Araştırma Makalesi
BibTex RIS Kaynak Göster

Numune Boyutunun Kauçukla Modifiye Edilmiş Kendiliğinden Yerleşen Betonun Basınç Dayanımı Üzerindeki Etkileri

Yıl 2020, , 118 - 129, 31.12.2020
https://doi.org/10.29132/ijpas.789480

Öz

Bugüne kadar yapılan çalışmalarda, tane boyutu dağılımındaki atık araç lastiklerinin (WVT) agregaları ve farklı işlenebilirliğe, farklı mekanik ve fiziksel özelliklere sahip partiküller değiştirilerek kauçuk modifiyeli kendinden yerleşen betonlar (RMSCC) imal edilmiştir. Ancak eksenel basınç altında farklı narinlik oranı h/b ile üretilen RMSCC elemanlarının taşıma kapasitesindeki değişim daha önceki çalışmalarda araştırılmamıştı. Bu çalışma kapsamında farklı h/b oranları kullanılarak üretilen RMSCC elemanlarının fiziksel ve mekanik özelliklerindeki değişim hem deneysel hem de teorik olarak incelenmiştir. Beton üretiminde kullanılan doğal kum ve WVT agregası tane boyutları aynı aralıkta olduğundan WVT agregası 4 farklı oranda doğal kum ile değiştirilmiştir. Bu oranlar doğal kum hacminin sırasıyla %5, %10, %15 ve %20'si olarak kullanılmıştır. Narinlik oranları, h/b değerleri1.0, 1.5, 2.0, 2.5, 3.0 ve 3.5 olup, toplam 90 örnek için deneysel ve teorik araştırmalar yapılmıştır. Elde edilen sonuçların doğrusal regresyon modelleri incelenmiş ve bu modellere göre h/b oranları ile denklemler üretilmiştir. Elde edilen denklemlerin sonuçları ve deneysel basınç dayanımı sonuçları karşılaştırılmıştır. Kullanılan WVT agregası miktarı ve h/b oranındaki artışın yanı sıra, numunelerde farklı oranlardan kaynaklanan basınç dayanımı kayıpları olmuştur. WVT agrega oranının basınç dayanımı üzerindeki etkisi, kullanım oranının artmasıyla daha da belirgin hale gelmiştir. Ayrıca h/b oranının basınç dayanımına etkisini belirlemek için regresyon analizleri yapılmıştır. Sonuç olarak elde edilen denklemlere ait R2 değerleri 0,95'in üzerinde bulunmuştur.

