Research Article
BibTex RIS Cite

Rotational-Vibrational Energy Levels for the 𝑿𝟏𝚺+ State of 𝐑𝐛𝐇 Molecule

Year 2023, Volume: 9 Issue: 1, 99 - 106, 30.06.2023
https://doi.org/10.29132/ijpas.1274351

Abstract

In this study, the more suitable potential energy function to model the experimental (observed) vibrational energy levels of the 𝑅𝑏𝐻(𝑋1Σ+) molecule has been determined by using the energy eigenvalue equations obtained for the general molecular potential (GMP) and the improved generalized Pöschl–Teller (IGPT) potential. In addition, by considering suitable potential energy function and the Pekeris-type approximation, which is the most appropriate approach to the centrifugal term in the discussion of bound states, the more accurate rotational-vibration energies of the 𝑅𝑏𝐻(𝑋1Σ+) molecule have been found.

References

  • Du, J. F., Guo, P., & Jia, C. S. (2014). D-dimensional energies for scandium monoiodide. Journal of Mathematical Chemistry, 52, 2559-2569.
  • Eyube, E. S., Bitrus, B. M., & Jabil, Y. Y. (2021). Thermodynamic relations and ro-vibrational energy levels of the improved Pöschl–Teller oscillator for diatomic molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 54(15), 155102.
  • Eyube, E. S., Notani, P. P., & Dikko, A. B. (2022). Modeling of diatomic molecules with modified hyperbolical-type potential. The European Physical Journal Plus, 137(3), 329.
  • Ezzine, M. M., Hachama, M., & Diaf, A. (2021). Feynman kernel analytical solutions for the deformed hyperbolic barrier potential with application to some diatomic molecules. Physica Scripta, 96(12), 125260.
  • Frost, A. A., & Musulin, B. (1954). The Possible Existence of a Reduced Potential Energy Function for Diatomic Molecules1. Journal of the American Chemical Society, 76(8), 2045-2048.
  • Greene, R. L., & Aldrich, C. (1976). Variational wave functions for a screened Coulomb potential. Physical Review A, 14(6), 2363.
  • Hsieh, Y. K., Yang, S. C., Tam, A. C., Verma, K. K., & Stwalley, W. C. (1980). The RKR potential energy curves for the X1Σ+ and A1Σ+ states of RbH. Journal of Molecular Spectroscopy, 83(2), 311-316.
  • Jia, C. S., Diao, Y. F., Liu, X. J., Wang, P. Q., Liu, J. Y., & Zhang, G. D. (2012). Equivalence of the Wei potential model and Tietz potential model for diatomic molecules. The Journal of chemical physics, 137(1), 014101.
  • Kisoglu, H. F., Yanar, H., Aydogdu, O., & Salti, M. (2019). Relativistic spectral bounds for the general molecular potential: application to a diatomic molecule. Journal of molecular modeling, 25, 1-11.
  • Liu, J. Y., Zhang, G. D., & Jia, C. S. (2013). Calculation of the interaction potential energy curve and vibrational levels for the a3Σu+ state of Li27 molecule. Physics Letters A, 377(21-22), 1444-1447.
  • Morse, P. M. (1929). Diatomic molecules according to the wave mechanics. II. Vibrational levels. Physical review, 34(1), 57.
  • Mustafa, O. (2015a). On the ro–vibrational energies for the lithium dimer; maximum-possible rotational levels. Journal of Physics B: Atomic, Molecular and Optical Physics, 48(6), 065101.
  • Mustafa, O. (2015b). A new deformed Schiöberg-type potential and ro-vibrational energies for some diatomic molecules. Physica Scripta, 90(6), 065002.
  • Ocak, Z., Yanar, H., Salti, M., & Aydogdu, O. (2018). Relativistic spinless energies and thermodynamic properties of sodium dimer molecule. Chemical Physics, 513, 252-257.
  • Okorie, U. S., Ikot, A. N., & Chukwuocha, E. O. (2020). Approximate energy spectra of improved generalized Mobius square potential (IGMSP) for some diatomic hydride molecules. Journal of Molecular Modeling, 26, 1-9.
  • Pekeris, C. L. (1934). The rotation-vibration coupling in diatomic molecules. Physical Review, 45(2), 98.
  • Varshni, Y. P. (1957). Comparative study of potential energy functions for diatomic molecules. Reviews of Modern Physics, 29(4), 664.
  • Wang, P. Q., Liu, J. Y., Zhang, L. H., Cao, S. Y., & Jia, C. S. (2012). Improved expressions for the Schiöberg potential energy models for diatomic molecules. Journal of Molecular Spectroscopy, 278, 23-26.
  • Wang, P. Q., Zhang, L. H., Jia, C. S., & Liu, J. Y. (2012). Equivalence of the three empirical potential energy models for diatomic molecules. Journal of Molecular Spectroscopy, 274, 5-8.
  • Yanar, H. (2022a). More accurate ro-vibrational energies for SiF+(X 1Σ+) molecule. Physica Scripta, 97(4), 045404.
  • Yanar, H. (2022b). Comment on ‘Thermodynamic relations and ro-vibrational energy levels of the improved Pöschl–Teller oscillator for diatomic molecules’. Journal of Physics B: Atomic, Molecular and Optical Physics, 55(17), 178001.
  • Yanar, H., Aydoğdu, O., & Saltı, M. (2016). Modelling of diatomic molecules. Molecular Physics, 114(21), 3134-3142.
  • Yanar, H., Taş, A., Salti, M., & Aydogdu, O. (2020). Ro-vibrational energies of CO molecule via improved generalized Pöschl–Teller potential and Pekeris-type approximation. The European Physical Journal plus, 135(3), 292.
  • Zhang, G. D., Liu, J. Y., Zhang, L. H., Zhou, W., & Jia, C. S. (2012). Modified Rosen-Morse potential-energy model for diatomic molecules. Physical Review A, 86(6), 062510.

