Research Article
BibTex RIS Cite

Year 2025, Volume: 28 Issue: 3, 170 - 175, 01.09.2025
https://doi.org/10.5541/ijot.1544038

Abstract

Project Number

-

References

  • United Nations Environment Programme, “The Montreal Protocol on substances that deplete the ozone layer,” 2016. Accessed: Jun. 15, 2024. [Online]. Available: https://ozone.unep.org/system/files/documents/MOP-28-12E.pdf.
  • D. Sánchez, A. Andreu-Nácher, D. Calleja-Anta, R. Llopis and R. Cabello, “Energy impact evaluation of different low-GWP alternatives to replace R134a in a beverage cooler. Experimental analysis and optimization for the pure refrigerants R152a, R1234yf, R290, R1270, R600a and R744,” Energy Convers. Manag., vol. 256, Mar. 2022, Art. no. 115388, doi: 10.1016/j.enconman.2022.115388.
  • Directive 2006/40/EC of the European Parliament and the Council of 17 May 2006 relating to emissions from air-conditioning systems in motor vehicles and amending Council Directive 70/156/EEC, The European Parliament and the Council. [Online]. Available: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:161:0012:0018:en:PDF.
  • J. M. Calm, “The next generation of refrigerants – Historical review, considerations, and outlook,” Int. J. of Refrig., vol. 31, pp. 1123-1133, Nov. 2008, doi: 10.1016/j.ijrefrig.2008.01.013.
  • M. O. McLinden and M. L. Huber, “(R)Evolution of Refrigerants,” J. Chem. Eng. Data, vol. 65, no. 9, pp. 4176-4193, Jul. 2020, doi: 10.1021/acs.jced.0c00338.
  • J. M. Corberán, J. Segurado, D. Colbourne and J. Gonzálvez, “Review of standards for the use of hydrocarbon refrigerants in A/C, heat pump and refrigeration equipment,” Int. J. Refrig., vol. 31, no. 4, pp. 748-756, Jun. 2008, doi: 10.1016/j.ijrefrig.2007.12.007.
  • M. O. McLinden, J. S. Brown, R. Brignoli, A. F. Kazakov and P. A. Domanski, “Limited options for low-global-warming-potential refrigerants,” Nature Commun., vol. 8, no. 1, Feb. 2017, Art. no. 14476, doi: 10.1038/ncomms14476.
  • S. Ali Kadhim, “Thermodynamic and Environmental Analysis of Hydrocarbon Refrigerants as Alternatives to R134a in Domestic Refrigerator,” Int. J. Thermodyn., vol. 27, no. 2, pp. 10-18, Jun. 2024, doi: 10.5541/ijot.1368985.
  • B. O. Bolaji, “Theoretical assessment of new low global warming potential refrigerant mixtures as eco-friendly alternatives in domestic refrigeration systems,” Sci. Afr., vol. 10, Nov. 2020, Art. no. e00632, doi: 10.1016/j.sciaf.2020.e00632.
  • Designation and Safety Classification of Refrigerants, ANSI/ASHRAE Standard 34-2022, ASHRAE, Georgia, USA, 2022.
  • Z. Yang, B. Feng, H. Ma, L. Zhang, C. Duan, B. Liu, Y. Zhang, S. Chen and Z. Yang, “Analysis of lower GWP and flammable alternative refrigerants,” Int. J. of Refrig., vol. 126, pp. 12-22, Jun. 2021, doi: 10.1016/j.ijrefrig.2021.01.022.
  • R. B. Barta, E. A. Groll and D. Ziviani, “Review of stationary and transport CO2 refrigeration and air conditioning technologies,” Appl. Therm. Eng., vol. 185, Feb. 2021, Art. no. 116422, doi: 10.1016/j.applthermaleng.2020.116422.
  • S. C. Yelishala, K. Kannaiyan, R. Sadr, Z. Wang, Y. A. Levendis and H. Metghalchi, “Performance maximization by temperature glide matching in energy exchangers of cooling systems operating with natural hydrocarbon/CO2 refrigerants,” Int. J. of Refrig., vol. 119, pp. 294-304, Nov. 2020, doi: 10.1016/j.ijrefrig.2020.08.006.
  • S. C. Yelishala, K. Kannaiyan, Z. Wang, H. Metghalchi, Y. A. Levendis and R. Sadr, “Thermodynamic Study on Blends of Hydrocarbons and Carbon Dioxide as Zeotropic Refrigerants,” J. Energy Resour. Technol., vol. 142, no. 8, Aug. 2020, Art. no. 082304-1-10, doi: 10.1115/1.4045930.
  • D. Sánchez, F. Vidan-Falomir, L. Nebot-Andrés, R. Llopis and R. Cabello, “Alternative blends of CO2 for transcritical refrigeration systems. Experimental approach and energy analysis,” Energy Convers. Manag., vol. 279, Mar. 2023, Art. no. 116690, doi: 10.1016/j.enconman.2023.116690.
  • R. Yıldırım, A. Şencan Şahin and E. Dikmen, “Comparative Energetic, Exergetic, Environmental and Enviroeconomic Analysis of Vapour Compression Refrigeration Systems Using R515B as Substitute for R134a,” Int. J. Thermodyn., vol. 25, no. 1, pp. 125-133, Mar. 2020, doi:10.5541/ijot.1011622.
  • M. Direk, M. S. Mert, F. Yüksel and A. Keleşoğlu, “Exergetic Investigation of a R1234yf Automotive Air Conditioning System with Internal Heat Exchanger,” Int. J. Thermodyn., vol. 21, no. 12, pp. 103-109, May 2018, doi: 10.5541/ijot.357232.
  • Z. Zhao, J. Luo, Q. Song, K. Yang, Q. Wang and G. Chen, “Theoretical investigation and comparative analysis of the Linde–Hampson refrigeration system using eco-friendly zeotropic refrigerants based on R744/R1234ze(Z) for freezing process applications,” Int. J. of Refrig., vol. 145, pp. 30-39, Jan. 2023, doi: 10.1016/j.ijrefrig.2022.09.036.
  • R. A. Otón-Martínez, F. Illán-Gómez, J. R. García-Cascales, F. Velasco and M. Reda Haddouche, “Impact of an internal heat exchanger on a transcritical CO2 heat pump under optimal pressure conditions: Optimal-pressure performance of CO2 heat pump with IHX,” Appl. Therm. Eng., vol. 215, Art. no. 118991, Oct. 2022, doi: 10.1016/j.applthermaleng.2022.118991.
  • M. L. Huber, E. W. Lemmon, I.H. Bell, M. O. McLinden, “The NIST REFPROP Database for Highly Accurate Properties of Industrially Important Fluids,” Industrial & Engineering Chemistry Research, vol.61, no. 42, pp. 15449-15472, Jun. 2022, doi: 10.1021/acs.iecr.2c01427.
  • Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis. Cambridge, UK: Cambridge University Press, 2007.
  • Intergovernmental Panel on Climate Change, Climate Change 2021: The Physical Science Basis, Cambridge, UK: Cambridge University Press, 2021.
  • S. Kondo, K. Takizawa, A. Takahashi and K. Tokuhashi, “Extended Le Chatelier's formula for carbon dioxide dilution effect on flammability limits,” J. Hazard. Mater., vol. 138, pp. 1-8, Nov. 2006, doi: 10.1016/j.jhazmat.2006.05.035.