Kaynakça

  • Aiello, M.A. and Leuzzi, F., 2010. Waste tyre rubberized concrete: Properties at fresh and hardened state. Waste Management, 30(8–9): 1696–1704.
  • Al-Akhras, N.M. and Smadi, M.M., 2004. Properties of tire rubber ash mortar. Cement and Concrete Composites, 26(7): 821–826.
  • Albano, C., Camacho, N., Reyes, J., Feliu, J.L., and Hernández, M., 2005. Influence of scrap rubber addition to Portland I concrete composites: Destructive and non-destructive testing. Composite Structures, 71(3–4): 439–446.
  • American Society for Testing Materials., 2007. Standard Test Method for Abrasion Resistance of concrete or Mortar Surfaces by the Rotating-Cutter Method. ASTM C944.
  • Atahan, H.N., 2002. Düşük su/çimento oranlı betonlarda özelliklerin çimento hamurun boşluk yapısına duyarlılığı. Fen Bilimleri Enstitüsü.
  • Avcular, N. and Topçu, İ.B., 1997. Analysis of rubberized concrete as a composite material. Cement and Concrete Research, 27(8): 1135–1139.
  • Batayneh, M.K., Marie, I., and Asi, I., 2008. Promoting the use of crumb rubber concrete in developing countries. Waste Management, 28(11): 2171–2176.
  • Bažant, Z.P., 2009. Size Effect in Blunt Fracture: Concrete, Rock, Metal. Journal of Engineering Mechanics, 110(4): 518–535.
  • Bignozzi, M.C. and Sandrolini, F., 2006. Tyre rubber waste recycling in self-compacting concrete. Cement and Concrete Research, 36(4): 735–739.
  • Cairns, R.A., Hew, H.Y., and Kenny, M.J., 2004. The use of recycled rubber tyres in concrete construction. Sustainable Waste Management and Recycling, (2004): 135–142.
  • Demirel, N., 2017. Ömrünü Tamamlamış Araçların Geri Dönüşümünde Yükseltilmiş Yönetmelik Hedeflerini Karşılamak İçin Ağ Tasarımı ve Modellenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi. azi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5(3): 223–236.
  • Domone, P.L., 2007. A review of the hardened mechanical properties of self-compacting concrete. Cement and Concrete Composites, 29(1): 1–12.
  • EFNARC., 2005. The European Guidelines for Self-Compacting Concrete: Specification, Production and Use. The European Guidelines for Self Compacting Concrete, (May): 68.
  • Etli, S., Cemalgil, S., and Onat, O., 2018. Mid-Temperature Thermal Effects on Properties of Mortar Produced with Waste Rubber as Fine Aggregate. International Journal of Pure and Applied Sciences, . Fedroff, D., Ahmad, S., and Savas, B., 2007. Mechanical Properties of Concrete with Ground Waste Tire Rubber. Transportation Research Record: Journal of the Transportation Research Board, 1532(1532): 66–72.
  • Felekoǧlu, B., Türkel, S., and Baradan, B., 2007. Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete. Building and Environment, 42(4): 1795–1802.
  • Figueiras, H., Nunes, S., Coutinho, J.S., and Figueiras, J., 2009. Combined effect of two sustainable technologies: Self-compacting concrete (SCC) and controlled permeability formwork (CPF). Construction and Building Materials, 23(7): 2518–2526.
  • Garros, M., Turatsinze, A., and Granju, J., 2006. Effect of Rubber Aggregates from Grinding of End-of-Life Tires on the Properties of SCC. Special Publication 235, : 177–188.
  • Gesoǧlu, M. and Güneyisi, E., 2007. Strength development and chloride penetration in rubberized concretes with and without silica fume. Materials and Structures/Materiaux et Constructions, 40(9): 953–964.
  • Gönüllü, M.T., 2004. Atik Lastiklerin Yönetimi. Katı Atık Geri Dönüşüm Teknolojileri Semineri, İstanbul Sanayi Odası, İstanbul, .
  • Grdic, Z.J., Toplicic-Curcic, G.A., Despotovic, I.M., and Ristic, N.S., 2010. Properties of self-compacting concrete prepared with coarse recycled concrete aggregate. Construction and Building Materials, 24(7): 1129–1133.
  • Guleria, S.P. and Dutta, R.K., 2013. Rubberized portland cement concrete. Journal of GeoEngineering, 8(2): 33–40. Güneyisi, E., 2010. Fresh properties of self-compacting rubberized concrete incorporated with fly ash. Materials and Structures/Materiaux et Constructions, 43(8): 1037–1048.
  • Güneyisi, E., Gesoǧlu, M., and Özturan, T., 2004. Properties of rubberized concretes containing silica fume. Cement and Concrete Research, 34(12): 2309–2317.
  • Hernández-Olivares, F. and Barluenga, G., 2004. Fire performance of recycled rubber-filled high-strength concrete. Cement and Concrete Research, 34(1): 109–117.
  • Hilal, N.N., 2017. Hardened properties of self-compacting concrete with different crumb rubber size and content. International Journal of Sustainable Built Environment, 6(1): 191–206.
  • Hossain, K.M.A. and Lachemi, M., 2009. Fresh, Mechanical, and Durability Characteristics of Self-Consolidating Concrete Incorporating Volcanic Ash. Journal of Materials in Civil Engineering, 22(7): 651–657.
  • http://atiksahasi.com/Atik-Lastiklerin-Omrunu-Tamamlamis-Lastikler-Geri-Donusum-Sektorundeki-Onemi-38., 2019. Atık Lastiklerin(Ömrünü Tamamlamış Lastikler) Geri Dönüşüm Sektöründeki Önemi. [Internet].
  • Available at Website http://atiksahasi.com/Atik-Lastiklerin-Omrunu-Tamamlamis-Lastikler-Geri-Donusum-Sektorundeki-Onemi-38.
  • http://www.lasder.org.tr/., 2018. LASDER 2018 yılı hedefleri. LASDER [Internet]. Available at Website .
  • http://www.resmigazete.gov.tr/eskiler/2006/11/20061125-2.htm., 2006. Ömrünü Tamamlamış Lastiklerin Kontrolü Yönetmeliği. Türkiye.
