Research Article
BibTex RIS Cite

Extension of the PROBID Method to the Pythagorean Fuzzy Sets for Multi-Criteria Decision Making

Year 2025, Volume: 11 Issue: 2, 656 - 675, 29.12.2025
https://doi.org/10.29132/ijpas.1815996

Abstract

In this study, we extend the classical PROBID (Preference Ranking on the Basis of Optimal–Mean Distance) method into the Pythagorean fuzzy environment and propose Pythagorean Fuzzy PROBID (PyF-PROBID) method. The proposed method combines the structural robustness of PROBID with the high representational capability of Pythagorean fuzzy sets to better capture uncertainty and hesitation in real life human judgments. Unlike conventional distance-based MCDM methods, PyF-PROBID evaluates alternatives not only in terms of positive and negative optimal solutions but also with respect to sequential optimal and mean reference solutions, thus reducing rank reversal and inconsistency problems. A numerical example, the evaluation of domestic airline service quality, is presented to demonstrate the applicability of the model. A comparison section is provided with the results of existing PyF-TOPSIS and PyF-MABAC methods. The comparative analysis shows that PyF-PROBID produces stable and consistent rankings, aligning well with alternative Pythagorean fuzzy decision-making schemes. Therefore, the proposed method provides a more flexible, coherent, and reliable framework for multi-criteria decision analysis under uncertainty.

References

  • [1] L. A. Zadeh, “Fuzzy sets”, Information and Control, vol. 8, no. 3, pp. 338–353, 1965, doi:10.1016/S0019-9958(65)90241-X.
  • [2] K. T. Atanassov, “Intuitionistic fuzzy sets”, Fuzzy Sets Syst, vol. 20, no. 1, pp. 87–96, 1986, doi:10.1016/S0165-0114(86)80034-3.
  • [3] R. R. Yager, “Pythagorean Membership Grades in Multicriteria Decision Making”, IEEE Trans. Fuzzy Syst, vol. 22, no. 4, pp. 958–965, 2014, doi: 10.1109/TFUZZ.2013.2278989.
  • [4] T. L. Saaty, The Analytic Hierarchy Process, 1st ed., New York, NY, USA: McGraw-Hill, 1980.
  • [5] C.-L. Hwang and K. Yoon, “Methods for Multiple Attribute Decision Making”, in Multiple Attribute Decision Making, Berlin, Germany: Springer, 1981, pp. 58–191, doi: 10.1007/978-3-642-48318-9_3.
  • [6] A. Köseoğlu, “A comparative decision-making for electronic product purchases during a pandemic”, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, pp. 109–118, Sep. 2022, doi: 10.17714/gumusfenbil.1001904.
  • [7] Y. Wang, P. Liu, and Y. Yao, “BMW-TOPSIS: A generalized TOPSIS model based on three-way decision”, Inf Sci, vol. 607, pp. 799–818, 2022, doi: 10.1016/J.INS.2022.06.018.
  • [8] D. Raj, S. R. Maity, and B. Das, “Optimization of Process Parameters of Laser Cladding on AISI 410 Using MEREC Integrated MABAC Method”, Arab. J. Sci. Eng., vol. 49, no. 8, pp. 10725–10739, 2023, doi: 10.1007/s13369-023-08487-0.
  • [9] I. Canco, D. Kruja, and T. Iancu, “AHP, a reliable method for quality decision making: A case study in business,” Sustainability, vol. 13, no. 24, Art. no. 13932, 2021, doi: 10.3390/su132413932.
  • [10] C.-T. Chen, “Extensions of the TOPSIS for group decision-making under fuzzy environ-ment,” Fuzzy Sets Syst., vol. 114, no. 1, pp. 1–9, 2000, doi: 10.1016/S0165-0114(97)00377-1.
  • [11] X. Peng and Y. Yang, “Pythagorean fuzzy Choquet integral based MABAC method for multiple attribute group decision making,” Int. J. Intell. Syst., vol. 31, no. 10, pp. 989–1020, 2016, doi: 10.1002/int.21814.
  • [12] T.-Y. Chen and C.-Y. Tsao, “The interval-valued fuzzy TOPSIS method and experimental analysis,” Fuzzy Sets Syst., vol. 159, no. 11, pp. 1410–1428, 2008, doi: 10.1016/j.fss.2007.11.004.
  • [13] Y. X. Xue, J. X. You, X. D. Lai, and H. C. Liu, “An interval-valued intuitionistic fuzzy MABAC approach for material selection with incomplete weight information,” Appl. Soft Comput., vol. 38, pp. 703–713, 2016, doi: 10.1016/j.asoc.2015.10.010
  • [14] X. Zhang and Z. Xu, “Extension of TOPSIS to multiple criteria decision making with Py-thagorean fuzzy sets,” Int. J. Intell. Syst., vol. 29, no. 12, pp. 1061–1078, 2014, doi: 10.1002/INT.21676.
  • [15] Z. Wang, G. P. Rangaiah, and X. Wang, “Preference ranking on the basis of optimal-mean distance method for multi-criteria decision-making,” Ind. Eng. Chem. Res., vol. 60, no. 30, pp. 11216–11230, 2021, doi: 10.1021/ACS.IECR.1C01413.
  • [16] Z. Wang et al., “Comparison of fuzzy and crisp decision matrices: An evaluation on PROBID and sPROBID multi-criteria decision-making methods,” Demonstratio Math., vol. 56, no. 1, 2023, doi: 10.1515/DEMA-2023-0117.
  • [17] F. Anhao, A. Karbassi Yazdi, Y. Tan, and L. Ocampo, “Integrating large language models into a novel intuitionistic fuzzy PROBID method for multi-criteria decision-making prob-lems,” Mathematics, vol. 13, no. 17, Art. no. 2878, 2025, doi: 10.3390/MATH13172878.
  • [18] X. Zhang, “A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making,” Int. J. Intell. Syst., vol. 31, no. 6, pp. 593–611, 2016, doi: 10.1002/int.21796.
  • [19] Z. Hussian and M. S. Yang, “Distance and similarity measures of Pythagorean fuzzy sets based on the Hausdorff metric with application to fuzzy TOPSIS,” Int. J. Intell. Syst., vol. 34, no. 10, pp. 2633–2654, 2019, doi: 10.1002/INT.22169.

