Research Article
BibTex RIS Cite
Year 2025, Volume: 28 Issue: 2, 51 - 58, 01.06.2025
https://doi.org/10.5541/ijot.1642883

Abstract

Project Number

FWEU-2021-0005

References

  • T. Duan, C. Lu, S. Xiong, Z. Fu, and B. Zhang, “Evaluation method of the energy conversion efficiency of coal gasification and related applications,” International Journal of Energy Research, vol. 40, no. 2, pp. 168–180, Feb. 2016, doi: 10.1002/er.3444.
  • M. J. Moran and E. Sciubba, “Exergy Analysis: Principles and Practice,” Journal of Engineering for Gas Turbines and Power, vol. 116, no. 2, pp. 285–290, Apr. 1994, doi: 10.1115/1.2906818.
  • J. Szargut, “Chemical exergies of the elements,” Applied Energy, vol. 32, no. 4, pp. 269–286, Jan. 1989, doi: 10.1016/0306-2619(89)90016-0.
  • V. Stepanov, “Chemical energies and exergies of fuels,” Energy, vol. 20, no. 3, pp. 235–242, Mar. 1995, doi: 10.1016/0360-5442(94)00067-D.
  • C. Michalakakis, J. Fouillou, R. C. Lupton, A. Gonzalez Hernandez, and J. M. Cullen, “Calculating the chemical exergy of materials,” Journal of Industrial Ecology, vol. 25, no. 2, pp. 274–287, Apr. 2021, doi: 10.1111/jiec.13120.
  • V. S. Stepanov and T. B. Stepanova, The Efficiency of Energy Use. Novosibirsk: Nauka, 1994.
  • P. A. Shchinninkov, O. V. Borush, and S. V. Zykov, Exergy Research and Optimization of CHPP Operating Modes. Novosibirsk: NSTU Publishing, 2019.
  • J. C. Lee, H. H. Lee, Y. J. Joo, C. H. Lee, and M. Oh, “Process simulation and thermodynamic analysis of an IGCC (integrated gasification combined cycle) plant with an entrained coal gasifier,” Energy, vol. 64, pp. 58–68, Jan. 2014, doi: 10.1016/j.energy.2013.11.069.
  • J. Taillon and R. E. Blanchard, “Exergy efficiency graphs for thermal power plants,” Energy, vol. 88, pp. 57–66, Aug. 2015, doi: 10.1016/j.energy.2015.03.055.
  • A.Thallam Thattai, V. Oldenbroek, L. Schoenmakers, T. Woudstra, and P. V. Aravind, “Experimental model validation and thermodynamic assessment on high percentage (up to 70%) biomass co-gasification at the 253 MW integrated gasification combined cycle power plant in Buggenum, The Netherlands,” Applied Energy, vol. 168, pp. 381–393, Apr. 2016, doi: 10.1016/j.apenergy.2016.01.131.
  • H.-T. Oh, W.-S. Lee, Y. Ju, and C.-H. Lee, “Performance evaluation and carbon assessment of IGCC power plant with coal quality,” Energy, vol. 188, Dec. 2019, Art. no. 116063, doi: 10.1016/j.energy.2019.116063.
  • V. E. Nakoryakov, G. v. Nozdrenko, and A. G. Kuzmin, “Investigation of coal fired combined-cycle cogeneration plants for power, heat, syngas, and hydrogen,” Thermophysics and Aeromechanics, vol. 16, no. 4, pp. 515–520, Dec. 2009, doi: 10.1134/S0869864309040027.
  • W. Wu, L. Zheng, B. Shi, and P.-C. Kuo, “Energy and exergy analysis of MSW-based IGCC power/polygeneration systems,” Energy Conversion and Management, vol. 238, Jun. 2021, Art. no. 114119, doi: 10.1016/j.enconman.2021.114119.
  • Y. Emre Yuksel, M. Ozturk, and I. Dincer, “Development and assessment of a biomass-gasification based multigenerational plant for production of hydrogen and ammonia fuels,” Fuel, vol. 380, Jan. 2025, Art. no. 133187, doi: 10.1016/j.fuel.2024.133187.
  • V. Satyam Naidu, P. Aghalayam, and S. Jayanti, “Improving efficiency of CCS-enabled IGCC power plant through the use of recycle flue gas for coal gasification,” Clean Technologies and Environmental Policy, vol. 20, no. 6, pp. 1207–1218, Aug. 2018, doi: 10.1007/s10098-018-1544-0.
  • B. Jin, H. Zhao, and C. Zheng, “Thermoeconomic cost analysis of CO2 compression and purification unit in oxy-combustion power plants,” Energy Conversion and Management, vol. 106, pp. 53–60, Dec. 2015, doi: 10.1016/j.enconman.2015.09.014.
  • Y. Cao, B. He, G. Ding, L. Su, and Z. Duan, “Energy and exergy investigation on two improved IGCC power plants with different CO2 capture schemes,” Energy, vol. 140, pp. 47–57, Dec. 2017, doi: 10.1016/j.energy.2017.08.044.
  • W.-S. Lee, J.-C. Lee, H.-T. Oh, S.-W. Baek, M. Oh, and C.-H. Lee, “Performance, economic and exergy analyses of carbon capture processes for a 300 MW class integrated gasification combined cycle power plant,” Energy, vol. 134, pp. 731–742, Sep. 2017, doi: 10.1016/j.energy.2017.06.059.
  • S. P. Singh, S. A. Weil, and S. P. Babu, “Thermodynamic analysis of coal gasification processes,” Energy, vol. 5, no. 8–9, pp. 905–914, Aug. 1980, doi: 10.1016/0360-5442(80)90106-1.
