Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Terbium (Tb) Doped İnterface on The Electrical Characteristics of Al /P-Si Schotkky Diodes

Yıl 2021, Cilt: 7 Sayı: 2, 219 - 228, 20.07.2021
https://doi.org/10.29132/ijpas.854046

Öz

In this study, Terbium doped Cerium Magnesium Aluminate was fabricated using the spin-coating method as a layer between the semiconductor and metal. The electrical properties of the Schottky Diodes with and without the interface were compared using Current-Voltage measurements in the range of (± 2 V). The ideality factor, saturation current, zero bias barrier height and series resistance values of these diodes were calculated using both the Thermionic Emission method and the Norde Function. The experimental results showed that diode with the Terbium-doped Cerium Magnesium Aluminate interface improved compared to the diode without the interface in terms of series resistance, ideality factor and interface states. In addition, the current transmission mechanism at forward bias (V>0) was examined in both diodes and it was seen that both diodes had three linner regions with different slope. Moreover, the energy distribution of the interface states was also examined and it was seen that Schottky Diode with the interface reduced compared to the diode without the interface in terms of the interface states due to the presence of the interface layer used.

Kaynakça

  • Altindal, Ş., Farazin, J., Pirgholi-Givi, G., Maril, E., Azizian-Kalandaragh, Y., 2020. The effects of (Bi2Te3–Bi2O3-TeO2-PVP) interfacial film on the dielectric and electrical features of Al/p-Si (MS) Schottky barrier diodes (SBDs). Physica B: Condensed Matter, 582:411958.
  • Badali, Y., Azizian-Kalandaragh, Y., Uslu, İ., Altindal, Ş., 2020. Investigation of the effect of different Bi2O3–x: PVA (x= Sm, Sn, Mo) thin insulator interface-layer materials on diode parameters. Journal of Materials Science: Materials in Electronics, 31:8033–8042.
  • Bengi, A., Aydemir, U., Altindal, Ş., Özen, Y., Özçelik, S., 2010. A comparative study on the electrical characteristics of Au/n-Si structures with anatase and rutile phase TiO2 interfacial insulator layer. Journal of Alloys and Compounds, 505:628–633.
  • Bilkan, Ç., Azizian-Kalandaragh, Y., Sevgili, Ö., Altındal, Ş., 2019. Investigation of the efficiencies of the (SnO2-PVA) interlayer in Au/n-Si (MS) SDs on electrical characteristics at room temperature by comparison. Journal of Materials Science: Materials in Electronics, 30:20479-20488.
  • Binnemans, K., Jones, P. T., 2015. Rare Earths and the Balance Problem. Journal of Sustainable Metallurgy, 1:29–38.
  • Bohlin, K. E., 1986. Generalized Norde plot including determination of the ideality factor. Journal of Applied Physics, 60:1223–1224.
  • Bonificio, W. D., Clarke, D. R., 2016. Rare-Earth Separation Using Bacteria. Environmental Science & Technology Letters, 3:180–184.
  • Card, H. C., Rhoderick, E. H., 1971. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics, 4:1589–1601.
  • Chen, Z., 2011. Global rare earth resources and scenarios of future rare earth industry. Journal of Rare Earths, 29:1–6.
  • Eroğlu, A., Demirezen, S., Azizian-Kalandaragh, Y., Altındal, Ş., 2020. A comparative study on the electrical properties and conduction mechanisms of Au/n-Si Schottky diodes with/without an organic interlayer. Journal of Materials Science: Materials in Electronics, 31:14466–14477.
  • Kacus, H., Yilmaz, M., Kocyigit, A., Incekara, U., Aydogan, S., 2020. Optoelectronic properties of Co/pentacene/Si MIS heterojunction photodiode. Physica B: Condensed Matter, 597:412408.
  • Kato, Y., Fujinaga, K., Nakamura, K., Takaya, Y., Kitamura, K., Ohta, J., Toda, R., Nakashima, T., Iwamori, H., 2011. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geoscience, 4:535–539.
  • Lederer, F. L., Curtis, S. B., Bachmann, S., Dunbar, W. S., MacGillivray, R. T. A., 2017. Identification of lanthanum-specific peptides for future recycling of rare earth elements from compact fluorescent lamps. Biotechnology and Bioengineering, 114:1016–1024.
  • Liang, T., Li, K., Wang, L., 2014. State of rare earth elements in different environmental components in mining areas of China. Environmental Monitoring and Assessment, 186:1499–1513.
