Dizaji, “Fabrication method and thermal-frictional behavior of a tube-in-tube helically coiled heat exchanger which contains turbulator,” Applied Thermal Engineering, vol. 111, pp. 1008–1015, Jan. 2017, doi: 10.1016/j.applthermaleng.2016.09.163.
  • D. Panahi et al., “Heat transfer enhancement of shell-and-coiled tube heat exchanger utilizing helical wire turbulator,” Applied Thermal Engineering, vol. 115, no. 2–3, pp. 607–615, Mar. 2017, doi: 10.1016/j.applthermaleng.2016.12.128.
  • S. P. Nalavade, C. L. Prabhune, and N. K. Sane, “Effect of novel flow divider type turbulators on fluid flow and heat transfer,” Thermal Science and Engineering Progress, vol. 9, pp. 322–331, Mar. 2019, doi: 10.1016/j.tsep.2018.12.004.
  • S. Khorasani, S. Jafarmadar, S. Pourhedayat, M. A. A. Abdollahi, and A. Heydarpour, “Experimental investigations on the effect of geometrical properties of helical wire turbulators on thermal performance of a helically coiled tube,” Applied Thermal Engineering, vol. 147, pp. 983–990, Jan. 2019, doi: 10.1016/j.applthermaleng.2018.09.092.
  • A. E. Zohir, M. A. Habib, and M. A. Nemitallah, “Heat Transfer Characteristics in a Double-Pipe Heat Exchanger Equipped with Coiled Circular Wires,” Experimental Heat Transfer, vol. 28, no. 6, pp. 531–545, Nov. 2015, doi: 10.1080/08916152.2014.915271.
  • N. Budak, H. L. Yucel, and Z. Argunhan, “Experimental and Numerical Investigation of the Effect of Turbulator on Heat Transfer in a Concentric-type Heat Exchanger,” Experimental Heat Transfer, vol. 29, no. 3, pp. 322–336, May 2016, doi: 10.1080/08916152.2014.976723.
  • A. Kumar, S. Chamoli, M. Kumar, and S. Singh, “Experimental investigation on thermal performance and fluid flow characteristics in circular cylindrical tube with circular perforated ring inserts,” Experimental Thermal and Fluid Science, vol. 79, pp. 168–174, Dec. 2016, doi: 10.1016/j.expthermflusci.2016.07.002.
  • V. Singh, S. Chamoli, M. Kumar, and A. Kumar, “Heat transfer and fluid flow characteristics of heat exchanger tube with multiple twisted tapes and solid rings inserts,” Chemical Engineering and Processing: Process Intensification, vol. 102, pp. 156–168, Apr. 2016, doi: 10.1016/j.cep.2016.01.013.
  • A. Kumar, S. Singh, S. Chamoli, and M. Kumar, “Experimental Investigation on Thermo-Hydraulic Performance of Heat Exchanger Tube with Solid and Perforated Circular Disk Along with Twisted Tape Insert,” Heat Transfer Engineering, vol. 40, no. 8, pp. 616–626, May 2019, doi: 10.1080/01457632.2018.1436618.
  • R. Datt, M. S. Bhist, A. D. Kothiyal, R. Maithani, and A. Kumar, “Effect of square wing with combined solid ring twisted tape inserts on heat transfer and fluid flow of a circular tube heat exchanger,” International Journal of Green Energy, vol. 15, no. 12, pp. 663–680, Sep. 2018, doi: 10.1080/15435075.2018.1525552.
  • E. K. Akpinar, “Evaluation of heat transfer and exergy loss in a concentric double pipe exchanger equipped with helical wires,” Energy Conversion and Management, vol. 47, no. 18–19, pp. 3473–3486, Nov. 2006, doi: 10.1016/j.enconman.2005.12.014.
  • C. Maradiya, J. Vadher, and R. Agarwal, “The heat transfer enhancement techniques and their Thermal Performance Factor,” Beni-Suef University Journal of Basic and Applied Sciences, vol. 7, no. 1, pp. 1–21, Mar. 2018, doi: 10.1016/j.bjbas.2017.10.001.
  • M. Sheikholeslami, M. Gorji-Bandpy, and D. D. Ganji, “Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices,” Renewable and Sustainable Energy Reviews, vol. 49, pp. 444–469, Sep. 2015, doi: 10.1016/j.rser.2015.04.113.
  • M. Omidi, M. Farhadi, and M. Jafari, “A comprehensive review on double pipe heat exchangers,” Applied Thermal Engineering, vol. 110, pp. 1075–1090, Jan. 2017, doi: 10.1016/j.applthermaleng.2016.09.027.
  • H. Li et al., “A comprehensive review of heat transfer enhancement and flow characteristics in the concentric pipe heat exchanger,” Powder Technology, vol. 397, p. 117037, Jan. 2022, doi: 10.1016/j.powtec.2021.117037.
  • M. M. K. Bhuiya, M. S. U. Chowdhury, M. Shahabuddin, M. Saha, and L. A. Memon, “Thermal characteristics in a heat exchanger tube fitted with triple twisted tape inserts,” International Communications in Heat and Mass Transfer, vol. 48, pp. 124–132, Nov. 2013, doi: 10.1016/j.icheatmasstransfer.2013.08.024.
  • C. Ringsted, K. Eliasen, I. H. Gøthgen, and O. Siggaard-Andersen, Positive correlation between “the arterial oxygen extraction tension” and mixed venous po2 but lack of correlation between “the oxygen compensation factor” and cardiac output in 38 patients, vol. 50, no. S203. 1990.
  • F. W. Dittus and L. M. K. Boelter, “Heat transfer in automobile radiators of the tubular type,” International Communications in Heat and Mass Transfer, vol. 12, no. 1, pp. 3–22, 1985, doi: 10.1016/0735-1933(85)90003-X.
  • R. L. Webb, “Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design,” International Journal of Heat and Mass Transfer, vol. 24, no. 4, pp. 715–726, Apr. 1981, doi: 10.1016/0017-9310(81)90015-6.
  • S. Kline and F. McClintock, “Describing uncertainties in single-sample experiments,” Mechanical Engineering, vol. 75, pp. 3–8, 1953.
  • D. Wilkie, “Wilson Plot,” in A-to-Z Guide to Thermodynamics, Heat and Mass Transfer, and Fluids Engineering, Begellhouse, 2011.
  • J. Fernández-Seara, F. J. Uhía, J. Sieres, and A. Campo, “Experimental apparatus for measuring heat transfer coefficients by the Wilson plot method,” European Journal of Physics, vol. 26, no. 3, pp. N1–N11, May 2005, doi: 10.1088/0143-0807/26/3/N01.
  • M. M. Bhunia, K. Panigrahi, S. Das, K. K. Chattopadhyay, and P. Chattopadhyay, “Amorphous graphene – Transformer oil nanofluids with superior thermal and insulating properties,” Carbon, vol. 139, pp. 1010–1019, Nov. 2018, doi: 10.1016/j.carbon.2018.08.012.
There are 39 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Manish Sanserwal 0000-0001-8686-7673