Çok Kriterli Karar Verme için PROBID Yönteminin Pisagor Bulanık Kümelere Genişletilmesi

Year 2025, Volume: 11 Issue: 2, 656 - 675, 29.12.2025
https://doi.org/10.29132/ijpas.1815996

Abstract

Bu çalışmada, klasik PROBID (Preference Ranking on the Basis of Optimal–Mean Distance) yöntemi Pisagor bulanık ortamına genişletilmiş ve Pisagor Bulanık PROBID (PyF-PROBID) yöntemi önerilmiştir. Önerilen yöntem, PROBID’in yapısal sağlamlığını Pisagor bulanık kümelerin belirsizlik ve tereddüt durumlarını ifade etmedeki yüksek temsil gücüyle birleştirerek, gerçek yaşam kararlarında belirsizlikleri ve kararsızlıkları daha etkin biçimde yakalamayı amaçlamaktadır. Geleneksel uzaklık tabanlı ÇKKV yöntemlerinden farklı olarak PyF-PROBID, alternatifleri yalnızca pozitif ve negatif optimal çözümler açısından değil, aynı zamanda ardışık optimal çözümler ve ortalama referans çözümlerle olan ilişkileri bakımından da değerlendirir. Bu sayede, sıralama tersine dönüşü ve tutarsızlık gibi sorunlar azaltılmış olur. Modelin uygulanabilirliğini göstermek amacıyla, yerli havayolu hizmet kalitesinin değerlendirilmesine ilişkin sayısal bir örnek verilmiştir. Elde edilen sonuçlar mevcut PyF-TOPSIS ve PyF-MABAC yöntemleriyle karşılaştırılmıştır. Karşılaştırmalı analiz, PyF-PROBID yönteminin kararlı ve tutarlı sıralama sonuçları ürettiğini ve diğer Pisagor bulanık karar verme yaklaşımlarıyla uyumlu çalıştığını göstermiştir. Bu nedenle, önerilen yöntem belirsizlik altında yapılan çok kriterli karar analizleri için daha esnek, bütüncül ve güvenilir bir değerlendirme çerçevesi sunmaktadır.