  • Liu, H., Zhang, Y., Luan, Y., Yu, H., Li, D., 2020. Research Progress in Preparation and Purification of Rare Earth Metals. Metals, 10:1–13.
  • Liu, Y.-F., Zhang, S.-G., Liu, B., Shen, H.-L., 2019. An alkaline fusion mechanism for aluminate rare earth phosphor: cation–oxoanion synergies theory. Rare Metals, 38:299–305.
  • Mancheri, N. A., 2015. World trade in rare earths, Chinese export restrictions, and implications. Resources Policy, 46:262–271.
  • Massari, S., Ruberti, M., 2013. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38:36–43.
  • Nakamura, E., Sato, K., 2011. Managing the scarcity of chemical elements. Nature Materials, 10:158–161. Naumov, A. V., 2008. Review of the world market of rare-earth metals. Russian Journal of Non-Ferrous Metals, 49:14–22.
  • Nicollian, E. H., Brews, J. R., 1982. Metal Oxide Semiconductor (MOS) Physics and Technology. New York. Norde, H., 1979. A modified forward I‐V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50:5052–5053.
  • Pei, W., Chen, J., You, D., Zhang, Q., Li, M., Lu, Y., Fu, Z., He, Y., 2020. Enhanced photovoltaic effect in Ca and Mn co-doped BiFeO3 epitaxial thin films. Applied Surface Science, 530:147194.
  • Reddy, M.S.P., Sreenu, K., Reddy, V.R., Park, C., 2017. Modified electrical properties and transport mechanism of Ti/p-InP Schottky structure with a polyvinylpyrrolidone (PVP) polymer interlayer. Journal of Materials Science: Materials in Electronics, 28:4847-4855.
  • Rajagopal Reddy, V., Manjunath, V., Janardhanam, V., Kil, Y. H., Choi, C. J., 2014. Electrical properties and current transport mechanisms of the Au/n-GaN Schottky structure with solution- processed high-k BaTiO3 interlayer. Journal of Electronic Materials, 43: 3499–3507.
  • Reddy, V. R., 2014. Electrical properties of Au/polyvinylidene fluoride/n-InP Schottky diode with polymer interlayer. Thin Solid Films, 556:300–306.
  • Rhoderick, R. H., Williams, E. H., 1988. Metal-Semiconductor Contacts (2nd ed.). London: Oxford University Press.
  • Sevgili, Ö., Yıldırım, M., Azizian-Kalandaragh, Y., Altındal, Ş., 2020. A comparison study regarding Al/p-Si and Al/(carbon nanofiber–PVP)/p-Si diodes: current/impedance–voltage (I/Z–V) characteristics. Applied Physics A, 126:634.
  • Sze, S. M., 1981. Physics of Semiconductor Devices (2nd ed.). New York: Willey.
  • Taşçıoğlu, İ., Soylu, M., Altındal, Ş., Al-Ghamdi, A.A., Yakuphanoğlu, F., 2012. Effects of interface states and series resistance on electrical properties of Al/nanostructure CdO/p-GaAs diode. Journal of Alloys and Compounds, 541:462-467.
  • Tataroğlu, A., Büyükbaş Ulusan, A., Altındal, Ş., Azizian-Kalandaragh, Y., 2020a. A Compare Study on Electrical Properties of MS Diodes with and Without CoFe2O4-PVP Interlayer. Journal of Inorganic and Organometallic Polymers and Materials, doi.org/10.1007/s10904-020-01798-x
  • Tataroğlu, A., Altındal, Ş., Azizian-Kalandaragh, Y., 2020b. Comparison of electrical properties of MS and MPS type diode in respect of (In2O3-PVP) interlayer. Physica B: Condensed Matter, 576:411733.
  • Tecimer, H.U., Alper, M.A., Tecimer, H., Tan S.O., Altındal, Ş., 2018. Integration of Zn-doped organic polymer nanocomposites between metal semiconductor structure to reveal the electrical qualifications of the diodes, Polymer Bulletin, 75:4257–4271.
  • URL-1.2020. https://www.gao.gov/new.items/d10617r.pdf/ Amerika Birleşik Devletleri Hükümeti Sorumluluk Ofisi, Savunma Tedarik Zincirinde Nadir Bulunan Toprak Malzemeler. 10 Aralık 2020.
  • Wagle, S., Shirodkar, V., 2000. Space-charge-limited conduction in thin film Al/Sb2Pb1Se7/Al devices. Brazilian Journal of Physics, 30: 380–385.
  • Yakuphanoğlu, F., 2008. Analysis of interface states of metal–insulator–semiconductor photodiode with n-type silicon by conductance technique. Sensors and Actuators A: Physical, 147: 104-109.
  • Yerişkin, S.A., 2019. The investigation of effects of (Fe2O4-PVP) organic-layer, surface states, and series resistance on the electrical characteristics and the sources of them. Journal of Materials Science: Materials in Electronics, 30:17032–17039.
  • Yerişkin, S.A., Balbaşı, M., Orak, İ., 2017. The effects of (graphene doped-PVA) interlayer on the determinative electrical parameters of the Au/n-Si (MS) structures at room temperature. Journal of Materials Science: Materials in Electronics, 28:14040–14048.

