Research Article
BibTex RIS Cite

Numerical and Experimental Performance Assessment of Helical Screw Inserts in a Horizontal Evaporator Tube

Year 2025, Volume: 28 Issue: 3, 129 - 141, 01.09.2025
https://doi.org/10.5541/ijot.1702193

Abstract

The influence of a helical screw insert on heat transfer and pressure drop in a circular tube under single-phase water flow conditions was investigated using both experimental techniques and CFD simulations with ANSYS Fluent. Experiments were conducted with water flowing through a horizontally oriented copper tube located in a pressurized tank, across seven different Reynolds numbers ranging from 24,000 to 100,000. A constant surface temperature was maintained via saturated pool boiling of R134a surrounding the tube. The internal flow characteristics were assessed based on measured pressure, temperature, and flow rate data, with convective heat transfer coefficients evaluated using the Wilson plot method. Simulations were conducted for both plain and insert-equipped tubes under identical conditions. The results for the helical insert case aligned well with experimental observations. Compared to literature correlations, heat transfer results were similar, though friction factor predictions were underestimated. A 19% improvement in heat transfer was observed with the insert, accompanied by a significant increase in pressure drop.

References

  • A. Bejan and A. D. Kraus, Heat transfer handbook. New York, NY, USA: J. Wiley, 2003.
  • R. M. Manglik and A. E. Bergles, “Swirl Flow Heat Transfer and Pressure Drop with Twisted-Tape Inserts,” Advances in Heat Transfer, vol. 36, pp. 183–266, 2003, doi: 10.1016/S0065-2717(02)80007-7.
  • L. Wang and B. Sunden, “Performance comparison of some tube inserts,” Int. Commun. Heat Mass Transfer, vol. 29, no. 1, pp. 45–56, 2002, doi: 10.1016/S0735-1933(01)00323-2.
  • P. Promvonge, “Thermal augmentation in circular tube with twisted tape and wire coil turbulators,” Energy Convers. Manag., vol. 49, no. 11, pp. 2949–2955, 2008, doi: 10.1016/j.enconman.2008.06.022.
  • P. Naphon, M. Nuchjapo, and J. Kurujareon, “Tube side heat transfer coefficient and friction factor characteristics of horizontal tubes with helical rib,” Energy Convers. Manag., vol. 47, pp. 3031–3044, 2006, doi: 10.1016/j.enconman.2006.03.023
  • S. Pethkool, S. Eiamsa-ard, S. Kwankaomeng, and P. Promvonge, “Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube,” Int. Commun. Heat Mass Transfer, vol. 38, pp. 340–347, 2011, doi: 10.1016/j.icheatmasstransfer.2010.11.014
  • P. Promvonge, S. Pethkool, M. Pimsarn, and C. Thianpong, “Heat transfer augmentation in a helical-ribbed tube with double twisted tape inserts,” Int. Commun. Heat Mass Transfer, vol. 39, no. 7, pp. 953–959, 2012, doi: 10.1016/j.icheatmasstransfer.2012.05.015.
  • M. M. K. Bhuiya, M. S. U. Chowdhury, M. Saha, and M. T. Islam, “Heat transfer and friction factor characteristics in turbulent flow through a tube fitted with perforated twisted tape inserts,” Int. Commun. Heat Mass Transfer, vol. 46, pp. 49–57, 2013, doi: 10.1016/j.icheatmasstransfer.2013.05.012.
  • S. Tabatabaeikia, H. A. Mohammed, N. Nik-Ghazali, and B. Shahizare, “Heat transfer enhancement by using different types of inserts,” Adv. Mech. Eng., 2014, doi: 10.1155/2014/250354.
  • W. Ji, A. M. Jacobi, Y. L. He, and W. Q. Tao, “Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipe flow,” Int. J. Heat Mass Transfer, vol. 88, pp. 735-754, 2015 doi: 10.1016/j.ijheatmasstransfer.2015.04.008.
  • R. Datt, M. S. Bhist, A. D. Kotiyal, R. Maithani, and A. Kumar, “Development of new correlations for heat transfer and friction loss of solid ring with combined square wing twisted tape inserts heat exchanger tube,” Exp. Heat Transfer, vol. 32, no. 2, pp. 179–200, 2019, doi: 10.1080/08916152.2018.1505784.
  • S. Bhattacharyya, A. C. Benim, M. Pathak, S. Chamoli, and A. Gupta, “Thermohydraulic characteristics of inline and staggered angular cut baffle inserts in the turbulent flow regime,” J. Therm. Anal. Calorim., vol. 140, no. 3, pp. 1519–1536, 2020, doi: 10.1007/s10973-019-09094-8.
  • S. Eiamsa-ard, P. Promvonge, “Enhancement of heat transfer in a tube with regularly-spaced helical tape swirl generators,” Solar Energy, vol. 78, no. 4 SPEC. ISS., pp. 483–494, 2005, doi: 10.1016/j.solener.2004.09.021.
