Research Article
BibTex RIS Cite

3E Analysis of a Hybrid Biomass / Solar System for Power Generation and Desalination

Year 2025, Volume: 28 Issue: 1, 17 - 28, 01.03.2025

Abstract

The study addresses global energy challenges by proposing a hybrid biomass and solar energy system for power generation and water desalination. A model is applied to two cities in Northeast Brazil (Natal-RN and Fortaleza-CE), targeting urban centers with waste and sunny coastal regions. Key variables include residue composition, heating value, and quantity, essential for energy efficiency assessment. Energy, exergy, and economic (3E) analyses using Scilab software compare four configurations: the base Rankine cycle, Rankine with an external superheater (ESH), Rankine with concentrated solar power (CSP), and Rankine with CSP integrated with desalination. Results show that higher pressures and temperatures enhance efficiency, reducing solar field area by 16% when pressure and temperature increase from 4.5 MPa/400°C to 6.5 MPa/500°C. Fortaleza-CE, with higher solar irradiation, requires smaller solar fields than Natal-RN. Integrating desalination into CSP cycles increases Levelized Cost of Energy (LCOE) by up to 7.6% and solar field area due to higher energy demands but provides potable water, with water recovery rates around 10% of seawater input. The findings underscore the importance of optimizing operating conditions and leveraging local solar resources to maximize socio-economic benefits.