RbH Molekülünün X^1 Σ^+ Durumu için Dönme-Titreşim Enerji Seviyeleri

Year 2023, Volume: 9 Issue: 1, 99 - 106, 30.06.2023
https://doi.org/10.29132/ijpas.1274351

Abstract

Bu çalışmada genel moleküler (GM) potansiyel ve geliştirilmiş genelleştirilmiş Pöschl–Teller (GGPT) potansiyeli için elde edilmiş enerji özdeğer denklemleri kullanılarak, RbH(X^1 Σ^+) molekülünün deneysel (gözlenen) titreşim enerji seviyelerini modelleyebilecek en iyi potansiyel enerji fonksiyonu belirlenmiştir. Ayrıca, bu potansiyel enerji fonksiyonu ve bağlı durumların tartışılmasında merkezcil terime uygulanabilecek en uygun yaklaşım olan Pekeris tipi yaklaşım ele alınarak RbH(X^1 Σ^+) molekülünün en olası dönme-titreşim enerjileri elde edilmiştir.

References

  • Du, J. F., Guo, P., & Jia, C. S. (2014). D-dimensional energies for scandium monoiodide. Journal of Mathematical Chemistry, 52, 2559-2569.
  • Eyube, E. S., Bitrus, B. M., & Jabil, Y. Y. (2021). Thermodynamic relations and ro-vibrational energy levels of the improved Pöschl–Teller oscillator for diatomic molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 54(15), 155102.
  • Eyube, E. S., Notani, P. P., & Dikko, A. B. (2022). Modeling of diatomic molecules with modified hyperbolical-type potential. The European Physical Journal Plus, 137(3), 329.
  • Ezzine, M. M., Hachama, M., & Diaf, A. (2021). Feynman kernel analytical solutions for the deformed hyperbolic barrier potential with application to some diatomic molecules. Physica Scripta, 96(12), 125260.
  • Frost, A. A., & Musulin, B. (1954). The Possible Existence of a Reduced Potential Energy Function for Diatomic Molecules1. Journal of the American Chemical Society, 76(8), 2045-2048.
  • Greene, R. L., & Aldrich, C. (1976). Variational wave functions for a screened Coulomb potential. Physical Review A, 14(6), 2363.
  • Hsieh, Y. K., Yang, S. C., Tam, A. C., Verma, K. K., & Stwalley, W. C. (1980). The RKR potential energy curves for the X1Σ+ and A1Σ+ states of RbH. Journal of Molecular Spectroscopy, 83(2), 311-316.
  • Jia, C. S., Diao, Y. F., Liu, X. J., Wang, P. Q., Liu, J. Y., & Zhang, G. D. (2012). Equivalence of the Wei potential model and Tietz potential model for diatomic molecules. The Journal of chemical physics, 137(1), 014101.
  • Kisoglu, H. F., Yanar, H., Aydogdu, O., & Salti, M. (2019). Relativistic spectral bounds for the general molecular potential: application to a diatomic molecule. Journal of molecular modeling, 25, 1-11.
  • Liu, J. Y., Zhang, G. D., & Jia, C. S. (2013). Calculation of the interaction potential energy curve and vibrational levels for the a3Σu+ state of Li27 molecule. Physics Letters A, 377(21-22), 1444-1447.
  • Morse, P. M. (1929). Diatomic molecules according to the wave mechanics. II. Vibrational levels. Physical review, 34(1), 57.
  • Mustafa, O. (2015a). On the ro–vibrational energies for the lithium dimer; maximum-possible rotational levels. Journal of Physics B: Atomic, Molecular and Optical Physics, 48(6), 065101.
  • Mustafa, O. (2015b). A new deformed Schiöberg-type potential and ro-vibrational energies for some diatomic molecules. Physica Scripta, 90(6), 065002.
  • Ocak, Z., Yanar, H., Salti, M., & Aydogdu, O. (2018). Relativistic spinless energies and thermodynamic properties of sodium dimer molecule. Chemical Physics, 513, 252-257.
  • Okorie, U. S., Ikot, A. N., & Chukwuocha, E. O. (2020). Approximate energy spectra of improved generalized Mobius square potential (IGMSP) for some diatomic hydride molecules. Journal of Molecular Modeling, 26, 1-9.
  • Pekeris, C. L. (1934). The rotation-vibration coupling in diatomic molecules. Physical Review, 45(2), 98.
  • Varshni, Y. P. (1957). Comparative study of potential energy functions for diatomic molecules. Reviews of Modern Physics, 29(4), 664.
  • Wang, P. Q., Liu, J. Y., Zhang, L. H., Cao, S. Y., & Jia, C. S. (2012). Improved expressions for the Schiöberg potential energy models for diatomic molecules. Journal of Molecular Spectroscopy, 278, 23-26.
  • Wang, P. Q., Zhang, L. H., Jia, C. S., & Liu, J. Y. (2012). Equivalence of the three empirical potential energy models for diatomic molecules. Journal of Molecular Spectroscopy, 274, 5-8.
  • Yanar, H. (2022a). More accurate ro-vibrational energies for SiF+(X 1Σ+) molecule. Physica Scripta, 97(4), 045404.
  • Yanar, H. (2022b). Comment on ‘Thermodynamic relations and ro-vibrational energy levels of the improved Pöschl–Teller oscillator for diatomic molecules’. Journal of Physics B: Atomic, Molecular and Optical Physics, 55(17), 178001.
  • Yanar, H., Aydoğdu, O., & Saltı, M. (2016). Modelling of diatomic molecules. Molecular Physics, 114(21), 3134-3142.
  • Yanar, H., Taş, A., Salti, M., & Aydogdu, O. (2020). Ro-vibrational energies of CO molecule via improved generalized Pöschl–Teller potential and Pekeris-type approximation. The European Physical Journal plus, 135(3), 292.
  • Zhang, G. D., Liu, J. Y., Zhang, L. H., Zhou, W., & Jia, C. S. (2012). Modified Rosen-Morse potential-energy model for diatomic molecules. Physical Review A, 86(6), 062510.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hilmi Yanar 0000-0002-6913-8441