  • C. He, X. Feng, and K. H. Chu, “Process modeling and thermodynamic analysis of Lurgi fixed-bed coal gasifier in an SNG plant,” Applied Energy, vol. 111, pp. 742–757, Nov. 2013, doi: 10.1016/j.apenergy.2013.05.045.
  • S. C. Kaushik, V. S. Reddy, and S. K. Tyagi, “Energy and exergy analyses of thermal power plants: A review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 4, pp. 1857–1872, May 2011, doi: 10.1016/j.rser.2010.12.007.
  • S. Qin, X. Zhang, M. Wang, H. Cui, Z. Li, and W. Yi, “Comparison of BGL and Lurgi gasification for coal to liquid fuels (CTL): Process modeling, simulation and thermodynamic analysis,” Energy, vol. 229, Aug. 2021, Art. no. 120697, doi: 10.1016/j.energy.2021.120697.
  • Q. Yan, T. Lu, J. Luo, Y. Hou, and X. Nan, “Exergy cascade release pathways and exergy efficiency analysis for typical indirect coal combustion processes,” Combustion Theory and Modelling, vol. 23, no. 6, pp. 1134–1149, Nov. 2019, doi: 10.1080/13647830.2019.1639826.
  • J. Li, W. Han, P. Li, W. Ma, X. Xue, and H. Jin, “High-efficiency power generation system with CO2 capture based on cascading coal gasification employing chemical recuperation,” Energy, vol. 283, Nov. 2023, Art. no. 129153, doi: 10.1016/j.energy.2023.129153.
  • A. F. Ryzhkov et al., “Development of low-temperature thermochemical conversion reactors for coal power engineering,” Thermal Engineering, vol. 60, no. 12, pp. 895–903, Dec. 2013, doi: 10.1134/S0040601513120100.
  • L. Feng, G. Zhang, and R. Zhai, “Study on gasification reaction and energy conversion characteristics of the entrained flow coal gasification based on chemical kinetics simulation,” Heliyon, vol. 10, no. 10, May 2024, Art. no. e30997, doi: 10.1016/j.heliyon.2024.e30997.
  • N. Lior, W. Sarmiento-Darkin, and H. S. Al-Sharqawi, “The exergy fields in transport processes: Their calculation and use,” Energy, vol. 31, no. 5, pp. 553–578, Apr. 2006, doi: 10.1016/j.energy.2005.05.009.
  • S. K. Som and A. Datta, “Thermodynamic irreversibilities and exergy balance in combustion processes,” Progress in Energy and Combustion Science, vol. 34, no. 3, pp. 351–376, Jun. 2008, doi: 10.1016/j.pecs.2007.09.001.
  • E. E. Shpil’rain, “Possibility of enhancing efficiency of thermal power schemes by means of chemical regeneration of heat,” Izvestiya AN SSSR. Energetika I transport, no. 6, pp. 115–123, 1985.
  • G. S. Aslanyan, I. Yu. Ginevskaya, and E. E. Shpil’rain, “Influence of oxygen-steam blast parameters on carbon gasification,” Khimiya tverdogo topliva, no. 1, pp. 90–98, 1984.
  • M. J. Prins, K. J. Ptasinski, and F. J. J. G. Janssen, “Thermodynamics of gas-char reactions: first and second law analysis,” Chemical Engineering Science, vol. 58, no. 3–6, pp. 1003–1011, Feb. 2003, doi: 10.1016/S0009-2509(02)00641-3.
  • M. J. Prins and K. J. Ptasinski, “Energy and exergy analyses of the oxidation and gasification of carbon,” Energy, vol. 30, no. 7, pp. 982–1002, Jun. 2005, doi: 10.1016/j.energy.2004.08.010.
  • G. Donskoy, “How water vapor and carbon dioxide additives affect oxygen gasification of pulverized coal fuel,” Bulletin of the South Ural State University series “Power Engineering,” vol. 21, no. 1, pp. 21–28, 2021, doi: 10.14529/power210102.
  • Y. Oki et al., “Development of High-efficiency Oxy-fuel IGCC System,” Energy Procedia, vol. 63, pp. 471–475, 2014, doi: 10.1016/j.egypro.2014.11.050.
  • H. Ishii, H. Tada, R. Takashima, J. Yamamoto, and K. Yokohama, “Verification Test Results of 50 t/d O2/CO2-blown Two-stage Entrained Flow Coal Gasifier and Development into Commercial Scale Gasifier,” Journal of the Japan Institute of Energy, vol. 98, no. 7, pp. 165–170, Jul. 2019, doi: 10.3775/jie.98.165.
  • V. Tola and A. Pettinau, “Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies,” Applied Energy, vol. 113, pp. 1461–1474, Jan. 2014, doi: 10.1016/j.apenergy.2013.09.007.
  • G. Donskoy, V. A. Shamansky, A. N. Kozlov, and D. A. Svishchev, “Coal gasification process simulations using combined kinetic-thermodynamic models in one-dimensional approximation,” Combustion Theory and Modelling, vol. 21, no. 3, pp. 529–559, May 2017, doi: 10.1080/13647830.2016.1259505.
  • R. F. D. Monaghan and A. F. Ghoniem, “A dynamic reduced order model for simulating entrained flow gasifiers,” Fuel, vol. 91, no. 1, pp. 61–80, Jan. 2012, doi: 10.1016/j.fuel.2011.07.015.