Performance Evaluation of Vapor Compression Refrigeration System using CO2/Propane and CO2/Propylene Mixtures

Year 2025, Volume: 28 Issue: 3, 170 - 175, 01.09.2025
https://doi.org/10.5541/ijot.1544038

Abstract

The search for low GWP refrigerants has become a critical area of research in response to climate change. Natural refrigerants such as carbon dioxide (R744), propane (R290), and propylene (R1270) are particularly promising due to their low GWP. This study theoretically investigates the use of zeotropic mixtures of R744+R290 and R744+R1270 as refrigerants in a vapor compression refrigeration cycle with an internal heat exchanger. A performance analysis of these mixtures was conducted, and the maximum COP and VRC values were investigated according to the compressor discharge pressure (PH). The effects of ambient air temperature and the mole fraction of R744 on cycle performance were also examined. The results indicate that the R744+R1270 mixture achieves COP and VRC values, on average, 16.5% and 12.2% higher, respectively, than those of the R744+R290 mixture. Furthermore, the optimal compressor discharge pressure for R744+R1270 is, on average, 240 kPa lower than that for R744+R290. When the mole fraction of R744 exceeded 0.6, the lower flammability limit of the mixture increased exponentially. For mole fractions of R744 above 0.36, the maximum COP of the R744+R290 mixture was lower than that of pure R744. An increase in ambient air temperature resulted in a linear rise in the optimal compressor discharge pressure, accompanied by a reduction in both the maximum COP and VRC.