References

  • D. R. Santos, E. C. M. Vieira, J. T. Rocha, Q. H. S. Eugenio, and C. M. Campos, “Challenges and solutions for renewable energy storage,” Brazil. J. Prod. Eng., vol. 9, no. 4, pp. 76–88, Oct. 2023, doi: 10.47456/bjpe.v9i4.42343.
  • M. Farghali et al., “Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: a review,” Environ. Chem. Lett., vol. 21, pp. 1381–1418, Mar. 2023, doi: 10.1007/s10311-023-01587-1.
  • A. Panda et al., “Recent advances in the integration of renewable energy sources and storage facilities with hybrid power systems,” Clean Eng. Tech., vol. 12, Feb. 2023, Art. no. 100598, doi: 10.1016/j.clet.2023.100598.
  • A. Dağdeviren et al., “Effect of Al2O3-SiO2/water hybrid nanofluid filled in a square enclosure on the natural convective heat transfer characteristics: A numerical study,” J. Nanofluids, vol. 11, pp. 772–781, Aug. 2022, doi: 10.1166/jon.2022.1881.
  • E. Gürsoy et al., “Energy analysis of magnetite nanofluid flowing in newly designed sudden expansion tube retrofitted with dimpled fin,” Int. J. Heat Mass Transfer, vol. 199, Dec. 2022, Art. no. 123446, doi: 10.1016/j.ijheatmasstransfer.2022.123446.
  • E. Gürsoy et al., “Experimental and numerical study on ferrohydrodynamic and magneto-convection of Fe3O4/water ferrofluid in a sudden expansion tube with dimpled fins,” J. Taiwan Inst. Chem. Eng., vol. 164, Nov. 2024, Art. no. 105676, doi: 10.1016/j.jtice.2024.105676.
  • E. Gürsoy et al., “Investigation of magneto-convection characteristics in a sudden expanding channel with convex surface geometry under thermally developing flow conditions,” Int. J. Numer. Meth. Heat Fluid Flow, vol. 34, no. 5, pp. 1969–1994, May 2024, doi: 10.1108/HFF-11-2023-0703.
  • A. R. Jensen et al., “Demonstration of a concentrated solar power and biomass plant for combined heat and power,” Energy Convers. Manag., vol. 271, Nov. 2022, Art. no. 116207, doi: 10.1016/j.enconman.2022.116207.
  • H. Kaur, S. Gupta, and A. Dhingra, “Analysis of hybrid solar biomass power plant for generation of electric power,” Mater. Today: Proc, vol. 48, no. 5, pp. 1134–1140, 2022, doi: 10.1016/j.matpr.2021.08.080.
  • R. J. Macías et al., “Evaluation of the performance of a solar photovoltaic-biomass gasifier system as electricity supplier,” Energy, vol. 260, Dec. 2022, Art. no. 125046, doi: 10.1016/j.energy.2022.125046.
  • E. Aykut, B. Dursun, and S. Görgülü, “Comprehensive environmental and techno-economic feasibility assessment of biomass-solar on-grid hybrid power generation system for Burdur Mehmet Akif Ersoy University Istiklal Campus,” Heliyon, vol. 9, no. 11, Nov. 2023, doi: 10.1016/j.heliyon.2023.e22264.
  • A. A. Díaz Pérez, E. K. Burin, and E. Bazzo, “Part load operation analysis of a biomass steam generator integrated with a Linear Fresnel solar field,” Energy, vol. 282, Nov. 2023, Art. no. 128590, doi: 10.1016/j.energy.2023.128590.
  • R. Gutiérrez-Alvarez, K. Guerra, and P. Haro, “Market profitability of CSP-biomass hybrid power plants: towards a firm supply of renewable energy,” App. Energy, vol. 335, Apr. 2023, Art. no. 120754, doi: 10.1016/j.apenergy.2023.120754.
  • R. Gutiérrez-Alvarez, K. Guerra, and P. Haro, “Profitability of Concentrated Solar-Biomass hybrid power plants: Dataset of the stochastic techno-economic assessment,” Data in Brief, vol. 48, Jun. 2023, Art. no. 109096, doi: 10.1016/j.dib.2023.109096.
  • Y. Huang, Q. Wang, and J. Xu, “A stackelberg-based biomass power trading game framework in hybrid-wind/solar/biomass system: From technological, economic, environmental and social perspectives,” J. Clean. Prod., vol. 403, Jun. 2023, Art. no. 136806, doi: 10.1016/j.jclepro.2023.136806.
  • A. N. Srivastava, A. Kaviti, S. Chakma, and V. S. Sikarwar, “Solar and Biomass-Based Cogeneration Technologies,” Encycl. Renew. En. Sustain. Environ., vol. 4, pp. 263-272, 2024, doi: 10.1016/B978-0-323-93940-9.00036-0.
  • Z. Li, X. Zhu, X. Huang, Y. Tian, and B. Huang, “Sustainability design and analysis of a regional energy supply CHP system by integrating biomass and solar energy,” Sustain. Prod. Consum., vol. 41, pp. 228-241, Oct. 2023, doi: 10.1016/j.spc.2023.08.011.
  • M. Krarouch, A. Allouhi, H. Hamdi, and A. Outzourhit, “Energy, exergy, environment and techno-economic analysis of hybrid solar-biomass systems for space heating and hot water supply: Case study of a Hammam building,” Renew. Energy, vol. 222, Feb. 2024, Art. no. 119941, doi: 10.1016/j.renene.2024.119941.
  • M. Korpeh, P. Asadbagi, A. Lotfollahi, A. Ghaemi, and A. A-Moghaddam, “4E analysis and optimization of a novel hybrid biomass-solar system: Focusing on peak load management and environmental emissions,” Process Saf. Environ. Prot., vol. 181, pp. 452-468, Jan. 2024, doi: 10.1016/j.psep.2023.11.035.