  • A. V. Messerle, V. E. Messerle, and A. B. Ustimenko, “Plasma thermochemical preparation for combustion of pulverized coal,” High Temperature, vol. 55, no. 3, pp. 352–360, May 2017, doi: 10.1134/S0018151X17030142.
  • X. Kong, W. Zhong, W. Du, and F. Qian, “Three Stage Equilibrium Model for Coal Gasification in Entrained Flow Gasifiers Based on Aspen Plus,” Chinese Journal of Chemical Engineering, vol. 21, no. 1, pp. 79–84, Jan. 2013, doi: 10.1016/S1004-9541(13)60444-9.
  • M. Pérez-Fortes, A. D. Bojarski, E. Velo, J. M. Nougués, and L. Puigjaner, “Conceptual model and evaluation of generated power and emissions in an IGCC plant,” Energy, vol. 34, no. 10, pp. 1721–1732, Oct. 2009, doi: 10.1016/j.energy.2009.05.012.
  • Kim, H. Oh, S. Lee, and Y.-S. Yoon, “Advanced One-Dimensional Entrained-Flow Gasifier Model Considering Melting Phenomenon of Ash,” Energies, vol. 11, no. 4, Apr. 2018, Art. no. 1015, doi: 10.3390/en11041015.
  • M. H. Sahraei, M. A. Duchesne, R. W. Hughes, and L. A. Ricardez-Sandoval, “Dynamic reduced order modeling of an entrained-flow slagging gasifier using a new recirculation ratio correlation,” Fuel, vol. 196, pp. 520–531, May 2017, doi: 10.1016/j.fuel.2017.01.079.
  • H. Wu, X. Chen, M. Aziz, Z. Huang, and Y. Zhang, “Exergy destruction analysis of coal gasification with O2-H2O combined with chemical kinetics,” Fuel, vol. 384, p. 134014, Mar. 2025, doi: 10.1016/j.fuel.2024.134014.
  • E. Biagini, “Study of the equilibrium of air-blown gasification of biomass to coal evolution fuels,” Energy Conversion and Management, vol. 128, pp. 120–133, Nov. 2016, doi: 10.1016/j.enconman.2016.09.068.
  • G. Donskoy, “Simulation and Optimization of Entrained-Flow Air-Steam Gasification of Brown Coals,” Energy Systems Research, vol. 5, no. 1, pp. 31–37, 2022, doi: 10.38028/esr.2022.01.0003.
  • V. S. Vdovenko, M. I. Martynova, N. V. Novitskiy, and G. D. Yushina, Energy fuels of USSR (coals, oil shales, peats, oils, natural gas). Moscow: Energoatomizdat, 1991.
  • G. Donskoy, “Analysis of efficiency of pulverized coal gasification in high-temperature flow of O2/N2 and O2/CO2 using mathematical modeling,” Bulletin of the Tomsk Polytechnic University Geo Assets Engineering, vol. 332, no. 11, pp. 127–140, Nov. 2021, doi: 10.18799/24131830/2021/11/2575.
  • C. Yin and J. Yan, “Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling,” Applied Energy, vol. 162, pp. 742–762, Jan. 2016, doi: 10.1016/j.apenergy.2015.10.149.
  • Deng, Y. Zhao, S. Sun, D. Feng, and W. Zhang, “Review on thermal conversion characteristics of coal in O2/H2O atmosphere,” Fuel Processing Technology, vol. 232, Jul. 2022, Art. no. 107266, doi: 10.1016/j.fuproc.2022.107266.
  • H. Ishii, T. Hayashi, H. Tada, K. Yokohama, R. Takashima, and J. Hayashi, “Critical assessment of oxy-fuel integrated coal gasification combined cycles,” Applied Energy, vol. 233–234, pp. 156–169, Jan. 2019, doi: 10.1016/j.apenergy.2018.10.021.
  • A. F. Ryzhkov, S. I. Gordeev, and T. F. Bogatova, “Selecting the process arrangement for preparing the gas turbine working fluid for an integrated gasification combined-cycle power plant,” Thermal Engineering, vol. 62, no. 11, pp. 796–801, Nov. 2015, doi: 10.1134/S0040601515110075.
  • D. Svishchev, “Thermodynamic Analysis of Air-Blown Staged Gasification of Coal in a Flow,” Energy Systems Research, no. 3(15), pp. 38–43, Nov. 2021, doi: 10.38028/esr.2021.03.0004.
  • C. Kunze, K. Riedl, and H. Spliethoff, “Structured exergy analysis of an integrated gasification combined cycle (IGCC) plant with carbon capture,” Energy, vol. 36, no. 3, pp. 1480–1487, Mar. 2011, doi: 10.1016/j.energy.2011.01.020.
  • A. Wahid, R. Mustafida, and A. Husnil, “Exergy Analysis of Coal-Fired Power Plants in Ultra Supercritical Technology versus Integrated Gasification Combined Cycle,” Evergreen, vol. 7, no. 1, pp. 32–42, Mar. 2020, doi: 10.5109/2740939.
  • Giuffrida, M. C. Romano, and G. Lozza, “Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up,” Energy, vol. 53, pp. 221–229, May 2013, doi: 10.1016/j.energy.2013.02.007.
  • Y. A. Kagramanov, V. G. Tuponogov, A. F. Ryzhkov, and A. D. Nikitin, “Multiple Gas–Solid Reactions in a Porous Sorbent Applied to Warm Gas Desulfurization,” Industrial & Engineering Chemistry Research, vol. 59, no. 29, pp. 12943–12954, Jul. 2020, doi: 10.1021/acs.iecr.0c01389.