References

  • [1] L. A. Zadeh, “Fuzzy sets”, Information and Control, vol. 8, no. 3, pp. 338–353, 1965, doi:10.1016/S0019-9958(65)90241-X.
  • [2] K. T. Atanassov, “Intuitionistic fuzzy sets”, Fuzzy Sets Syst, vol. 20, no. 1, pp. 87–96, 1986, doi:10.1016/S0165-0114(86)80034-3.
  • [3] R. R. Yager, “Pythagorean Membership Grades in Multicriteria Decision Making”, IEEE Trans. Fuzzy Syst, vol. 22, no. 4, pp. 958–965, 2014, doi: 10.1109/TFUZZ.2013.2278989.
  • [4] T. L. Saaty, The Analytic Hierarchy Process, 1st ed., New York, NY, USA: McGraw-Hill, 1980.
  • [5] C.-L. Hwang and K. Yoon, “Methods for Multiple Attribute Decision Making”, in Multiple Attribute Decision Making, Berlin, Germany: Springer, 1981, pp. 58–191, doi: 10.1007/978-3-642-48318-9_3.
  • [6] A. Köseoğlu, “A comparative decision-making for electronic product purchases during a pandemic”, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, pp. 109–118, Sep. 2022, doi: 10.17714/gumusfenbil.1001904.
  • [7] Y. Wang, P. Liu, and Y. Yao, “BMW-TOPSIS: A generalized TOPSIS model based on three-way decision”, Inf Sci, vol. 607, pp. 799–818, 2022, doi: 10.1016/J.INS.2022.06.018.
  • [8] D. Raj, S. R. Maity, and B. Das, “Optimization of Process Parameters of Laser Cladding on AISI 410 Using MEREC Integrated MABAC Method”, Arab. J. Sci. Eng., vol. 49, no. 8, pp. 10725–10739, 2023, doi: 10.1007/s13369-023-08487-0.
  • [9] I. Canco, D. Kruja, and T. Iancu, “AHP, a reliable method for quality decision making: A case study in business,” Sustainability, vol. 13, no. 24, Art. no. 13932, 2021, doi: 10.3390/su132413932.
  • [10] C.-T. Chen, “Extensions of the TOPSIS for group decision-making under fuzzy environ-ment,” Fuzzy Sets Syst., vol. 114, no. 1, pp. 1–9, 2000, doi: 10.1016/S0165-0114(97)00377-1.
  • [11] X. Peng and Y. Yang, “Pythagorean fuzzy Choquet integral based MABAC method for multiple attribute group decision making,” Int. J. Intell. Syst., vol. 31, no. 10, pp. 989–1020, 2016, doi: 10.1002/int.21814.
  • [12] T.-Y. Chen and C.-Y. Tsao, “The interval-valued fuzzy TOPSIS method and experimental analysis,” Fuzzy Sets Syst., vol. 159, no. 11, pp. 1410–1428, 2008, doi: 10.1016/j.fss.2007.11.004.
  • [13] Y. X. Xue, J. X. You, X. D. Lai, and H. C. Liu, “An interval-valued intuitionistic fuzzy MABAC approach for material selection with incomplete weight information,” Appl. Soft Comput., vol. 38, pp. 703–713, 2016, doi: 10.1016/j.asoc.2015.10.010
  • [14] X. Zhang and Z. Xu, “Extension of TOPSIS to multiple criteria decision making with Py-thagorean fuzzy sets,” Int. J. Intell. Syst., vol. 29, no. 12, pp. 1061–1078, 2014, doi: 10.1002/INT.21676.
  • [15] Z. Wang, G. P. Rangaiah, and X. Wang, “Preference ranking on the basis of optimal-mean distance method for multi-criteria decision-making,” Ind. Eng. Chem. Res., vol. 60, no. 30, pp. 11216–11230, 2021, doi: 10.1021/ACS.IECR.1C01413.
  • [16] Z. Wang et al., “Comparison of fuzzy and crisp decision matrices: An evaluation on PROBID and sPROBID multi-criteria decision-making methods,” Demonstratio Math., vol. 56, no. 1, 2023, doi: 10.1515/DEMA-2023-0117.
  • [17] F. Anhao, A. Karbassi Yazdi, Y. Tan, and L. Ocampo, “Integrating large language models into a novel intuitionistic fuzzy PROBID method for multi-criteria decision-making prob-lems,” Mathematics, vol. 13, no. 17, Art. no. 2878, 2025, doi: 10.3390/MATH13172878.
  • [18] X. Zhang, “A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making,” Int. J. Intell. Syst., vol. 31, no. 6, pp. 593–611, 2016, doi: 10.1002/int.21796.
  • [19] Z. Hussian and M. S. Yang, “Distance and similarity measures of Pythagorean fuzzy sets based on the Hausdorff metric with application to fuzzy TOPSIS,” Int. J. Intell. Syst., vol. 34, no. 10, pp. 2633–2654, 2019, doi: 10.1002/INT.22169.
There are 19 citations in total.