  • Karakurt, C., Işıkdağ, B., and Topçu, İ.B., 2014. Atık Lastik Agregalı Harçların Mekanik ve Fiziksel Özelliklerinin İncelenmesi. Politeknik Dergisi, 17(1): 3–7.
  • Khatib, J.M., 2008. Performance of self-compacting concrete containing fly ash. Construction and Building Materials, 22(9): 1963–1971.
  • Kim, J.-K., 2009. Size effect in concrete specimens with dissimilar initial cracks. Magazine of Concrete Research, 42(153): 233–238.
  • Kim, J.K., Yi, S.T., Park, C.K., and Eo, S.H., 1999. Size effect on compressive strength of plain and spirally reinforced concrete cylinders. ACI Structural Journal, 96(1): 88–94.
  • Koçak, Y. and Alpaslan, L., 2011. Atık Lastiklerin Çimento ve Beton Sektöründe Kullanım Potansiyelleri. In İnternational Advanced Technologies Symposium p. 118–122.
  • Li, G., Stubblefield, M.A., Garrick, G., Eggers, J., Abadie, C., and Huang, B., 2004. Development of waste tire modified concrete. Cement and Concrete Research, 34(12): 2283–2289.
  • Najim, K.B. and Hall, M.R., 2010. A review of the fresh/hardened properties and applications for plain- (PRC) and self-compacting rubberised concrete (SCRC). Construction and Building Materials, 24(11): 2043–2051.
  • Najim, K.B. and Hall, M.R., 2012. Mechanical and dynamic properties of self-compacting crumb rubber modified concrete. Construction and Building Materials, 27(1): 521–530.
  • Nanthagopalan, P. and Santhanam, M., 2009. Experimental investigations on the influence of paste composition and content on the properties of Self-Compacting Concrete. Construction and Building Materials, 23(11): 3443–3449.
  • Neville, A.M. and Brooks, J.J., 2010. Properties of concrete. Building and Environment, 11: 442.
  • Oneill, R.C., Hill, R.L., Butler, W.B., Cabrera, J.G., Carrasquillo, R.L., Ellis Jr, W.E., Eriin, B.E., Fidjestal, P., Forster, S.W., Gordon, C., and others., 2001. Guide to durable concrete. ACI201, 2: 2–5.
  • Rahman, M.M., Usman, M., and Al-Ghalib, A.A., 2012. Fundamental properties of rubber modified self-compacting concrete (RMSCC). Construction and Building Materials, 36: 630–637.
  • Reda T., M.M., El-Dieb, A.S., Abd El-Wahab, M.A., and Abdel-Hameed, M.E., 2008. Mechanical, Fracture, and Microstructural Investigations of Rubber Concrete. Journal of Materials in Civil Engineering, 20(10): 640–649.
  • Rubber Manufacturers Association., 2006. Scrap tire markets in the United States. Washington, DC, .
  • Şaşmaz, Ç; Tekin, İ., 1970. Effect of concrete components on fresh and hardened self compacting concrete properties.
  • Scott, B.D. and Safiuddin, M., 2015. Abrasion Resistance of Concrete – Design, Construction and Case Study. ISSR Journals, 6(3): 136–148.
  • Seong-Tae, Y., Eun-Ik, Y., and Joong-Cheol, C., 2006. Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete. Nuclear Engineering and Design, 236(2): 115–127.
  • Snelson, D.G., Kinuthia, J.M., Davies, P.A., and Chang, S.R., 2009. Sustainable construction: Composite use of tyres and ash in concrete. Waste Management, 29(1): 360–367.
  • Sofi, A., 2018. Effect of waste tyre rubber on mechanical and durability properties of concrete – A review. Ain Shams Engineering Journal, 9(4): 2691–2700.
  • Su, N., Hsu, K.C., and Chai, H.W., 2001. A simple mix design method for self-compacting concrete. Cement and Concrete Research, 31(12): 1799–1807.
  • Sugözü, İlker, and İ.M., 2009. Atık taşıt lastikleri ve değerlendirme yöntemleri. Taşıt Teknolojileri Elektronik Dergisi, 1(1): 35–46.
  • Sukontasukkul, P. and Chaikaew, C., 2006. Properties of concrete pedestrian block mixed with crumb rubber. Construction and Building Materials, 20(7): 450–457.
  • Topçu, İ.B., 1995. The properties of rubberized concretes. Cement and Concrete Research, 25(2): 304–310.
  • Topçu, İ.B. and Avcular, N., 1997. Collision Behaviours of Rubberized Concrete. Cement and concrete research, 27(12): 11.
  • Topçu, İ.B. and Bilir, T., 2009. Experimental investigation of some fresh and hardened properties of rubberized self-compacting concrete. Materials and Design, 30(8): 3056–3065.
  • Topçu, İ.B., Bilir, T., and Uygunoǧlu, T., 2009. Effect of waste marble dust content as filler on properties of self-compacting concrete. Construction and Building Materials, 23(5): 1947–1953.
  • Topçu, İ.B. and Eser, Ö.F., 2000. Lastik Agregalı Betonlarin Özelikleri. Balıkesir Üniv., Müh.-Mim. Fak., III. Balıkesir Müh.-Mim. Semp., ss, : 173–181.
  • Turatsinze, A. and Garros, M., 2008. On the modulus of elasticity and strain capacity of Self-Compacting Concrete incorporating rubber aggregates. Resources, Conservation and Recycling, 52(10): 1209–1215.
  • Turgut, P., Yeşilata, B., and Işıker, Y., 2007. Kompozit Yapı Malzemelerinde Isıl Özellik Ölçümü-2: Hurda Lastik Katkılı Betonlar için Ölçüm Sonuçları. Mühendis ve Makina, 48(565): 33–39.
  • Uygunoǧlu, T. and Topçu, İ.B., 2010. The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars. Construction and Building Materials, 24(7): 1141–1150.
  • Wu, Z., Zhang, Y., Zheng, J., and Ding, Y., 2009. An experimental study on the workability of self-compacting lightweight concrete. Construction and Building Materials, 23(5): 2087–2092.
  • Zheng, L., Sharon Huo, X., and Yuan, Y., 2008. Experimental investigation on dynamic properties of rubberized concrete. Construction and Building Materials, 22(5): 939–947.