Terbiyum (Tb) Katkılı Arayüzeyin Al/p-Si Schotkky Diyotların Elektrik Karakteristikleri Üzerine Etkisi

Yıl 2021, Cilt: 7 Sayı: 2, 219 - 228, 20.07.2021
https://doi.org/10.29132/ijpas.854046

Öz

Bu çalışmada Terbiyum katkılı Seryum Magnezyum Alüminat, metal ve yarıiletken kristal arasına bir tabaka olarak döner-kaplama yöntemi kullanılarak oluşturuldu. Arayüzeye sahip Schottky Diyotun ve arayüzeysiz Schottky Diyotun elektiksel özellikleri (±2 V) aralığında Akım-Gerilim ölçümleri kullanılarak birbirleriyle karşılaştırıldı. Bu diyotların idealite faktörü, doyma akımı, sıfır beslem engel yüksekliği ve seri direnç değerleri hem Termiyonik Emisyon metodu hem de Norde Fonksiyonu kullanılarak hesaplandı. Deneysel sonuçlar Terbiyum katkılı Seryum Magnezyum Alüminat arayüzeyine sahip diyotun arayüzeysiz diyot ile karşılaştırıldığında seri direnç, idealite faktörü ve arayüzey durumları bakımından iyileştirdiğini gösterdi. Ayrıca her iki diyot içinde doğru beslemdeki (V>0) akım iletim mekanizması incelendi ve bu bölgede iki diyotunda eğimleri birbirlerinden farklı üç lineer bölgeye sahip olduğu görüldü. Dahası arayüzey durumlarının enerji dağılımı da incelendi ve kullanılan arayüzey tabakasının varlığından dolayı arayüzeysiz Schottky Diyotun arayüzey durumlarına göre azalmasını sağladığı görüldü.