Exergetic Efficiency of Coal Gasification Using High-Temperature Mixtures of O2/N2 and O2/CO2

Year 2025, Volume: 28 Issue: 2, 51 - 58, 01.06.2025
https://doi.org/10.5541/ijot.1642883

Abstract

A search for ways to improve the efficiency of energy technologies requires the selection of appropriate efficiency criteria and a study of the influence of different factors on them. This paper focuses on coal gasification, including hard coals and brown coals, in air and steam media, considering different efficiency criteria for gasification processes: cold gas efficiency, energy efficiency that takes into account the heat of the gasification agent, and exergy efficiency that considers the chemical, thermal, and mechanical energy of reactants and products. The dependence of these efficiency criteria on stoichiometric ratios and air temperature is demonstrated, and the applicability of these criteria in power plant analysis is discussed.

Ethical Statement

There are no ethical issues concerning this manuscript.

Supporting Institution

Melentiev Energy Systems Institute

Project Number

FWEU-2021-0005

References

  • T. Duan, C. Lu, S. Xiong, Z. Fu, and B. Zhang, “Evaluation method of the energy conversion efficiency of coal gasification and related applications,” International Journal of Energy Research, vol. 40, no. 2, pp. 168–180, Feb. 2016, doi: 10.1002/er.3444.
  • M. J. Moran and E. Sciubba, “Exergy Analysis: Principles and Practice,” Journal of Engineering for Gas Turbines and Power, vol. 116, no. 2, pp. 285–290, Apr. 1994, doi: 10.1115/1.2906818.
  • J. Szargut, “Chemical exergies of the elements,” Applied Energy, vol. 32, no. 4, pp. 269–286, Jan. 1989, doi: 10.1016/0306-2619(89)90016-0.
  • V. Stepanov, “Chemical energies and exergies of fuels,” Energy, vol. 20, no. 3, pp. 235–242, Mar. 1995, doi: 10.1016/0360-5442(94)00067-D.
  • C. Michalakakis, J. Fouillou, R. C. Lupton, A. Gonzalez Hernandez, and J. M. Cullen, “Calculating the chemical exergy of materials,” Journal of Industrial Ecology, vol. 25, no. 2, pp. 274–287, Apr. 2021, doi: 10.1111/jiec.13120.
  • V. S. Stepanov and T. B. Stepanova, The Efficiency of Energy Use. Novosibirsk: Nauka, 1994.
  • P. A. Shchinninkov, O. V. Borush, and S. V. Zykov, Exergy Research and Optimization of CHPP Operating Modes. Novosibirsk: NSTU Publishing, 2019.
  • J. C. Lee, H. H. Lee, Y. J. Joo, C. H. Lee, and M. Oh, “Process simulation and thermodynamic analysis of an IGCC (integrated gasification combined cycle) plant with an entrained coal gasifier,” Energy, vol. 64, pp. 58–68, Jan. 2014, doi: 10.1016/j.energy.2013.11.069.
  • J. Taillon and R. E. Blanchard, “Exergy efficiency graphs for thermal power plants,” Energy, vol. 88, pp. 57–66, Aug. 2015, doi: 10.1016/j.energy.2015.03.055.
  • A.Thallam Thattai, V. Oldenbroek, L. Schoenmakers, T. Woudstra, and P. V. Aravind, “Experimental model validation and thermodynamic assessment on high percentage (up to 70%) biomass co-gasification at the 253 MW integrated gasification combined cycle power plant in Buggenum, The Netherlands,” Applied Energy, vol. 168, pp. 381–393, Apr. 2016, doi: 10.1016/j.apenergy.2016.01.131.
  • H.-T. Oh, W.-S. Lee, Y. Ju, and C.-H. Lee, “Performance evaluation and carbon assessment of IGCC power plant with coal quality,” Energy, vol. 188, Dec. 2019, Art. no. 116063, doi: 10.1016/j.energy.2019.116063.
  • V. E. Nakoryakov, G. v. Nozdrenko, and A. G. Kuzmin, “Investigation of coal fired combined-cycle cogeneration plants for power, heat, syngas, and hydrogen,” Thermophysics and Aeromechanics, vol. 16, no. 4, pp. 515–520, Dec. 2009, doi: 10.1134/S0869864309040027.