Ethical Statement

-

Supporting Institution

There is no support or sponsorship for this study

Project Number

-

References

  • United Nations Environment Programme, “The Montreal Protocol on substances that deplete the ozone layer,” 2016. Accessed: Jun. 15, 2024. [Online]. Available: https://ozone.unep.org/system/files/documents/MOP-28-12E.pdf.
  • D. Sánchez, A. Andreu-Nácher, D. Calleja-Anta, R. Llopis and R. Cabello, “Energy impact evaluation of different low-GWP alternatives to replace R134a in a beverage cooler. Experimental analysis and optimization for the pure refrigerants R152a, R1234yf, R290, R1270, R600a and R744,” Energy Convers. Manag., vol. 256, Mar. 2022, Art. no. 115388, doi: 10.1016/j.enconman.2022.115388.
  • Directive 2006/40/EC of the European Parliament and the Council of 17 May 2006 relating to emissions from air-conditioning systems in motor vehicles and amending Council Directive 70/156/EEC, The European Parliament and the Council. [Online]. Available: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:161:0012:0018:en:PDF.
  • J. M. Calm, “The next generation of refrigerants – Historical review, considerations, and outlook,” Int. J. of Refrig., vol. 31, pp. 1123-1133, Nov. 2008, doi: 10.1016/j.ijrefrig.2008.01.013.
  • M. O. McLinden and M. L. Huber, “(R)Evolution of Refrigerants,” J. Chem. Eng. Data, vol. 65, no. 9, pp. 4176-4193, Jul. 2020, doi: 10.1021/acs.jced.0c00338.
  • J. M. Corberán, J. Segurado, D. Colbourne and J. Gonzálvez, “Review of standards for the use of hydrocarbon refrigerants in A/C, heat pump and refrigeration equipment,” Int. J. Refrig., vol. 31, no. 4, pp. 748-756, Jun. 2008, doi: 10.1016/j.ijrefrig.2007.12.007.
  • M. O. McLinden, J. S. Brown, R. Brignoli, A. F. Kazakov and P. A. Domanski, “Limited options for low-global-warming-potential refrigerants,” Nature Commun., vol. 8, no. 1, Feb. 2017, Art. no. 14476, doi: 10.1038/ncomms14476.
  • S. Ali Kadhim, “Thermodynamic and Environmental Analysis of Hydrocarbon Refrigerants as Alternatives to R134a in Domestic Refrigerator,” Int. J. Thermodyn., vol. 27, no. 2, pp. 10-18, Jun. 2024, doi: 10.5541/ijot.1368985.
  • B. O. Bolaji, “Theoretical assessment of new low global warming potential refrigerant mixtures as eco-friendly alternatives in domestic refrigeration systems,” Sci. Afr., vol. 10, Nov. 2020, Art. no. e00632, doi: 10.1016/j.sciaf.2020.e00632.
  • Designation and Safety Classification of Refrigerants, ANSI/ASHRAE Standard 34-2022, ASHRAE, Georgia, USA, 2022.
  • Z. Yang, B. Feng, H. Ma, L. Zhang, C. Duan, B. Liu, Y. Zhang, S. Chen and Z. Yang, “Analysis of lower GWP and flammable alternative refrigerants,” Int. J. of Refrig., vol. 126, pp. 12-22, Jun. 2021, doi: 10.1016/j.ijrefrig.2021.01.022.
  • R. B. Barta, E. A. Groll and D. Ziviani, “Review of stationary and transport CO2 refrigeration and air conditioning technologies,” Appl. Therm. Eng., vol. 185, Feb. 2021, Art. no. 116422, doi: 10.1016/j.applthermaleng.2020.116422.
  • S. C. Yelishala, K. Kannaiyan, R. Sadr, Z. Wang, Y. A. Levendis and H. Metghalchi, “Performance maximization by temperature glide matching in energy exchangers of cooling systems operating with natural hydrocarbon/CO2 refrigerants,” Int. J. of Refrig., vol. 119, pp. 294-304, Nov. 2020, doi: 10.1016/j.ijrefrig.2020.08.006.
  • S. C. Yelishala, K. Kannaiyan, Z. Wang, H. Metghalchi, Y. A. Levendis and R. Sadr, “Thermodynamic Study on Blends of Hydrocarbons and Carbon Dioxide as Zeotropic Refrigerants,” J. Energy Resour. Technol., vol. 142, no. 8, Aug. 2020, Art. no. 082304-1-10, doi: 10.1115/1.4045930.
  • D. Sánchez, F. Vidan-Falomir, L. Nebot-Andrés, R. Llopis and R. Cabello, “Alternative blends of CO2 for transcritical refrigeration systems. Experimental approach and energy analysis,” Energy Convers. Manag., vol. 279, Mar. 2023, Art. no. 116690, doi: 10.1016/j.enconman.2023.116690.
  • R. Yıldırım, A. Şencan Şahin and E. Dikmen, “Comparative Energetic, Exergetic, Environmental and Enviroeconomic Analysis of Vapour Compression Refrigeration Systems Using R515B as Substitute for R134a,” Int. J. Thermodyn., vol. 25, no. 1, pp. 125-133, Mar. 2020, doi:10.5541/ijot.1011622.
  • M. Direk, M. S. Mert, F. Yüksel and A. Keleşoğlu, “Exergetic Investigation of a R1234yf Automotive Air Conditioning System with Internal Heat Exchanger,” Int. J. Thermodyn., vol. 21, no. 12, pp. 103-109, May 2018, doi: 10.5541/ijot.357232.
  • Z. Zhao, J. Luo, Q. Song, K. Yang, Q. Wang and G. Chen, “Theoretical investigation and comparative analysis of the Linde–Hampson refrigeration system using eco-friendly zeotropic refrigerants based on R744/R1234ze(Z) for freezing process applications,” Int. J. of Refrig., vol. 145, pp. 30-39, Jan. 2023, doi: 10.1016/j.ijrefrig.2022.09.036.
  • R. A. Otón-Martínez, F. Illán-Gómez, J. R. García-Cascales, F. Velasco and M. Reda Haddouche, “Impact of an internal heat exchanger on a transcritical CO2 heat pump under optimal pressure conditions: Optimal-pressure performance of CO2 heat pump with IHX,” Appl. Therm. Eng., vol. 215, Art. no. 118991, Oct. 2022, doi: 10.1016/j.applthermaleng.2022.118991.
  • M. L. Huber, E. W. Lemmon, I.H. Bell, M. O. McLinden, “The NIST REFPROP Database for Highly Accurate Properties of Industrially Important Fluids,” Industrial & Engineering Chemistry Research, vol.61, no. 42, pp. 15449-15472, Jun. 2022, doi: 10.1021/acs.iecr.2c01427.
  • Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis. Cambridge, UK: Cambridge University Press, 2007.
  • Intergovernmental Panel on Climate Change, Climate Change 2021: The Physical Science Basis, Cambridge, UK: Cambridge University Press, 2021.
  • S. Kondo, K. Takizawa, A. Takahashi and K. Tokuhashi, “Extended Le Chatelier's formula for carbon dioxide dilution effect on flammability limits,” J. Hazard. Mater., vol. 138, pp. 1-8, Nov. 2006, doi: 10.1016/j.jhazmat.2006.05.035.
There are 23 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Sompop Jarungthammachote 0000-0002-6933-061X