  • P. Spiru, “Assessment of renewable energy generated by a hybrid system based on wind, hydro, solar, and biomass sources for decarbonizing the energy sector and achieving a sustainable energy transition,” Energy Reports, vol. 9, no. 8, pp. 167-174, Sep. 2023, doi: 10.1016/j.egyr.2023.04.316.
  • A. Zahid, M.K. Shahzad, S.R. Jamil, and N. Iqbal, “Futuristic feasibility analysis and modelling of a solar-biomass on-grid hybrid system for Hattar Industrial Estate Phase (VII), Pakistan,” Cleaner Energy Systems, vol. 4, Apr. 2023, Art. no. 100053, doi: 10.1016/j.cles.2023.100053.
  • B. Modu, Md. P. Abdullah, A. L. Bukar, M. F. Hamza, and M. S. Adewolu, “Operational strategy and capacity optimization of standalone solar-wind-biomass-fuel cell energy system using hybrid LF-SSA algorithms,” Intern. J. Hydr. Energy, vol. 50(B), pp. 92-106, Jan. 2024, doi: 10.1016/j.ijhydene.2023.07.215.
  • G. Zsembinszki, C. Fernández, E. Borri, and L. F. Cabeza, “Application of deep learning techniques to minimize the cost of operation of a hybrid solar-biomass system in a multi-family building,” En. Conv. Manag., vol. 288, Jul. 2023, Art. no. 117152, doi: 10.1016/j.enconman.2023.117152.
  • Y. Xin, X. Xing, X. Li, and H. Hong, “A biomass–solar hybrid gasification system by solar pyrolysis and PV-Solid oxide electrolysis cell for sustainable fuel production,” App. Energy, vol. 356, Feb. 2024, Art. no. 22419, doi: 10.1016/j.apenergy.2023.122419.
  • T. Hai, F. M. Alhomayani, P. Ghodratallah, B. S. Chauhan, H. Rajab, S. F. Almojil, A. I. Almohana, and U. Mirzat, “Proposal and ANN-assisted optimization of a hybrid solar- and biomass-based energy system for electricity, freshwater, and hydrogen production” Int. J. Hydr. Energy, early access, Feb. 2024, doi: 10.1016/j.ijhydene. 2024.02.126.
  • A. Nouri, A. Chitsaz, M. Khalilian, and A. Hasanzadeh, “Analysis and optimization of a sustainable hybrid solar-biomass polygeneration system for production of power, heating, drying, oxygen and ammonia,” App. Therm. Eng., vol. 246, Jun. 2024, Art. no. 122867, doi: 10.1016/j.applthermaleng.2024.122867.
  • Y. Liu, D. Bi, M. Yin, K. Zhang, H. Liu, and S. Liu, “Modeling and exergy-economy analysis of residential building energy supply systems combining torrefied biomass gasification and solar energy,” Therm. Sci. Eng. Prog., vol. 50, May 2024, Art. no. 102584, doi: 10.1016/j.tsep.2024.102584.
  • H. Xu, S. Jiang, M. X. Xie, T. Jia, and Y. J. Dai “Technical improvements and perspectives on humidification-dehumidification desalination - a review,” Desalin., vol. 541, Nov. 2022, Art. no. 116029, doi: 10.1016/j.desal.2022.116029.
  • C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, “State-of-the-art of reverse osmosis desalination,” Desalin., vol. 216, no. 1–3, pp. 1-76, Oct. 2007. doi: 10.1016/j.desal.2006.12.009.
  • A. P. Nicolás, A. Molina-García, J. T. García-Bermejo, and F. Vera-García, “Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives,” Renew. Sustain. En. Reviews, vol. 187, Nov. 2023, Art. no. 113733, doi: 10.1016/j.rser.2023.113733.
  • A. Yadav, P. K. Labhasetwar, and V. K. Shahi, “Membrane distillation using low-grade energy for desalination: A review,” J. Env. Chem. Eng., vol. 9, no. 5, Oct. 2021, Art. no. 105818, doi: 10.1016/j.jece.2021.105818.
  • M. Sedighi, M. M. B. Usefi, A. F. Ismail, and M. Ghasemi, “Environmental sustainability and ions removal through electrodialysis desalination: Operating conditions and process parameters,” Desalination, vol. 549, Mar. 2023, Art. no. 116319, doi: 10.1016/j.desal.2022.116319.
  • M. M. Rashidi, I. Mahariq, N. Murshid, S. Wongwises, O. Mahian, M. A. Nazari, “Applying wind energy as a clean source for reverse osmosis desalination: A comprehensive review,” Alex. Eng. J., vol. 61, no. 12, pp. 12977-12989, Dec. 2022, doi: 10.1016/j.aej.2022.06.056.
  • K. Wang, and J. W. Tester, “Sustainable management of unavoidable biomass wastes,” Green. En. Res., vol. 1, no. 1, Mar. 2023, Art. no. 100005, doi: 10.1016/j.gerr.2023.100005.
  • F. A. M. Lino, K. A. R. Ismail, and J. A. Castañeda-Ayarza, “Municipal solid waste treatment in Brazil: A comprehensive review,” Energy Nexus, vol. 11, Sep. 2023, Art. no. 100232, doi: 10.1016/j.nexus.2023.100232.
  • S. Vyas, P. Prajapati, A. V. Shah, V. K. Srivastava, and S. Varjani, “Opportunities and knowledge gaps in biochemical interventions for mining of resources from solid waste: A special focus on anaerobic digestion,” Fuel, vol. 311, Mar. 2022, Art. no. 122625, doi: 10.1016/J.FUEL.2021.122625.
  • A. Khosravi, S. Santasalo-Aarnio, and S. Syri, “Optimal technology for a hybrid biomass/solar system for electricity generation and desalination in Brazil,” Energy, vol. 234, Nov. 2021, Art. no. 121309, doi: 10.1016/j.energy.2021.121309.
  • E. B. Pereira et al., Brazilian Atlas of Solar Energy, 2nd ed., São José dos Campos, Brazil: INPE, 2017, p. 80, doi: 10.34024/978851700089.