  • W. Wu, L. Zheng, B. Shi, and P.-C. Kuo, “Energy and exergy analysis of MSW-based IGCC power/polygeneration systems,” Energy Conversion and Management, vol. 238, Jun. 2021, Art. no. 114119, doi: 10.1016/j.enconman.2021.114119.
  • Y. Emre Yuksel, M. Ozturk, and I. Dincer, “Development and assessment of a biomass-gasification based multigenerational plant for production of hydrogen and ammonia fuels,” Fuel, vol. 380, Jan. 2025, Art. no. 133187, doi: 10.1016/j.fuel.2024.133187.
  • V. Satyam Naidu, P. Aghalayam, and S. Jayanti, “Improving efficiency of CCS-enabled IGCC power plant through the use of recycle flue gas for coal gasification,” Clean Technologies and Environmental Policy, vol. 20, no. 6, pp. 1207–1218, Aug. 2018, doi: 10.1007/s10098-018-1544-0.
  • B. Jin, H. Zhao, and C. Zheng, “Thermoeconomic cost analysis of CO2 compression and purification unit in oxy-combustion power plants,” Energy Conversion and Management, vol. 106, pp. 53–60, Dec. 2015, doi: 10.1016/j.enconman.2015.09.014.
  • Y. Cao, B. He, G. Ding, L. Su, and Z. Duan, “Energy and exergy investigation on two improved IGCC power plants with different CO2 capture schemes,” Energy, vol. 140, pp. 47–57, Dec. 2017, doi: 10.1016/j.energy.2017.08.044.
  • W.-S. Lee, J.-C. Lee, H.-T. Oh, S.-W. Baek, M. Oh, and C.-H. Lee, “Performance, economic and exergy analyses of carbon capture processes for a 300 MW class integrated gasification combined cycle power plant,” Energy, vol. 134, pp. 731–742, Sep. 2017, doi: 10.1016/j.energy.2017.06.059.
  • S. P. Singh, S. A. Weil, and S. P. Babu, “Thermodynamic analysis of coal gasification processes,” Energy, vol. 5, no. 8–9, pp. 905–914, Aug. 1980, doi: 10.1016/0360-5442(80)90106-1.
  • C. He, X. Feng, and K. H. Chu, “Process modeling and thermodynamic analysis of Lurgi fixed-bed coal gasifier in an SNG plant,” Applied Energy, vol. 111, pp. 742–757, Nov. 2013, doi: 10.1016/j.apenergy.2013.05.045.
  • S. C. Kaushik, V. S. Reddy, and S. K. Tyagi, “Energy and exergy analyses of thermal power plants: A review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 4, pp. 1857–1872, May 2011, doi: 10.1016/j.rser.2010.12.007.
  • S. Qin, X. Zhang, M. Wang, H. Cui, Z. Li, and W. Yi, “Comparison of BGL and Lurgi gasification for coal to liquid fuels (CTL): Process modeling, simulation and thermodynamic analysis,” Energy, vol. 229, Aug. 2021, Art. no. 120697, doi: 10.1016/j.energy.2021.120697.
  • Q. Yan, T. Lu, J. Luo, Y. Hou, and X. Nan, “Exergy cascade release pathways and exergy efficiency analysis for typical indirect coal combustion processes,” Combustion Theory and Modelling, vol. 23, no. 6, pp. 1134–1149, Nov. 2019, doi: 10.1080/13647830.2019.1639826.
  • J. Li, W. Han, P. Li, W. Ma, X. Xue, and H. Jin, “High-efficiency power generation system with CO2 capture based on cascading coal gasification employing chemical recuperation,” Energy, vol. 283, Nov. 2023, Art. no. 129153, doi: 10.1016/j.energy.2023.129153.
  • A. F. Ryzhkov et al., “Development of low-temperature thermochemical conversion reactors for coal power engineering,” Thermal Engineering, vol. 60, no. 12, pp. 895–903, Dec. 2013, doi: 10.1134/S0040601513120100.
  • L. Feng, G. Zhang, and R. Zhai, “Study on gasification reaction and energy conversion characteristics of the entrained flow coal gasification based on chemical kinetics simulation,” Heliyon, vol. 10, no. 10, May 2024, Art. no. e30997, doi: 10.1016/j.heliyon.2024.e30997.