Project Number -
Early Pub Date July 21, 2025
Publication Date September 1, 2025
Submission Date September 5, 2024
Acceptance Date July 15, 2025
Published in Issue Year 2025 Volume: 28 Issue: 3

Cite

APA Jarungthammachote, S. (2025). Performance Evaluation of Vapor Compression Refrigeration System using CO2/Propane and CO2/Propylene Mixtures. International Journal of Thermodynamics, 28(3), 170-175. https://doi.org/10.5541/ijot.1544038
AMA Jarungthammachote S. Performance Evaluation of Vapor Compression Refrigeration System using CO2/Propane and CO2/Propylene Mixtures. International Journal of Thermodynamics. September 2025;28(3):170-175. doi:10.5541/ijot.1544038
Chicago Jarungthammachote, Sompop. “Performance Evaluation of Vapor Compression Refrigeration System Using CO2 Propane and CO2 Propylene Mixtures”. International Journal of Thermodynamics 28, no. 3 (September 2025): 170-75. https://doi.org/10.5541/ijot.1544038.
EndNote Jarungthammachote S (September 1, 2025) Performance Evaluation of Vapor Compression Refrigeration System using CO2/Propane and CO2/Propylene Mixtures. International Journal of Thermodynamics 28 3 170–175.
IEEE S. Jarungthammachote, “Performance Evaluation of Vapor Compression Refrigeration System using CO2/Propane and CO2/Propylene Mixtures”, International Journal of Thermodynamics, vol. 28, no. 3, pp. 170–175, 2025, doi: 10.5541/ijot.1544038.
ISNAD Jarungthammachote, Sompop. “Performance Evaluation of Vapor Compression Refrigeration System Using CO2 Propane and CO2 Propylene Mixtures”. International Journal of Thermodynamics 28/3 (September2025), 170-175. https://doi.org/10.5541/ijot.1544038.
JAMA Jarungthammachote S. Performance Evaluation of Vapor Compression Refrigeration System using CO2/Propane and CO2/Propylene Mixtures. International Journal of Thermodynamics. 2025;28:170–175.
MLA Jarungthammachote, Sompop. “Performance Evaluation of Vapor Compression Refrigeration System Using CO2 Propane and CO2 Propylene Mixtures”. International Journal of Thermodynamics, vol. 28, no. 3, 2025, pp. 170-5, doi:10.5541/ijot.1544038.
Vancouver Jarungthammachote S. Performance Evaluation of Vapor Compression Refrigeration System using CO2/Propane and CO2/Propylene Mixtures. International Journal of Thermodynamics. 2025;28(3):170-5.