Effects of Specimen Size on The Compressive Strength of Rubber Modified Self-Compacting Concrete

Yıl 2020, , 118 - 129, 31.12.2020
https://doi.org/10.29132/ijpas.789480

Öz

In the studies carried out until today, rubber-modified self-compacting concretes (RMSCC) had been manufactured by replacing the aggregates of the waste vehicle tires (WVT) in the grain size distribution and particles that have different workability, different mechanical, and physical properties. However, variation of the carrying capacity of the RMSCC elements produced with different slenderness ratio h/b ratio under axial load had not been researched in previous studies. Within the scope of this study, the change in physical and mechanical properties of RMSCC elements produced by using different h/b ratios had been examined both experimentally and theoretically. Since the natural sand and WVT aggregate used in the production of concrete and their grain sizes are in the same range, WVT aggregate has been replaced by natural sand in 4 different proportions. These ratios were used as 5%, 10%, 15% and 20% of the natural sand volume, respectively. Slenderness ratios, h/b ratios were 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5, and experimental and theoretical investigations had been performed for 90 samples in total. The linear regression models of the obtained results had been analyzed and the equations with the h/b ratios according to these models had been produced. The results of the obtained equations and the results of experimental axial pressure had been compared. In addition to the amount of WVT aggregate used and the increase in the ratio of h/b, the compressive strength losses had caused by different rates on the samples. The effect of the WVT aggregate ratio on the compressive strength had become more significant with the increase in use rate. Besides, regression analyzes had been performed to determine the effect of h/b ratio on the compressive strength. In conclusion, regression R2 (coefficient of determination) values that belong to equations obtained had been found over 0.95.