Kaynakça

  • Altindal, Ş., Farazin, J., Pirgholi-Givi, G., Maril, E., Azizian-Kalandaragh, Y., 2020. The effects of (Bi2Te3–Bi2O3-TeO2-PVP) interfacial film on the dielectric and electrical features of Al/p-Si (MS) Schottky barrier diodes (SBDs). Physica B: Condensed Matter, 582:411958.
  • Badali, Y., Azizian-Kalandaragh, Y., Uslu, İ., Altindal, Ş., 2020. Investigation of the effect of different Bi2O3–x: PVA (x= Sm, Sn, Mo) thin insulator interface-layer materials on diode parameters. Journal of Materials Science: Materials in Electronics, 31:8033–8042.
  • Bengi, A., Aydemir, U., Altindal, Ş., Özen, Y., Özçelik, S., 2010. A comparative study on the electrical characteristics of Au/n-Si structures with anatase and rutile phase TiO2 interfacial insulator layer. Journal of Alloys and Compounds, 505:628–633.
  • Bilkan, Ç., Azizian-Kalandaragh, Y., Sevgili, Ö., Altındal, Ş., 2019. Investigation of the efficiencies of the (SnO2-PVA) interlayer in Au/n-Si (MS) SDs on electrical characteristics at room temperature by comparison. Journal of Materials Science: Materials in Electronics, 30:20479-20488.
  • Binnemans, K., Jones, P. T., 2015. Rare Earths and the Balance Problem. Journal of Sustainable Metallurgy, 1:29–38.
  • Bohlin, K. E., 1986. Generalized Norde plot including determination of the ideality factor. Journal of Applied Physics, 60:1223–1224.
  • Bonificio, W. D., Clarke, D. R., 2016. Rare-Earth Separation Using Bacteria. Environmental Science & Technology Letters, 3:180–184.
  • Card, H. C., Rhoderick, E. H., 1971. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics, 4:1589–1601.
  • Chen, Z., 2011. Global rare earth resources and scenarios of future rare earth industry. Journal of Rare Earths, 29:1–6.
  • Eroğlu, A., Demirezen, S., Azizian-Kalandaragh, Y., Altındal, Ş., 2020. A comparative study on the electrical properties and conduction mechanisms of Au/n-Si Schottky diodes with/without an organic interlayer. Journal of Materials Science: Materials in Electronics, 31:14466–14477.
  • Kacus, H., Yilmaz, M., Kocyigit, A., Incekara, U., Aydogan, S., 2020. Optoelectronic properties of Co/pentacene/Si MIS heterojunction photodiode. Physica B: Condensed Matter, 597:412408.
  • Kato, Y., Fujinaga, K., Nakamura, K., Takaya, Y., Kitamura, K., Ohta, J., Toda, R., Nakashima, T., Iwamori, H., 2011. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geoscience, 4:535–539.
  • Lederer, F. L., Curtis, S. B., Bachmann, S., Dunbar, W. S., MacGillivray, R. T. A., 2017. Identification of lanthanum-specific peptides for future recycling of rare earth elements from compact fluorescent lamps. Biotechnology and Bioengineering, 114:1016–1024.
  • Liang, T., Li, K., Wang, L., 2014. State of rare earth elements in different environmental components in mining areas of China. Environmental Monitoring and Assessment, 186:1499–1513.
  • Liu, H., Zhang, Y., Luan, Y., Yu, H., Li, D., 2020. Research Progress in Preparation and Purification of Rare Earth Metals. Metals, 10:1–13.
  • Liu, Y.-F., Zhang, S.-G., Liu, B., Shen, H.-L., 2019. An alkaline fusion mechanism for aluminate rare earth phosphor: cation–oxoanion synergies theory. Rare Metals, 38:299–305.
  • Mancheri, N. A., 2015. World trade in rare earths, Chinese export restrictions, and implications. Resources Policy, 46:262–271.
  • Massari, S., Ruberti, M., 2013. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38:36–43.
  • Nakamura, E., Sato, K., 2011. Managing the scarcity of chemical elements. Nature Materials, 10:158–161. Naumov, A. V., 2008. Review of the world market of rare-earth metals. Russian Journal of Non-Ferrous Metals, 49:14–22.
  • Nicollian, E. H., Brews, J. R., 1982. Metal Oxide Semiconductor (MOS) Physics and Technology. New York. Norde, H., 1979. A modified forward I‐V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50:5052–5053.
  • Pei, W., Chen, J., You, D., Zhang, Q., Li, M., Lu, Y., Fu, Z., He, Y., 2020. Enhanced photovoltaic effect in Ca and Mn co-doped BiFeO3 epitaxial thin films. Applied Surface Science, 530:147194.
  • Reddy, M.S.P., Sreenu, K., Reddy, V.R., Park, C., 2017. Modified electrical properties and transport mechanism of Ti/p-InP Schottky structure with a polyvinylpyrrolidone (PVP) polymer interlayer. Journal of Materials Science: Materials in Electronics, 28:4847-4855.
  • Rajagopal Reddy, V., Manjunath, V., Janardhanam, V., Kil, Y. H., Choi, C. J., 2014. Electrical properties and current transport mechanisms of the Au/n-GaN Schottky structure with solution- processed high-k BaTiO3 interlayer. Journal of Electronic Materials, 43: 3499–3507.
  • Reddy, V. R., 2014. Electrical properties of Au/polyvinylidene fluoride/n-InP Schottky diode with polymer interlayer. Thin Solid Films, 556:300–306.
  • Rhoderick, R. H., Williams, E. H., 1988. Metal-Semiconductor Contacts (2nd ed.). London: Oxford University Press.
  • Sevgili, Ö., Yıldırım, M., Azizian-Kalandaragh, Y., Altındal, Ş., 2020. A comparison study regarding Al/p-Si and Al/(carbon nanofiber–PVP)/p-Si diodes: current/impedance–voltage (I/Z–V) characteristics. Applied Physics A, 126:634.
  • Sze, S. M., 1981. Physics of Semiconductor Devices (2nd ed.). New York: Willey.
  • Taşçıoğlu, İ., Soylu, M., Altındal, Ş., Al-Ghamdi, A.A., Yakuphanoğlu, F., 2012. Effects of interface states and series resistance on electrical properties of Al/nanostructure CdO/p-GaAs diode. Journal of Alloys and Compounds, 541:462-467.
  • Tataroğlu, A., Büyükbaş Ulusan, A., Altındal, Ş., Azizian-Kalandaragh, Y., 2020a. A Compare Study on Electrical Properties of MS Diodes with and Without CoFe2O4-PVP Interlayer. Journal of Inorganic and Organometallic Polymers and Materials, doi.org/10.1007/s10904-020-01798-x
  • Tataroğlu, A., Altındal, Ş., Azizian-Kalandaragh, Y., 2020b. Comparison of electrical properties of MS and MPS type diode in respect of (In2O3-PVP) interlayer. Physica B: Condensed Matter, 576:411733.
  • Tecimer, H.U., Alper, M.A., Tecimer, H., Tan S.O., Altındal, Ş., 2018. Integration of Zn-doped organic polymer nanocomposites between metal semiconductor structure to reveal the electrical qualifications of the diodes, Polymer Bulletin, 75:4257–4271.
  • URL-1.2020. https://www.gao.gov/new.items/d10617r.pdf/ Amerika Birleşik Devletleri Hükümeti Sorumluluk Ofisi, Savunma Tedarik Zincirinde Nadir Bulunan Toprak Malzemeler. 10 Aralık 2020.
  • Wagle, S., Shirodkar, V., 2000. Space-charge-limited conduction in thin film Al/Sb2Pb1Se7/Al devices. Brazilian Journal of Physics, 30: 380–385.
  • Yakuphanoğlu, F., 2008. Analysis of interface states of metal–insulator–semiconductor photodiode with n-type silicon by conductance technique. Sensors and Actuators A: Physical, 147: 104-109.
  • Yerişkin, S.A., 2019. The investigation of effects of (Fe2O4-PVP) organic-layer, surface states, and series resistance on the electrical characteristics and the sources of them. Journal of Materials Science: Materials in Electronics, 30:17032–17039.
  • Yerişkin, S.A., Balbaşı, M., Orak, İ., 2017. The effects of (graphene doped-PVA) interlayer on the determinative electrical parameters of the Au/n-Si (MS) structures at room temperature. Journal of Materials Science: Materials in Electronics, 28:14040–14048.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ömer Sevgili 0000-0003-1740-1444