  • P. Sivashanmugam, S. Suresh, “Experimental studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with helical screw-tape inserts,” Applied Thermal Engineering, vol. 26, no. 16, pp. 1990–1997, 2006, doi: 10.1016/j.applthermaleng.2006.01.008.
  • P. Sivashanmugam, S. Suresh, “Experimental studies on heat transfer and friction factor characteristics of turbulent flow through a circular tube fitted with helical screw-tape inserts,” Chemical Engineering and Processing: Process Intensification, vol. 46, no. 12, pp. 1292–1298, 2007, doi: 10.1016/j.cep.2006.10.009.
  • K. Nanan, M. Pimsarn, C. Thianpong, S. Eiamsa-Ard, “Heat transfer enhancement by helical screw tape coupled with rib turbulators,” Journal of Mechanical Science and Technology, vol. 28, no. 11, pp. 4771–4779, 2014, doi: 10.1007/s12206-014-1044-z.
  • V. Arunprasad, P. Murugesan, S. Jaisankar, “Experimental studies on natural circulation solar water heating system fitted with helical screw tape inserts,” Asian Journal of Research in Social Sciences and Humanities, vol. 6, no. 10, pp. 1703, 2016, doi: 10.5958/2249-7315.2016.01123.0.
  • G.R. Ghodake, R.S. Hingole, and K.P. Kolhe, “Experimental analysis of heat transfer and friction factor characteristics in turbulent flow through a tube fitted with screw tape,” Global Research and Development Journal for Engineering, vol. 1, no. 7, pp. 112–121, 2016.
  • T. Sreenivasulu, B. V. S. S. S. Prasad, “Flow and heat transfer characteristics in an annulus wrapped with a helical wire,” International Journal of Thermal Sciences, vol. 48, no. 7, pp. 1377–1391, 2009, doi: 10.1016/j.ijthermalsci.2008.11.023.
  • S. Eiamsa-ard, K. Wongcharee, S. Sripattanapipat, “3-D Numerical simulation of swirling flow and convective heat transfer in a circular tube induced by means of loose-fit twisted tapes,” International Communications in Heat and Mass Transfer, vol. 36, no. 9, pp. 947–955, 2009, doi: 10.1016/j.icheatmasstransfer.2009.06.014.
  • M. Rahimi, S. R. Shabanian, A. A. Alsairafi, “Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts,” Chemical Engineering and Processing: Process Intensification, vol. 48, no. 3, pp. 762–770, 2009, doi: 10.1016/j.cep.2008.09.007.
  • G. D. Xia and X. F. Liu, “An investigation of two-phase flow pressure drop in helical rectangular channel,” Int. Commun. Heat Mass Transfer, vol. 54, pp. 33–41, 2014, doi: 10.1016/j.icheatmasstransfer.2014.03.009.
  • S. D. Salman, A. A. H. Kadhum, M. S. Takriff, and A. B. Mohamad, “CFD analysis of heat transfer and friction factor characteristics in a circular tube fitted with horizontal baffles twisted tape inserts,” Aust. J. Basic Appl. Sci., vol. 7, no. 7, pp. 69–76, 2013, doi: 10.1088/1757-899X/50/1/012034.
  • K. Goodarzi, S. Y. Goudarzi, and G. Zendehbudi, “Investigation of the effect of using tube inserts for the intensification of heat transfer,” Therm. Eng. (Teploenergetika), vol. 62, no. 1, pp. 68–75, 2015, doi: 10.1134/S004060151501005X.
  • L. Tang, Y. Tang, and S. Parameswaran, “A numerical study of flow characteristics in a helical pipe,” Adv. Mech. Eng., vol. 8, no. 7, pp. 1–8, 2016, doi: 10.1177/1687814016660242.
  • M. Tusar et al., “CFD study of heat transfer enhancement and fluid flow characteristics of laminar flow through tube with helical screw tape insert,” Energy Procedia, vol. 160, pp. 699–706, 2019, doi: 10.1016/j.egypro.2019.02.190.
  • S. R. Chaurasia and R. M. Sarviya, “Comparative thermal hydraulic performance analysis on helical screw insert in tube with different number of strips in transition flow regime,” Heat Mass Transfer, vol. 57, pp. 77-91, 2021, doi: 10.1007/s00231-020-02934-6.
  • A. Klaczak, “Heat transfer and pressure drop in tubes with short turbulators,” Heat Mass Transfer, vol. 31, pp. 399–401, 1996, doi: 10.1007/BF02172586.
  • S. Eiamsa-ard, C. Thianpong, P. Eiamsa-ard, and P. Promvonge, “Convective heat transfer in a circular tube with short-length twisted tape insert,” Int. Commun. Heat Mass Transfer, vol. 36, pp. 365–371, 2009, doi: 10.1016/j.icheatmasstransfer.2009.01.006
  • S. Eiamsa-ard and P. Seemawute, “Decaying swirl flow in round tubes with short-length twisted tapes,” Int. Commun. Heat Mass Transfer, vol. 39, no. 5, pp. 649–656, 2012, doi: 10.1016/j.icheatmasstransfer.2012.03.021.