Kaynakça

  • Aiello, M.A. and Leuzzi, F., 2010. Waste tyre rubberized concrete: Properties at fresh and hardened state. Waste Management, 30(8–9): 1696–1704.
  • Al-Akhras, N.M. and Smadi, M.M., 2004. Properties of tire rubber ash mortar. Cement and Concrete Composites, 26(7): 821–826.
  • Albano, C., Camacho, N., Reyes, J., Feliu, J.L., and Hernández, M., 2005. Influence of scrap rubber addition to Portland I concrete composites: Destructive and non-destructive testing. Composite Structures, 71(3–4): 439–446.
  • American Society for Testing Materials., 2007. Standard Test Method for Abrasion Resistance of concrete or Mortar Surfaces by the Rotating-Cutter Method. ASTM C944.
  • Atahan, H.N., 2002. Düşük su/çimento oranlı betonlarda özelliklerin çimento hamurun boşluk yapısına duyarlılığı. Fen Bilimleri Enstitüsü.
  • Avcular, N. and Topçu, İ.B., 1997. Analysis of rubberized concrete as a composite material. Cement and Concrete Research, 27(8): 1135–1139.
  • Batayneh, M.K., Marie, I., and Asi, I., 2008. Promoting the use of crumb rubber concrete in developing countries. Waste Management, 28(11): 2171–2176.
  • Bažant, Z.P., 2009. Size Effect in Blunt Fracture: Concrete, Rock, Metal. Journal of Engineering Mechanics, 110(4): 518–535.
  • Bignozzi, M.C. and Sandrolini, F., 2006. Tyre rubber waste recycling in self-compacting concrete. Cement and Concrete Research, 36(4): 735–739.
  • Cairns, R.A., Hew, H.Y., and Kenny, M.J., 2004. The use of recycled rubber tyres in concrete construction. Sustainable Waste Management and Recycling, (2004): 135–142.
  • Demirel, N., 2017. Ömrünü Tamamlamış Araçların Geri Dönüşümünde Yükseltilmiş Yönetmelik Hedeflerini Karşılamak İçin Ağ Tasarımı ve Modellenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi. azi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5(3): 223–236.
  • Domone, P.L., 2007. A review of the hardened mechanical properties of self-compacting concrete. Cement and Concrete Composites, 29(1): 1–12.
  • EFNARC., 2005. The European Guidelines for Self-Compacting Concrete: Specification, Production and Use. The European Guidelines for Self Compacting Concrete, (May): 68.
  • Etli, S., Cemalgil, S., and Onat, O., 2018. Mid-Temperature Thermal Effects on Properties of Mortar Produced with Waste Rubber as Fine Aggregate. International Journal of Pure and Applied Sciences, . Fedroff, D., Ahmad, S., and Savas, B., 2007. Mechanical Properties of Concrete with Ground Waste Tire Rubber. Transportation Research Record: Journal of the Transportation Research Board, 1532(1532): 66–72.
  • Felekoǧlu, B., Türkel, S., and Baradan, B., 2007. Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete. Building and Environment, 42(4): 1795–1802.
  • Figueiras, H., Nunes, S., Coutinho, J.S., and Figueiras, J., 2009. Combined effect of two sustainable technologies: Self-compacting concrete (SCC) and controlled permeability formwork (CPF). Construction and Building Materials, 23(7): 2518–2526.
  • Garros, M., Turatsinze, A., and Granju, J., 2006. Effect of Rubber Aggregates from Grinding of End-of-Life Tires on the Properties of SCC. Special Publication 235, : 177–188.
  • Gesoǧlu, M. and Güneyisi, E., 2007. Strength development and chloride penetration in rubberized concretes with and without silica fume. Materials and Structures/Materiaux et Constructions, 40(9): 953–964.
  • Gönüllü, M.T., 2004. Atik Lastiklerin Yönetimi. Katı Atık Geri Dönüşüm Teknolojileri Semineri, İstanbul Sanayi Odası, İstanbul, .