  • N. Lior, W. Sarmiento-Darkin, and H. S. Al-Sharqawi, “The exergy fields in transport processes: Their calculation and use,” Energy, vol. 31, no. 5, pp. 553–578, Apr. 2006, doi: 10.1016/j.energy.2005.05.009.
  • S. K. Som and A. Datta, “Thermodynamic irreversibilities and exergy balance in combustion processes,” Progress in Energy and Combustion Science, vol. 34, no. 3, pp. 351–376, Jun. 2008, doi: 10.1016/j.pecs.2007.09.001.
  • E. E. Shpil’rain, “Possibility of enhancing efficiency of thermal power schemes by means of chemical regeneration of heat,” Izvestiya AN SSSR. Energetika I transport, no. 6, pp. 115–123, 1985.
  • G. S. Aslanyan, I. Yu. Ginevskaya, and E. E. Shpil’rain, “Influence of oxygen-steam blast parameters on carbon gasification,” Khimiya tverdogo topliva, no. 1, pp. 90–98, 1984.
  • M. J. Prins, K. J. Ptasinski, and F. J. J. G. Janssen, “Thermodynamics of gas-char reactions: first and second law analysis,” Chemical Engineering Science, vol. 58, no. 3–6, pp. 1003–1011, Feb. 2003, doi: 10.1016/S0009-2509(02)00641-3.
  • M. J. Prins and K. J. Ptasinski, “Energy and exergy analyses of the oxidation and gasification of carbon,” Energy, vol. 30, no. 7, pp. 982–1002, Jun. 2005, doi: 10.1016/j.energy.2004.08.010.
  • G. Donskoy, “How water vapor and carbon dioxide additives affect oxygen gasification of pulverized coal fuel,” Bulletin of the South Ural State University series “Power Engineering,” vol. 21, no. 1, pp. 21–28, 2021, doi: 10.14529/power210102.
  • Y. Oki et al., “Development of High-efficiency Oxy-fuel IGCC System,” Energy Procedia, vol. 63, pp. 471–475, 2014, doi: 10.1016/j.egypro.2014.11.050.
  • H. Ishii, H. Tada, R. Takashima, J. Yamamoto, and K. Yokohama, “Verification Test Results of 50 t/d O2/CO2-blown Two-stage Entrained Flow Coal Gasifier and Development into Commercial Scale Gasifier,” Journal of the Japan Institute of Energy, vol. 98, no. 7, pp. 165–170, Jul. 2019, doi: 10.3775/jie.98.165.
  • V. Tola and A. Pettinau, “Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies,” Applied Energy, vol. 113, pp. 1461–1474, Jan. 2014, doi: 10.1016/j.apenergy.2013.09.007.
  • G. Donskoy, V. A. Shamansky, A. N. Kozlov, and D. A. Svishchev, “Coal gasification process simulations using combined kinetic-thermodynamic models in one-dimensional approximation,” Combustion Theory and Modelling, vol. 21, no. 3, pp. 529–559, May 2017, doi: 10.1080/13647830.2016.1259505.
  • R. F. D. Monaghan and A. F. Ghoniem, “A dynamic reduced order model for simulating entrained flow gasifiers,” Fuel, vol. 91, no. 1, pp. 61–80, Jan. 2012, doi: 10.1016/j.fuel.2011.07.015.
  • A. V. Messerle, V. E. Messerle, and A. B. Ustimenko, “Plasma thermochemical preparation for combustion of pulverized coal,” High Temperature, vol. 55, no. 3, pp. 352–360, May 2017, doi: 10.1134/S0018151X17030142.
  • X. Kong, W. Zhong, W. Du, and F. Qian, “Three Stage Equilibrium Model for Coal Gasification in Entrained Flow Gasifiers Based on Aspen Plus,” Chinese Journal of Chemical Engineering, vol. 21, no. 1, pp. 79–84, Jan. 2013, doi: 10.1016/S1004-9541(13)60444-9.
  • M. Pérez-Fortes, A. D. Bojarski, E. Velo, J. M. Nougués, and L. Puigjaner, “Conceptual model and evaluation of generated power and emissions in an IGCC plant,” Energy, vol. 34, no. 10, pp. 1721–1732, Oct. 2009, doi: 10.1016/j.energy.2009.05.012.
  • Kim, H. Oh, S. Lee, and Y.-S. Yoon, “Advanced One-Dimensional Entrained-Flow Gasifier Model Considering Melting Phenomenon of Ash,” Energies, vol. 11, no. 4, Apr. 2018, Art. no. 1015, doi: 10.3390/en11041015.
