Research Article
BibTex RIS Cite

Parametric Analysis of Vapor Compression Refrigeration Cycle Performances Using Nanoparticle-Enhanced Refrigerants

Year 2025, Volume: 28 Issue: 3, 152 - 161, 01.09.2025
https://doi.org/10.5541/ijot.1650628

Abstract

This work presents a techno-economic investigation of a vapor compression refrigeration system enhanced with Al2O3 nanoparticles. Two base refrigerants, R134a and R1234yf, along with their corresponding nanorefrigerants, were examined with nanoparticle mass fractions ranging between 0.1% and 0.5%. A MATLAB code linked with the REFPROP database was developed and employed to assess the influence of incorporating nanoparticles on the cycle performances. In addition to providing a comparative assessment between pure and nanoparticle-enhanced refrigerants, the study proposes an integrated thermodynamic and economic optimization approach for nanorefrigerated systems. Results showed that introducing 0.1% Al2O3 into R134a increased the coefficient of performance by up to 2.1% (from 4.28 to 4.37), whereas for R1234yf, the COP rose by 1.7% (from 4.08 to 4.15). Increasing the nanoparticle mass fraction to 0.5% resulted in total COP improvements of up to 4% for both refrigerants. Compressor discharge temperature decreased by approximately 0.7 K for R134a and 0.45 K for R1234yf at 0.1% nanoparticle concentration, contributing to a reduction in compressor power consumption. Economically, the compressor represents approximately 67.6% of the total system investment cost, followed by the condenser at 18.4%, and the evaporator at 13.9%. Moreover, the incorporation of nanoparticles reduced the thermal load on the condenser by about 2%, enhancing overall system energy efficiency. Notably, R1234yf + Al2O3 offers both a low global warming potential (GWP < 1) and competitive performance compared to R134a (GWP ≈ 1300), presenting a promising environmentally friendly alternative for next-generation refrigeration systems.