  • Grdic, Z.J., Toplicic-Curcic, G.A., Despotovic, I.M., and Ristic, N.S., 2010. Properties of self-compacting concrete prepared with coarse recycled concrete aggregate. Construction and Building Materials, 24(7): 1129–1133.
  • Guleria, S.P. and Dutta, R.K., 2013. Rubberized portland cement concrete. Journal of GeoEngineering, 8(2): 33–40. Güneyisi, E., 2010. Fresh properties of self-compacting rubberized concrete incorporated with fly ash. Materials and Structures/Materiaux et Constructions, 43(8): 1037–1048.
  • Güneyisi, E., Gesoǧlu, M., and Özturan, T., 2004. Properties of rubberized concretes containing silica fume. Cement and Concrete Research, 34(12): 2309–2317.
  • Hernández-Olivares, F. and Barluenga, G., 2004. Fire performance of recycled rubber-filled high-strength concrete. Cement and Concrete Research, 34(1): 109–117.
  • Hilal, N.N., 2017. Hardened properties of self-compacting concrete with different crumb rubber size and content. International Journal of Sustainable Built Environment, 6(1): 191–206.
  • Hossain, K.M.A. and Lachemi, M., 2009. Fresh, Mechanical, and Durability Characteristics of Self-Consolidating Concrete Incorporating Volcanic Ash. Journal of Materials in Civil Engineering, 22(7): 651–657.
  • http://atiksahasi.com/Atik-Lastiklerin-Omrunu-Tamamlamis-Lastikler-Geri-Donusum-Sektorundeki-Onemi-38., 2019. Atık Lastiklerin(Ömrünü Tamamlamış Lastikler) Geri Dönüşüm Sektöründeki Önemi. [Internet].
  • Available at Website http://atiksahasi.com/Atik-Lastiklerin-Omrunu-Tamamlamis-Lastikler-Geri-Donusum-Sektorundeki-Onemi-38.
  • http://www.lasder.org.tr/., 2018. LASDER 2018 yılı hedefleri. LASDER [Internet]. Available at Website .
  • http://www.resmigazete.gov.tr/eskiler/2006/11/20061125-2.htm., 2006. Ömrünü Tamamlamış Lastiklerin Kontrolü Yönetmeliği. Türkiye.
  • Karakurt, C., Işıkdağ, B., and Topçu, İ.B., 2014. Atık Lastik Agregalı Harçların Mekanik ve Fiziksel Özelliklerinin İncelenmesi. Politeknik Dergisi, 17(1): 3–7.
  • Khatib, J.M., 2008. Performance of self-compacting concrete containing fly ash. Construction and Building Materials, 22(9): 1963–1971.
  • Kim, J.-K., 2009. Size effect in concrete specimens with dissimilar initial cracks. Magazine of Concrete Research, 42(153): 233–238.
  • Kim, J.K., Yi, S.T., Park, C.K., and Eo, S.H., 1999. Size effect on compressive strength of plain and spirally reinforced concrete cylinders. ACI Structural Journal, 96(1): 88–94.
  • Koçak, Y. and Alpaslan, L., 2011. Atık Lastiklerin Çimento ve Beton Sektöründe Kullanım Potansiyelleri. In İnternational Advanced Technologies Symposium p. 118–122.
  • Li, G., Stubblefield, M.A., Garrick, G., Eggers, J., Abadie, C., and Huang, B., 2004. Development of waste tire modified concrete. Cement and Concrete Research, 34(12): 2283–2289.
  • Najim, K.B. and Hall, M.R., 2010. A review of the fresh/hardened properties and applications for plain- (PRC) and self-compacting rubberised concrete (SCRC). Construction and Building Materials, 24(11): 2043–2051.
  • Najim, K.B. and Hall, M.R., 2012. Mechanical and dynamic properties of self-compacting crumb rubber modified concrete. Construction and Building Materials, 27(1): 521–530.
  • Nanthagopalan, P. and Santhanam, M., 2009. Experimental investigations on the influence of paste composition and content on the properties of Self-Compacting Concrete. Construction and Building Materials, 23(11): 3443–3449.
  • Neville, A.M. and Brooks, J.J., 2010. Properties of concrete. Building and Environment, 11: 442.
  • Oneill, R.C., Hill, R.L., Butler, W.B., Cabrera, J.G., Carrasquillo, R.L., Ellis Jr, W.E., Eriin, B.E., Fidjestal, P., Forster, S.W., Gordon, C., and others., 2001. Guide to durable concrete. ACI201, 2: 2–5.