  • A. S. Dalkılıç et al., “Single phase flow heat transfer characteristics of quad-channel twisted tape inserts in tubes,” Int. Commun. Heat Mass Transfer, vol. 118, p. 104835, 2020, doi: 10.1016/j.icheatmasstransfer.2020.104835.
  • E. E. Wilson, “A basis of rational design of heat transfer apparatus,” ASME J. Heat Transfer, vol. 37, pp. 47–70, 1915, doi: 10.1115/1.4059736.
  • F. W. Dittus and L. M. K. Boelter, Univ. of California, Berkeley, Publ. Eng., vol. 2, p. 443, 1930.
  • Maradiya, J. Vadher, and R. Agarwal, “The heat transfer enhancement techniques and their Thermal Performance Factor,” Beni-Suef Univ. J. Basic Appl. Sci., vol. 7, no. 1, pp. 1–21, 2018, doi: 10.1016/j.bjbas.2017.10.001.
  • G. S. Dhumal, S. N. Havaldar, “Enhancing heat transfer performance in a double tube heat exchanger: Experimental study with twisted and helical tapes,” Case Studies in Thermal Engineering, vol. 51, 2023, doi: 10.1016/j.csite.2023.103613.
  • S. J. Kline, F. A. McClintock, “Describing uncertainties in single-sample experiments,” Mech. Eng., vol. 75, no. 1, pp. 3-8, 1953.
  • ANSYS Meshing User’s Guide, vol. 15317, pp. 724-746, 2013.
  • T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu, “A new k-ε eddy-viscosity model for high Reynolds number turbulent flows—model development and validation,” Computers & Fluids, vol. 24, no. 3, pp. 227–238, 1995, doi: 10.1016/0045-7930(94)00032-T.
  • F. P. Incropera and D. P. DeWitt, Fundamentals of heat and mass transfer, 5. ed. New York, NY, USA: Wiley, 2002.
  • S. Petukhov, “Heat transfer and friction in turbulent pipe flow with variable physical properties,” Advances in Heat Transfer, vol. 6, 1970, doi: 10.1016/S0065-2717(08)70153-9.
  • P. K. Konakov, “A new correlation for the friction coefficient in smooth tubes,” Ber. Akad. Wiss. UdSSR, vol. II, pp. 503–506, 1946.
  • R. J. Phillips, “Forced Convection, Liquid Cooled, Microchannel Heat Sinks,” M.S. thesis, Dept. Mech. Eng., MIT, Cambridge, MA, USA, 1987.
  • E. N. Sieder ve G. E. Tate, “Heat Transfer and Pressure Drop of Liquids in Tubes”, Ind. Eng. Chem., vol. 28, no. 12, pp. 1429-1435, 1936, doi: 10.1021/ie50324a027.
  • V. Gnielinski, “G1 Heat Transfer in Pipe Flow,” in VDI Heat Atlas, VDI-Buch, Springer, Berlin, Heidelberg, Germany, pp. 691–700, 2010, doi: 10.1007/978-3-540-77877-6_34.
  • V. Gnielinski, “New equations for heat and mass transfer in turbulent pipe and channel flow,” Int. Chem. Eng., vol. 16, pp. 359–368, 1976.
  • B. S. Petukhov and V. V. Kirillov, “On heat exchange at turbulent flow of liquids in pipes,” Teploenergetika, vol. 4, pp. 63–68, 1958.
  • H. Hausen, “Darstellung des Wärmeüberganges in rohren durch verallgemeinerte potenzbeziehungen,” Verfahrenstechn. Z VDI-Beiheft, vol. 8, no. 4, pp. 91–98, 1943, doi: 10.1007/978-3-642-88686-7.
  • H. Ito, “Friction factors for turbulent flow in curved pipes,” J. Basic Eng., vol. 81, pp. 123–134, 1959, doi: 10.1115/1.4008391.
  • F. Schmidt, “Wärmeübergang und druckverlust in rohrschlangen,” Chem. Ing. Tech., vol. 39, pp. 781–789, 1967, doi: 10.1002/cite.330391302.
  • P. S. Srinivasan, S. S. Nandapurkar, and S. S. Haolland, “Friction factors for coils,” Trans. Inst. Chem. Eng., vol. 48, pp. T156–T161, 1970.
  • V. Gnielinski, “G3 Heat Transfer in Helically Coiled Tubes,” in VDI Heat Atlas, VDI-Buch, Springer, Berlin, Heidelberg, Germany, pp. 709–712, 2010, doi: 10.1007/978-3-540-77877-6_36.
  • G. F. C. Rogers and Y. R. Mayhew, “Heat transfer and pressure loss in helically coiled tubes with turbulent flow,” Int. J. Heat Mass Transfer, vol. 7, pp. 1207–1216, 1964, doi: 10.1016/0017-9310(64)90062-6.
  • Y. Mori ve W. Nakayama, “Study of forced convective heat transfer in curved pipes (2nd report, turbulent region)”, International Journal of Heat and Mass Transfer, vol. 10, no. 1, pp. 37-59, 1967, doi: 10.1016/0017-9310(67)90182-2
  • V. Gnielinski, “Heat transfer and pressure drop in helically coiled tubes,” in Proc. 8th Int. Heat Transfer Conf., San Francisco, Hemisphere, Washington DC, USA, vol. 6, pp. 2847–2854, 1986, doi: 10.1016/j.csite.2023.103613.
There are 54 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