References

  • B. M. Ali and M. Akkaş, “The Green Cooling Factor: Eco-Innovative Heating, Ventilation, and Air Conditioning Solutions in Building Design,” Appl. Sci., vol. 14, no. 1, 2024, doi: 10.3390/app14010195.
  • X. She et al., “Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review,” Applied Energy, vol. 232, pp. 157–186, Dec. 2018, doi: 10.1016/j.apenergy.2018.09.067.
  • S. Kulkarni, S. Chavali, and S. Dikshit, “A review on analysis of Vapour Compression Refrigeration System (VCRS) for its performance using different ecofriendly refrigerants and nanofluids,” Materials Today: Proceedings, vol. 72, pp. 878–883, 2023, doi: 10.1016/j.matpr.2022.09.085.
  • S. Li and J. Lu, “A Theoretical Comparative Study of Vapor-Compression Refrigeration Cycle using Al2O3 Nanoparticle with Low-GWP Refrigerants,” Entropy, vol. 24, no. 12, p. 1820, Dec. 2022, doi: 10.3390/e24121820.
  • T. O. Babarinde, S. A. Akinlabi, and D. M. Madyira, “Enhancing the Performance of Vapour Compression Refrigeration System using Nano Refrigerants: A review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 413, no. 1, 2018, doi: 10.1088/1757-899X/413/1/012068.
  • L. Kundan and K. Singh, “Improved performance of a nanorefrigerant-based vapor compression refrigeration system: A new alternative,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 235, no. 1, pp. 106–123, Feb. 2021, doi: 10.1177/0957650920904553.
  • M. Aktas, A. S. Dalkilic, A. Celen, A. Cebi, O. Mahian, and S. Wongwises, “A Theoretical Comparative Study on Nanorefrigerant Performance in a Single-Stage Vapor-Compression Refrigeration Cycle,” Adv. Mech. Eng., vol. 7, no. 1, 2015, doi: 10.1155/2014/138725.
  • U. S. Prasad, R. S. Mishra, and R. K. Das, “Study of vapor compression refrigeration system with suspended nanoparticles in the low GWP refrigerant,” Environ Sci Pollut Res, vol. 31, no. 1, pp. 1–26, Nov. 2023, doi: 10.1007/s11356-023-30596-4.
  • H. A. Hussain and A. M. Langde, “An Analysis of the Efficient Use of Nanoparticles in Air Conditioners Based on Vapour Compression Refrigeration Systems,” energy environ focus, vol. 7, no. 2, pp. 137–143, Aug. 2023, doi: 10.1166/eef.2023.1277.
  • V. Shewale, A. Kapse, and V. Sonawane, “Experimental analysis of vapour compression refrigeration system using nano lubricant with refrigerant R-134a,” Therm sci, vol. 28, no. 5 Part A, pp. 3687–3697, 2024, doi: 10.2298/TSCI231122086S.
  • M. Karthick, S. K. Karuppiah, and K. Varatharajan, “Performance investigation and exergy analysis of vapor compression refrigeration system operated using r600a refrigerant and nanoadditive compressor oil,” Therm. Sci., vol. 24, no. 5, pp. 2977–2989, 2020, doi: 10.2298/TSCI180527024M.
  • M. A. Rahman, S. M. M. Hasnain, S. Pandey, A. Tapalova, N. Akylbekov, and R. Zairov, “Review on Nanofluids: Preparation, Properties, Stability, and Thermal Performance Augmentation in Heat Transfer Applications,” ACS Omega, vol. 9, no. 30, pp. 32328–32349, Jul. 2024, doi: 10.1021/acsomega.4c03279.
  • P. Deepika and Bachelor of Engineering, Dept of Mechanical Engineering Angel College of Engineering and Technology, Tirupur, Tamil Nadu, India, “A Literature Review on the Effect of Nanoparticles in Refrigeration System,” IJTSRD, vol. Volume-2, no. Issue-3, pp. 1282–1288, Apr. 2018, doi: 10.31142/ijtsrd11312.
  • J. Vamshi et al., “A review on the utilization of nanoparticles in the refrigeration system as nano-refrigerant and nano-lubricant,” Materials Today: Proceedings, vol. 50, pp. 782–788, 2022, doi: 10.1016/j.matpr.2021.05.538.
  • A. M. Ashour, S. A. Kadhim, H. M. Jaffar, O. A. A.-M. Ibrahim, A. Mota-Babiloni, and A. Bouabidi, “Experimental investigation of the performance of vapor compression cycle in a water cooler system with low-GWP alternative refrigerants,” Therm. Sci. Eng. Prog., vol. 62, Jun. 2025, doi: 10.1016/J.TSEP.2025.103611.
  • E. W. Lemmon, M. L. Huber, and M. O. Mclinden, “REFPROP 9.1,” NIST Stand. Ref. database, 2013.
  • A. Prakash, S. Satsangi, S. Mittal, B. Nigam, P. K. Mahto, and B. P. Swain, “Investigation on Al2 O3 Nanoparticles for Nanofluid Applications- A Review,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 377, p. 012175, Jun. 2018, doi: 10.1088/1757-899X/377/1/012175
  • J. R. Barbosa, G. B. Ribeiro, and P. A. De Oliveira, “A State-of-the-Art Review of Compact Vapor Compression Refrigeration Systems and Their Applications,” Heat Transfer Engineering, vol. 33, no. 4–5, pp. 356–374, Mar. 2012, doi: 10.1080/01457632.2012.613275.
  • V. Jain, S. S. Kachhwaha, and G. Sachdeva, “Thermodynamic performance analysis of a vapor compression–absorption cascaded refrigeration system,” Energy Conversion and Management, vol. 75, pp. 685–700, Nov. 2013, doi: 10.1016/j.enconman.2013.08.024.
  • K. Apmann, R. Fulmer, A. Soto, and S. Vafaei, “Thermal Conductivity and Viscosity: Review and Optimization of Effects of Nanoparticles,” Materials, vol. 14, no. 5, p. 1291, Mar. 2021, doi: 10.3390/ma14051291.
  • D. Sánchez, A. Andreu-Nácher, D. Calleja-Anta, R. Llopis, and R. Cabello, “Energy impact evaluation of different low-GWP alternatives to replace R134a in a beverage cooler. Experimental analysis and optimization for the pure refrigerants R152a, R1234yf, R290, R1270, R600a and R744,” Energy Conversion and Management, vol. 256, p. 115388, Mar. 2022, doi: 10.1016/j.enconman.2022.115388.
  • G. Kosmadakis and P. Neofytou, “Investigating the performance and cost effects of nanorefrigerants in a low-temperature ORC unit for waste heat recovery,” Energy, vol. 204, Aug. 2020, doi: 10.1016/j.energy.2020.117966.
  • C. Vira, A. Aziz Hairuddin, and N. Mazlan, “Promising use nanoparticles in the base fluid of a system (preparation, stability test and critical analysis): A review,” Materials Today: Proceedings, vol. 66, pp. 3135–3139, 2022, doi: 10.1016/j.matpr.2022.07.463.
  • H. C. Brinkman, “The Viscosity of Concentrated Suspensions and Solutions,” The Journal of Chemical Physics, vol. 20, no. 4, pp. 571–571, Apr. 1952, doi: 10.1063/1.1700493.
  • J. A. Bocanegra, A. Marchitto, and M. Misale, “Nanofluids in solar collectors: a comprehensive review focused on its sedimentation,” Clean Techn Environ Policy, vol. 27, no. 4, pp. 1753–1784, Apr. 2025, doi: 10.1007/s10098-024-02964-2.
  • G. Kosmadakis and P. Neofytou, “Investigating the effect of nanorefrigerants on a heat pump performance and cost-effectiveness,” Thermal Science and Engineering Progress, vol. 13, Oct. 2019, doi: 10.1016/j.tsep.2019.100371.
  • E. Akhayere, V. Adebayo, M. Adedeji, M. Abid, D. Kavaz, and M. Dagbasi, “Investigating the effects of nanorefrigerants in a cascaded vapor compression refrigeration cycle,” Int J Energy Environ Eng, vol. 14, no. 4, pp. 601–612, Dec. 2023, doi: 10.1007/s40095-022-00537-x.
  • R. C. B. Debangsu Bhattacharyya, Richard Turton, Joseph A. Shaeiwitz, Wallace B. Whiting, Analysis, Synthesis and Design of Chemical Processes, 5th editio. Prentice Hall, 2018.
  • X. Zhang, M. Cao, X. Yang, H. Guo, and J. Wang, “Economic Analysis of Organic Rankine Cycle Using R123 and R245fa as Working Fluids and a Demonstration Project Report,” Applied Sciences, vol. 9, no. 2, p. 288, Jan. 2019, doi: 10.3390/app9020288.
  • Z. Lu, Y. Yao, G. Liu, W. Ma, and Y. Gong, “Thermodynamic and Economic Analysis of a High Temperature Cascade Heat Pump System for Steam Generation,” Processes, vol. 10, no. 9, 2022, doi: 10.3390/pr10091862.
  • Z. Guo-Yan, W. En, and T. Shan-Tung, “Techno-economic study on compact heat exchangers,” Int. J. Energy Res., vol. 32, no. 12, pp. 1119–1127, Oct. 2008, doi: 10.1002/er.1449.
  • I. Dincer, M. A. Rosen, and P. Ahmadi, Optimization of Energy Systems, 1st ed. Wiley, 2017. doi: 10.1002/9781118894484.
  • C. Aktemur and İ. Tekin Öztürk, “Thermodynamic performance enhancement of booster assisted ejector expansion refrigeration systems with R1270/CuO nano-refrigerant,” Energy Conversion and Management, vol. 253, p. 115191, Feb. 2022, doi: 10.1016/j.enconman.2021.115191.
There are 33 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Youcef Redjeb 0000-0001-5487-3702