Devendra Yadav 0000-0002-7120-9288

Mayank Bhardwaj This is me

Gurjeet Singh This is me

Publication Date June 1, 2022
Published in Issue Year 2022 Volume: 25 Issue: 2

Cite

APA Sanserwal, M., Yadav, D., Bhardwaj, M., Singh, G. (2022). Enhancing the thermal performance of a double pipe heat exchanger in turbulent flow conditions. International Journal of Thermodynamics, 25(2), 99-111. https://doi.org/10.5541/ijot.1059520
AMA Sanserwal M, Yadav D, Bhardwaj M, Singh G. Enhancing the thermal performance of a double pipe heat exchanger in turbulent flow conditions. International Journal of Thermodynamics. June 2022;25(2):99-111. doi:10.5541/ijot.1059520
Chicago Sanserwal, Manish, Devendra Yadav, Mayank Bhardwaj, and Gurjeet Singh. “Enhancing the Thermal Performance of a Double Pipe Heat Exchanger in Turbulent Flow Conditions”. International Journal of Thermodynamics 25, no. 2 (June 2022): 99-111. https://doi.org/10.5541/ijot.1059520.
EndNote Sanserwal M, Yadav D, Bhardwaj M, Singh G (June 1, 2022) Enhancing the thermal performance of a double pipe heat exchanger in turbulent flow conditions. International Journal of Thermodynamics 25 2 99–111.
IEEE M. Sanserwal, D. Yadav, M. Bhardwaj, and G. Singh, “Enhancing the thermal performance of a double pipe heat exchanger in turbulent flow conditions”, International Journal of Thermodynamics, vol. 25, no. 2, pp. 99–111, 2022, doi: 10.5541/ijot.1059520.
ISNAD Sanserwal, Manish et al. “Enhancing the Thermal Performance of a Double Pipe Heat Exchanger in Turbulent Flow Conditions”. International Journal of Thermodynamics 25/2 (June 2022), 99-111. https://doi.org/10.5541/ijot.1059520.
JAMA Sanserwal M, Yadav D, Bhardwaj M, Singh G. Enhancing the thermal performance of a double pipe heat exchanger in turbulent flow conditions. International Journal of Thermodynamics. 2022;25:99–111.
MLA Sanserwal, Manish et al. “Enhancing the Thermal Performance of a Double Pipe Heat Exchanger in Turbulent Flow Conditions”. International Journal of Thermodynamics, vol. 25, no. 2, 2022, pp. 99-111, doi:10.5541/ijot.1059520.
Vancouver Sanserwal M, Yadav D, Bhardwaj M, Singh G. Enhancing the thermal performance of a double pipe heat exchanger in turbulent flow conditions. International Journal of Thermodynamics. 2022;25(2):99-111.