İbrahim Hakkı Tonyalı 0009-0001-3867-003X

Yalçın Uralcan 0000-0002-3702-3666

Early Pub Date June 16, 2025
Publication Date September 1, 2025
Submission Date May 19, 2025
Acceptance Date June 10, 2025
Published in Issue Year 2025 Volume: 28 Issue: 3

Cite

APA Tonyalı, İ. H., & Uralcan, Y. (2025). Numerical and Experimental Performance Assessment of Helical Screw Inserts in a Horizontal Evaporator Tube. International Journal of Thermodynamics, 28(3), 129-141. https://doi.org/10.5541/ijot.1702193
AMA Tonyalı İH, Uralcan Y. Numerical and Experimental Performance Assessment of Helical Screw Inserts in a Horizontal Evaporator Tube. International Journal of Thermodynamics. September 2025;28(3):129-141. doi:10.5541/ijot.1702193
Chicago Tonyalı, İbrahim Hakkı, and Yalçın Uralcan. “Numerical and Experimental Performance Assessment of Helical Screw Inserts in a Horizontal Evaporator Tube”. International Journal of Thermodynamics 28, no. 3 (September 2025): 129-41. https://doi.org/10.5541/ijot.1702193.
EndNote Tonyalı İH, Uralcan Y (September 1, 2025) Numerical and Experimental Performance Assessment of Helical Screw Inserts in a Horizontal Evaporator Tube. International Journal of Thermodynamics 28 3 129–141.
IEEE İ. H. Tonyalı and Y. Uralcan, “Numerical and Experimental Performance Assessment of Helical Screw Inserts in a Horizontal Evaporator Tube”, International Journal of Thermodynamics, vol. 28, no. 3, pp. 129–141, 2025, doi: 10.5541/ijot.1702193.
ISNAD Tonyalı, İbrahim Hakkı - Uralcan, Yalçın. “Numerical and Experimental Performance Assessment of Helical Screw Inserts in a Horizontal Evaporator Tube”. International Journal of Thermodynamics 28/3 (September2025), 129-141. https://doi.org/10.5541/ijot.1702193.
JAMA Tonyalı İH, Uralcan Y. Numerical and Experimental Performance Assessment of Helical Screw Inserts in a Horizontal Evaporator Tube. International Journal of Thermodynamics. 2025;28:129–141.
MLA Tonyalı, İbrahim Hakkı and Yalçın Uralcan. “Numerical and Experimental Performance Assessment of Helical Screw Inserts in a Horizontal Evaporator Tube”. International Journal of Thermodynamics, vol. 28, no. 3, 2025, pp. 129-41, doi:10.5541/ijot.1702193.
Vancouver Tonyalı İH, Uralcan Y. Numerical and Experimental Performance Assessment of Helical Screw Inserts in a Horizontal Evaporator Tube. International Journal of Thermodynamics. 2025;28(3):129-41.