  • Rahman, M.M., Usman, M., and Al-Ghalib, A.A., 2012. Fundamental properties of rubber modified self-compacting concrete (RMSCC). Construction and Building Materials, 36: 630–637.
  • Reda T., M.M., El-Dieb, A.S., Abd El-Wahab, M.A., and Abdel-Hameed, M.E., 2008. Mechanical, Fracture, and Microstructural Investigations of Rubber Concrete. Journal of Materials in Civil Engineering, 20(10): 640–649.
  • Rubber Manufacturers Association., 2006. Scrap tire markets in the United States. Washington, DC, .
  • Şaşmaz, Ç; Tekin, İ., 1970. Effect of concrete components on fresh and hardened self compacting concrete properties.
  • Scott, B.D. and Safiuddin, M., 2015. Abrasion Resistance of Concrete – Design, Construction and Case Study. ISSR Journals, 6(3): 136–148.
  • Seong-Tae, Y., Eun-Ik, Y., and Joong-Cheol, C., 2006. Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete. Nuclear Engineering and Design, 236(2): 115–127.
  • Snelson, D.G., Kinuthia, J.M., Davies, P.A., and Chang, S.R., 2009. Sustainable construction: Composite use of tyres and ash in concrete. Waste Management, 29(1): 360–367.
  • Sofi, A., 2018. Effect of waste tyre rubber on mechanical and durability properties of concrete – A review. Ain Shams Engineering Journal, 9(4): 2691–2700.
  • Su, N., Hsu, K.C., and Chai, H.W., 2001. A simple mix design method for self-compacting concrete. Cement and Concrete Research, 31(12): 1799–1807.
  • Sugözü, İlker, and İ.M., 2009. Atık taşıt lastikleri ve değerlendirme yöntemleri. Taşıt Teknolojileri Elektronik Dergisi, 1(1): 35–46.
  • Sukontasukkul, P. and Chaikaew, C., 2006. Properties of concrete pedestrian block mixed with crumb rubber. Construction and Building Materials, 20(7): 450–457.
  • Topçu, İ.B., 1995. The properties of rubberized concretes. Cement and Concrete Research, 25(2): 304–310.
  • Topçu, İ.B. and Avcular, N., 1997. Collision Behaviours of Rubberized Concrete. Cement and concrete research, 27(12): 11.
  • Topçu, İ.B. and Bilir, T., 2009. Experimental investigation of some fresh and hardened properties of rubberized self-compacting concrete. Materials and Design, 30(8): 3056–3065.
  • Topçu, İ.B., Bilir, T., and Uygunoǧlu, T., 2009. Effect of waste marble dust content as filler on properties of self-compacting concrete. Construction and Building Materials, 23(5): 1947–1953.
  • Topçu, İ.B. and Eser, Ö.F., 2000. Lastik Agregalı Betonlarin Özelikleri. Balıkesir Üniv., Müh.-Mim. Fak., III. Balıkesir Müh.-Mim. Semp., ss, : 173–181.
  • Turatsinze, A. and Garros, M., 2008. On the modulus of elasticity and strain capacity of Self-Compacting Concrete incorporating rubber aggregates. Resources, Conservation and Recycling, 52(10): 1209–1215.
  • Turgut, P., Yeşilata, B., and Işıker, Y., 2007. Kompozit Yapı Malzemelerinde Isıl Özellik Ölçümü-2: Hurda Lastik Katkılı Betonlar için Ölçüm Sonuçları. Mühendis ve Makina, 48(565): 33–39.
  • Uygunoǧlu, T. and Topçu, İ.B., 2010. The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars. Construction and Building Materials, 24(7): 1141–1150.
  • Wu, Z., Zhang, Y., Zheng, J., and Ding, Y., 2009. An experimental study on the workability of self-compacting lightweight concrete. Construction and Building Materials, 23(5): 2087–2092.
  • Zheng, L., Sharon Huo, X., and Yuan, Y., 2008. Experimental investigation on dynamic properties of rubberized concrete. Construction and Building Materials, 22(5): 939–947.
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Serkan Etli 0000-0003-3093-4106