  • M. H. Sahraei, M. A. Duchesne, R. W. Hughes, and L. A. Ricardez-Sandoval, “Dynamic reduced order modeling of an entrained-flow slagging gasifier using a new recirculation ratio correlation,” Fuel, vol. 196, pp. 520–531, May 2017, doi: 10.1016/j.fuel.2017.01.079.
  • H. Wu, X. Chen, M. Aziz, Z. Huang, and Y. Zhang, “Exergy destruction analysis of coal gasification with O2-H2O combined with chemical kinetics,” Fuel, vol. 384, p. 134014, Mar. 2025, doi: 10.1016/j.fuel.2024.134014.
  • E. Biagini, “Study of the equilibrium of air-blown gasification of biomass to coal evolution fuels,” Energy Conversion and Management, vol. 128, pp. 120–133, Nov. 2016, doi: 10.1016/j.enconman.2016.09.068.
  • G. Donskoy, “Simulation and Optimization of Entrained-Flow Air-Steam Gasification of Brown Coals,” Energy Systems Research, vol. 5, no. 1, pp. 31–37, 2022, doi: 10.38028/esr.2022.01.0003.
  • V. S. Vdovenko, M. I. Martynova, N. V. Novitskiy, and G. D. Yushina, Energy fuels of USSR (coals, oil shales, peats, oils, natural gas). Moscow: Energoatomizdat, 1991.
  • G. Donskoy, “Analysis of efficiency of pulverized coal gasification in high-temperature flow of O2/N2 and O2/CO2 using mathematical modeling,” Bulletin of the Tomsk Polytechnic University Geo Assets Engineering, vol. 332, no. 11, pp. 127–140, Nov. 2021, doi: 10.18799/24131830/2021/11/2575.
  • C. Yin and J. Yan, “Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling,” Applied Energy, vol. 162, pp. 742–762, Jan. 2016, doi: 10.1016/j.apenergy.2015.10.149.
  • Deng, Y. Zhao, S. Sun, D. Feng, and W. Zhang, “Review on thermal conversion characteristics of coal in O2/H2O atmosphere,” Fuel Processing Technology, vol. 232, Jul. 2022, Art. no. 107266, doi: 10.1016/j.fuproc.2022.107266.
  • H. Ishii, T. Hayashi, H. Tada, K. Yokohama, R. Takashima, and J. Hayashi, “Critical assessment of oxy-fuel integrated coal gasification combined cycles,” Applied Energy, vol. 233–234, pp. 156–169, Jan. 2019, doi: 10.1016/j.apenergy.2018.10.021.
  • A. F. Ryzhkov, S. I. Gordeev, and T. F. Bogatova, “Selecting the process arrangement for preparing the gas turbine working fluid for an integrated gasification combined-cycle power plant,” Thermal Engineering, vol. 62, no. 11, pp. 796–801, Nov. 2015, doi: 10.1134/S0040601515110075.
  • D. Svishchev, “Thermodynamic Analysis of Air-Blown Staged Gasification of Coal in a Flow,” Energy Systems Research, no. 3(15), pp. 38–43, Nov. 2021, doi: 10.38028/esr.2021.03.0004.
  • C. Kunze, K. Riedl, and H. Spliethoff, “Structured exergy analysis of an integrated gasification combined cycle (IGCC) plant with carbon capture,” Energy, vol. 36, no. 3, pp. 1480–1487, Mar. 2011, doi: 10.1016/j.energy.2011.01.020.
  • A. Wahid, R. Mustafida, and A. Husnil, “Exergy Analysis of Coal-Fired Power Plants in Ultra Supercritical Technology versus Integrated Gasification Combined Cycle,” Evergreen, vol. 7, no. 1, pp. 32–42, Mar. 2020, doi: 10.5109/2740939.
  • Giuffrida, M. C. Romano, and G. Lozza, “Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up,” Energy, vol. 53, pp. 221–229, May 2013, doi: 10.1016/j.energy.2013.02.007.
  • Y. A. Kagramanov, V. G. Tuponogov, A. F. Ryzhkov, and A. D. Nikitin, “Multiple Gas–Solid Reactions in a Porous Sorbent Applied to Warm Gas Desulfurization,” Industrial & Engineering Chemistry Research, vol. 59, no. 29, pp. 12943–12954, Jul. 2020, doi: 10.1021/acs.iecr.0c01389.
There are 57 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Igor Donskoy 0000-0003-2309-8461