Details

Primary Language English
Subjects Quantitative Decision Methods , Mathematical Logic, Set Theory, Lattices and Universal Algebra
Journal Section Research Article
Authors

Ali Köseoğlu 0000-0002-2131-7141

Submission Date November 2, 2025
Acceptance Date November 29, 2025
Publication Date December 29, 2025
Published in Issue Year 2025 Volume: 11 Issue: 2

Cite

APA Köseoğlu, A. (2025). Extension of the PROBID Method to the Pythagorean Fuzzy Sets for Multi-Criteria Decision Making. International Journal of Pure and Applied Sciences, 11(2), 656-675. https://doi.org/10.29132/ijpas.1815996
AMA Köseoğlu A. Extension of the PROBID Method to the Pythagorean Fuzzy Sets for Multi-Criteria Decision Making. International Journal of Pure and Applied Sciences. December 2025;11(2):656-675. doi:10.29132/ijpas.1815996
Chicago Köseoğlu, Ali. “Extension of the PROBID Method to the Pythagorean Fuzzy Sets for Multi-Criteria Decision Making”. International Journal of Pure and Applied Sciences 11, no. 2 (December 2025): 656-75. https://doi.org/10.29132/ijpas.1815996.
EndNote Köseoğlu A (December 1, 2025) Extension of the PROBID Method to the Pythagorean Fuzzy Sets for Multi-Criteria Decision Making. International Journal of Pure and Applied Sciences 11 2 656–675.
IEEE A. Köseoğlu, “Extension of the PROBID Method to the Pythagorean Fuzzy Sets for Multi-Criteria Decision Making”, International Journal of Pure and Applied Sciences, vol. 11, no. 2, pp. 656–675, 2025, doi: 10.29132/ijpas.1815996.
ISNAD Köseoğlu, Ali. “Extension of the PROBID Method to the Pythagorean Fuzzy Sets for Multi-Criteria Decision Making”. International Journal of Pure and Applied Sciences 11/2 (December2025), 656-675. https://doi.org/10.29132/ijpas.1815996.
JAMA Köseoğlu A. Extension of the PROBID Method to the Pythagorean Fuzzy Sets for Multi-Criteria Decision Making. International Journal of Pure and Applied Sciences. 2025;11:656–675.
MLA Köseoğlu, Ali. “Extension of the PROBID Method to the Pythagorean Fuzzy Sets for Multi-Criteria Decision Making”. International Journal of Pure and Applied Sciences, vol. 11, no. 2, 2025, pp. 656-75, doi:10.29132/ijpas.1815996.
Vancouver Köseoğlu A. Extension of the PROBID Method to the Pythagorean Fuzzy Sets for Multi-Criteria Decision Making. International Journal of Pure and Applied Sciences. 2025;11(2):656-75.

154501544915448154471544615445