Selim Cemalgil 0000-0001-6475-3632

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 4 Eylül 2020
Kabul Tarihi 24 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Etli, S., & Cemalgil, S. (2020). Effects of Specimen Size on The Compressive Strength of Rubber Modified Self-Compacting Concrete. International Journal of Pure and Applied Sciences, 6(2), 118-129. https://doi.org/10.29132/ijpas.789480
AMA Etli S, Cemalgil S. Effects of Specimen Size on The Compressive Strength of Rubber Modified Self-Compacting Concrete. International Journal of Pure and Applied Sciences. Aralık 2020;6(2):118-129. doi:10.29132/ijpas.789480
Chicago Etli, Serkan, ve Selim Cemalgil. “Effects of Specimen Size on The Compressive Strength of Rubber Modified Self-Compacting Concrete”. International Journal of Pure and Applied Sciences 6, sy. 2 (Aralık 2020): 118-29. https://doi.org/10.29132/ijpas.789480.
EndNote Etli S, Cemalgil S (01 Aralık 2020) Effects of Specimen Size on The Compressive Strength of Rubber Modified Self-Compacting Concrete. International Journal of Pure and Applied Sciences 6 2 118–129.
IEEE S. Etli ve S. Cemalgil, “Effects of Specimen Size on The Compressive Strength of Rubber Modified Self-Compacting Concrete”, International Journal of Pure and Applied Sciences, c. 6, sy. 2, ss. 118–129, 2020, doi: 10.29132/ijpas.789480.
ISNAD Etli, Serkan - Cemalgil, Selim. “Effects of Specimen Size on The Compressive Strength of Rubber Modified Self-Compacting Concrete”. International Journal of Pure and Applied Sciences 6/2 (Aralık 2020), 118-129. https://doi.org/10.29132/ijpas.789480.
JAMA Etli S, Cemalgil S. Effects of Specimen Size on The Compressive Strength of Rubber Modified Self-Compacting Concrete. International Journal of Pure and Applied Sciences. 2020;6:118–129.
MLA Etli, Serkan ve Selim Cemalgil. “Effects of Specimen Size on The Compressive Strength of Rubber Modified Self-Compacting Concrete”. International Journal of Pure and Applied Sciences, c. 6, sy. 2, 2020, ss. 118-29, doi:10.29132/ijpas.789480.
Vancouver Etli S, Cemalgil S. Effects of Specimen Size on The Compressive Strength of Rubber Modified Self-Compacting Concrete. International Journal of Pure and Applied Sciences. 2020;6(2):118-29.

Cited By














154501544915448154471544615445