Project Number FWEU-2021-0005
Early Pub Date April 18, 2025
Publication Date June 1, 2025
Submission Date February 19, 2025
Acceptance Date April 10, 2025
Published in Issue Year 2025 Volume: 28 Issue: 2

Cite

APA Donskoy, I. (2025). Exergetic Efficiency of Coal Gasification Using High-Temperature Mixtures of O2/N2 and O2/CO2. International Journal of Thermodynamics, 28(2), 51-58. https://doi.org/10.5541/ijot.1642883
AMA Donskoy I. Exergetic Efficiency of Coal Gasification Using High-Temperature Mixtures of O2/N2 and O2/CO2. International Journal of Thermodynamics. June 2025;28(2):51-58. doi:10.5541/ijot.1642883
Chicago Donskoy, Igor. “Exergetic Efficiency of Coal Gasification Using High-Temperature Mixtures of O2/N2 and O2/CO2”. International Journal of Thermodynamics 28, no. 2 (June 2025): 51-58. https://doi.org/10.5541/ijot.1642883.
EndNote Donskoy I (June 1, 2025) Exergetic Efficiency of Coal Gasification Using High-Temperature Mixtures of O2/N2 and O2/CO2. International Journal of Thermodynamics 28 2 51–58.
IEEE I. Donskoy, “Exergetic Efficiency of Coal Gasification Using High-Temperature Mixtures of O2/N2 and O2/CO2”, International Journal of Thermodynamics, vol. 28, no. 2, pp. 51–58, 2025, doi: 10.5541/ijot.1642883.
ISNAD Donskoy, Igor. “Exergetic Efficiency of Coal Gasification Using High-Temperature Mixtures of O2/N2 and O2/CO2”. International Journal of Thermodynamics 28/2 (June 2025), 51-58. https://doi.org/10.5541/ijot.1642883.
JAMA Donskoy I. Exergetic Efficiency of Coal Gasification Using High-Temperature Mixtures of O2/N2 and O2/CO2. International Journal of Thermodynamics. 2025;28:51–58.
MLA Donskoy, Igor. “Exergetic Efficiency of Coal Gasification Using High-Temperature Mixtures of O2/N2 and O2/CO2”. International Journal of Thermodynamics, vol. 28, no. 2, 2025, pp. 51-58, doi:10.5541/ijot.1642883.
Vancouver Donskoy I. Exergetic Efficiency of Coal Gasification Using High-Temperature Mixtures of O2/N2 and O2/CO2. International Journal of Thermodynamics. 2025;28(2):51-8.