  • Labren, “Brasil-SR Model,” Accessed: Aug. 5, 2024. [Online]. Available: https://labren.ccst.inpe.br/brasil-sr.html
  • ABREMA, “Panorama of Solid Waste in Brazil,” Accessed: Oct. 5, 2024. [Online]. Available: https://abrelpe.org.br/panorama/
  • A. Calbry-Muzyka, H. Madi, F. Rüsch-Pfund, M. Gandiglio, and S. Biollaz, “Biogas composition from agricultural sources and organic fraction of municipal solid waste,” Renew. Energy, vol. 181, pp. 1000-1007, Jan. 2022, doi: 10.1016/j.renene.2021.09.100.
  • A. Kumar, and S. R. Samadder, “Development of lower heating value prediction models and estimation of energy recovery potential of municipal solid waste and RDF incineration,” Energy, vol. 274, Jul. 2023, Art. no. 127273, doi: 10.1016/j.energy.2023.127273.
  • M. Ioelovich, “Energy Potential of Natural, Synthetic Polymers and Waste Materials - A Review,” Academ. J. Polym. Sci., vol. 1, no. 1, May 2018 doi: 10.19080/AJOP.2018.01.555553.
  • C. Bispo, C. Colombo, R. Braz, M. Medeiros, and F. Souza, “Selective collection in Natal/RN: scenario of recyclable materials cooperatives,” Metrop. J. Sustain., vol. 7, no. 1, pp. 141-160, Jan./Apr. 2017, (in Portuguese).
  • G. O. Santos, and F. B. S. Mota, “Gravimetric composition of household solid waste in Fortaleza - CE disposed at the Caucaia/CE landfill,” Technol. J., vol. 31, no. 1, pp. 39-50, (in Portuguese), Jun 2010.
  • G. P. Narayan, K. H. Mistry, M. H. Sharqawy, S. M. Zubair, and J. H. Lienhard, “Energy effectiveness of simultaneous heat and mass exchange devices,” Front. Heat and Mass Trans., vol. 1, no. 2, pp. 1-13, Jul. 2010, doi: 10.5098/hmt.v1.2.3001.
  • M. H. Sharqawy, J. H. Lienhard, and S. M. Zubai, “Thermophysical properties of seawater: A review of existing correlations and data,” Desalin. and Water Treat., vol. 16, no. 1-3, pp. 354-380, Aug. 2012, doi:10.5004/dwt.2010.1079.
  • L. Pagnini, S. Bracco, F. Delfino, and M. Simón-Martin, “Levelized cost of electricity in renewable energy communities: Uncertainty propagation analysis,” Appl. Energy, vol. 366, Jul. 2024, Art. no. 123278, doi: 10.1016/j.apenergy.2024.123278.
  • M. J. B. Kabeyi, and O. A. Olanrewaju, “The levelized cost of energy and modifications for use in electricity generation planning,” Energy Rep., vol. 9, Supp 9, pp. 495-534, Sep. 2023, doi: 10.1016/j.egyr.2023.06.036.
  • A. H. Alami et al., “Concentrating solar power (CSP) technologies: Status and analysis,” Int. J. Thermofluids, vol. 18, May 2023, Art. no. 100340, doi: 10.1016/j.ijft.2023.100340.
  • M. D. Rey, R. Font, and I. Aracil, “Biogas from MSW landfill: Composition and determination of chlorine content with the AOX (adsorbable organically bound halogens) technique,” Energy, vol. 63, pp. 161-167, Dec. 2013, doi: 10.1016/j.energy.2013.09.017.
  • N. Dadario et al., “Waste-to-energy recovery from municipal solid waste: Global scenario and prospects of mass burning technology in Brazil,” Sustainability, vol. 15, no. 6, Mar. 2023, Art. no. 5397, doi: 10.3390/su15065397.
  • M. S. Riaz, K. J. Barb, and A. Engeda, “A Novel Technique for Steam Turbine Exhaust Pressure Limitation Using Dynamic Pressure Sensors,” Proc. of the Inst. of Mech. Eng., Part C: J. Mech. Eng. Sci., vol. 219, no. 9, pp. 925-932, Sep. 2005, doi:10.1243/095440605X31805.
  • V. Mrzljak, T. Senčić, and B. Žarković, “Turbogenerator Steam Turbine Variation in Developed Power: Analysis of Exergy Efficiency and Exergy Destruction Change,” Modell. Simul. Eng., vol. 2018, no. 1, Jul. 2018, Art. no. 2945325, doi: 10.1155/2018/2945325.
  • IPCC, Chapter 2: Stationary Combustion, in 2006 IPCC Guidelines for National Greenhouse Gas Inventories, vol. 2: Energy. Accessed: Oct. 1, 2024. [Online]. Available: https://www.ipcc-nggip.iges.or.jp
  • Q. Liu et al., “Thermodynamics investigation of a solar power system integrated oil and molten salt as heat transfer fluids,” App. Therm. Eng., vol. 93, pp. 967-977, Jan. 2016, doi: 10.1016/j.applthermaleng.2015.10.071.
  • T. P. van der Stelt, E. Casati, N. Chan, and P. Colonna, “Technical equation of state models for heat transfer fluids made of biphenyl and diphenyl ether and their mixtures,” Fluid Phase Equilibria, vol. 393, pp. 64-77, May 2015, doi: 10.1016/j.fluid.2015.02.025.
  • V-E. Cenuşă et al., “Energetic and exergetic analysis of Rankine cycles for solar power plants with parabolic trough and thermal storage,” Renew. Energy Environ. Sustain., vol. 1, May 2016, doi: 10.1051/rees/2016010.
  • Eastman, “Therminol VP-1 Technical Bulletin 7239115B,” Accessed: June 3, 2024. [Online]. Available: https://www.therminol.com/sites/therminol/files/documents/TF09A_Therminol_VP1.pdf
There are 59 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Elisangela Leal 0000-0002-7606-310X