Early Pub Date July 9, 2025
Publication Date September 1, 2025
Submission Date March 4, 2025
Acceptance Date July 6, 2025
Published in Issue Year 2025 Volume: 28 Issue: 3

Cite

APA Redjeb, Y. (2025). Parametric Analysis of Vapor Compression Refrigeration Cycle Performances Using Nanoparticle-Enhanced Refrigerants. International Journal of Thermodynamics, 28(3), 152-161. https://doi.org/10.5541/ijot.1650628
AMA Redjeb Y. Parametric Analysis of Vapor Compression Refrigeration Cycle Performances Using Nanoparticle-Enhanced Refrigerants. International Journal of Thermodynamics. September 2025;28(3):152-161. doi:10.5541/ijot.1650628
Chicago Redjeb, Youcef. “Parametric Analysis of Vapor Compression Refrigeration Cycle Performances Using Nanoparticle-Enhanced Refrigerants”. International Journal of Thermodynamics 28, no. 3 (September 2025): 152-61. https://doi.org/10.5541/ijot.1650628.
EndNote Redjeb Y (September 1, 2025) Parametric Analysis of Vapor Compression Refrigeration Cycle Performances Using Nanoparticle-Enhanced Refrigerants. International Journal of Thermodynamics 28 3 152–161.
IEEE Y. Redjeb, “Parametric Analysis of Vapor Compression Refrigeration Cycle Performances Using Nanoparticle-Enhanced Refrigerants”, International Journal of Thermodynamics, vol. 28, no. 3, pp. 152–161, 2025, doi: 10.5541/ijot.1650628.
ISNAD Redjeb, Youcef. “Parametric Analysis of Vapor Compression Refrigeration Cycle Performances Using Nanoparticle-Enhanced Refrigerants”. International Journal of Thermodynamics 28/3 (September2025), 152-161. https://doi.org/10.5541/ijot.1650628.
JAMA Redjeb Y. Parametric Analysis of Vapor Compression Refrigeration Cycle Performances Using Nanoparticle-Enhanced Refrigerants. International Journal of Thermodynamics. 2025;28:152–161.
MLA Redjeb, Youcef. “Parametric Analysis of Vapor Compression Refrigeration Cycle Performances Using Nanoparticle-Enhanced Refrigerants”. International Journal of Thermodynamics, vol. 28, no. 3, 2025, pp. 152-61, doi:10.5541/ijot.1650628.
Vancouver Redjeb Y. Parametric Analysis of Vapor Compression Refrigeration Cycle Performances Using Nanoparticle-Enhanced Refrigerants. International Journal of Thermodynamics. 2025;28(3):152-61.