Yayımlanma Tarihi 20 Temmuz 2021
Gönderilme Tarihi 5 Ocak 2021
Kabul Tarihi 21 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 7 Sayı: 2

Kaynak Göster

APA Sevgili, Ö. (2021). Terbiyum (Tb) Katkılı Arayüzeyin Al/p-Si Schotkky Diyotların Elektrik Karakteristikleri Üzerine Etkisi. International Journal of Pure and Applied Sciences, 7(2), 219-228. https://doi.org/10.29132/ijpas.854046
AMA Sevgili Ö. Terbiyum (Tb) Katkılı Arayüzeyin Al/p-Si Schotkky Diyotların Elektrik Karakteristikleri Üzerine Etkisi. International Journal of Pure and Applied Sciences. Temmuz 2021;7(2):219-228. doi:10.29132/ijpas.854046
Chicago Sevgili, Ömer. “Terbiyum (Tb) Katkılı Arayüzeyin Al/P-Si Schotkky Diyotların Elektrik Karakteristikleri Üzerine Etkisi”. International Journal of Pure and Applied Sciences 7, sy. 2 (Temmuz 2021): 219-28. https://doi.org/10.29132/ijpas.854046.
EndNote Sevgili Ö (01 Temmuz 2021) Terbiyum (Tb) Katkılı Arayüzeyin Al/p-Si Schotkky Diyotların Elektrik Karakteristikleri Üzerine Etkisi. International Journal of Pure and Applied Sciences 7 2 219–228.
IEEE Ö. Sevgili, “Terbiyum (Tb) Katkılı Arayüzeyin Al/p-Si Schotkky Diyotların Elektrik Karakteristikleri Üzerine Etkisi”, International Journal of Pure and Applied Sciences, c. 7, sy. 2, ss. 219–228, 2021, doi: 10.29132/ijpas.854046.
ISNAD Sevgili, Ömer. “Terbiyum (Tb) Katkılı Arayüzeyin Al/P-Si Schotkky Diyotların Elektrik Karakteristikleri Üzerine Etkisi”. International Journal of Pure and Applied Sciences 7/2 (Temmuz 2021), 219-228. https://doi.org/10.29132/ijpas.854046.
JAMA Sevgili Ö. Terbiyum (Tb) Katkılı Arayüzeyin Al/p-Si Schotkky Diyotların Elektrik Karakteristikleri Üzerine Etkisi. International Journal of Pure and Applied Sciences. 2021;7:219–228.
MLA Sevgili, Ömer. “Terbiyum (Tb) Katkılı Arayüzeyin Al/P-Si Schotkky Diyotların Elektrik Karakteristikleri Üzerine Etkisi”. International Journal of Pure and Applied Sciences, c. 7, sy. 2, 2021, ss. 219-28, doi:10.29132/ijpas.854046.
Vancouver Sevgili Ö. Terbiyum (Tb) Katkılı Arayüzeyin Al/p-Si Schotkky Diyotların Elektrik Karakteristikleri Üzerine Etkisi. International Journal of Pure and Applied Sciences. 2021;7(2):219-28.

154501544915448154471544615445