Early Pub Date June 23, 2023
Publication Date June 30, 2023
Submission Date March 31, 2023
Acceptance Date May 4, 2023
Published in Issue Year 2023 Volume: 9 Issue: 1

Cite

APA Yanar, H. (2023). RbH Molekülünün X^1 Σ^+ Durumu için Dönme-Titreşim Enerji Seviyeleri. International Journal of Pure and Applied Sciences, 9(1), 99-106. https://doi.org/10.29132/ijpas.1274351
AMA Yanar H. RbH Molekülünün X^1 Σ^+ Durumu için Dönme-Titreşim Enerji Seviyeleri. International Journal of Pure and Applied Sciences. June 2023;9(1):99-106. doi:10.29132/ijpas.1274351
Chicago Yanar, Hilmi. “RbH Molekülünün X^1 Σ^+ Durumu için Dönme-Titreşim Enerji Seviyeleri”. International Journal of Pure and Applied Sciences 9, no. 1 (June 2023): 99-106. https://doi.org/10.29132/ijpas.1274351.
EndNote Yanar H (June 1, 2023) RbH Molekülünün X^1 Σ^+ Durumu için Dönme-Titreşim Enerji Seviyeleri. International Journal of Pure and Applied Sciences 9 1 99–106.
IEEE H. Yanar, “RbH Molekülünün X^1 Σ^+ Durumu için Dönme-Titreşim Enerji Seviyeleri”, International Journal of Pure and Applied Sciences, vol. 9, no. 1, pp. 99–106, 2023, doi: 10.29132/ijpas.1274351.
ISNAD Yanar, Hilmi. “RbH Molekülünün X^1 Σ^+ Durumu için Dönme-Titreşim Enerji Seviyeleri”. International Journal of Pure and Applied Sciences 9/1 (June 2023), 99-106. https://doi.org/10.29132/ijpas.1274351.
JAMA Yanar H. RbH Molekülünün X^1 Σ^+ Durumu için Dönme-Titreşim Enerji Seviyeleri. International Journal of Pure and Applied Sciences. 2023;9:99–106.
MLA Yanar, Hilmi. “RbH Molekülünün X^1 Σ^+ Durumu için Dönme-Titreşim Enerji Seviyeleri”. International Journal of Pure and Applied Sciences, vol. 9, no. 1, 2023, pp. 99-106, doi:10.29132/ijpas.1274351.
Vancouver Yanar H. RbH Molekülünün X^1 Σ^+ Durumu için Dönme-Titreşim Enerji Seviyeleri. International Journal of Pure and Applied Sciences. 2023;9(1):99-106.

154501544915448154471544615445