E. A. Teixeira This is me 0009-0000-4726-3519

Publication Date March 1, 2025
Submission Date July 27, 2024
Acceptance Date January 28, 2025
Published in Issue Year 2025 Volume: 28 Issue: 1

Cite

APA Leal, E., & Teixeira, E. A. (2025). 3E Analysis of a Hybrid Biomass / Solar System for Power Generation and Desalination. International Journal of Thermodynamics, 28(1), 17-28.
AMA Leal E, Teixeira EA. 3E Analysis of a Hybrid Biomass / Solar System for Power Generation and Desalination. International Journal of Thermodynamics. March 2025;28(1):17-28.
Chicago Leal, Elisangela, and E. A. Teixeira. “3E Analysis of a Hybrid Biomass / Solar System for Power Generation and Desalination”. International Journal of Thermodynamics 28, no. 1 (March 2025): 17-28.
EndNote Leal E, Teixeira EA (March 1, 2025) 3E Analysis of a Hybrid Biomass / Solar System for Power Generation and Desalination. International Journal of Thermodynamics 28 1 17–28.
IEEE E. Leal and E. A. Teixeira, “3E Analysis of a Hybrid Biomass / Solar System for Power Generation and Desalination”, International Journal of Thermodynamics, vol. 28, no. 1, pp. 17–28, 2025.
ISNAD Leal, Elisangela - Teixeira, E. A. “3E Analysis of a Hybrid Biomass / Solar System for Power Generation and Desalination”. International Journal of Thermodynamics 28/1 (March 2025), 17-28.
JAMA Leal E, Teixeira EA. 3E Analysis of a Hybrid Biomass / Solar System for Power Generation and Desalination. International Journal of Thermodynamics. 2025;28:17–28.
MLA Leal, Elisangela and E. A. Teixeira. “3E Analysis of a Hybrid Biomass / Solar System for Power Generation and Desalination”. International Journal of Thermodynamics, vol. 28, no. 1, 2025, pp. 17-28.
Vancouver Leal E, Teixeira EA. 3E Analysis of a Hybrid Biomass / Solar System for Power Generation and Desalination. International Journal of Thermodynamics. 2025;28(1):17-28.