Araştırma Makalesi
BibTex RIS Kaynak Göster

Ptcdi-C8/P-Si Heterojunction Diyot: Yapısı ve Elektriksel Karakterizasyonu

Yıl 2024, Cilt: 10 Sayı: 2, 604 - 622, 31.12.2024
https://doi.org/10.29132/ijpas.1569593

Öz

Bu çalışmada, p-Si üzerine spin kaplama yöntemi kullanılarak PTCDI-C8 ince filmi büyütülerek Al/PTCDI-C8/p-Si organik-inorganik (OI) heteroeklem diyotu (C1) üretildi. Benzer şekilde, geleneksel Al/p-Si metal-yarı iletken (MS) diyotu (C0) ara katman kullanılmadan üretildi. C0 ve C1 diyotların I-V ve C-V ölçümleri karanlıkta ve oda sıcaklığında alındı. Her iki diyot da iyi doğrultucu özellikler gösterdi. I-V karakteristiklerinden, C1 diyotunun idealite faktörü, bariyer yüksekliği ve seri direnci sırasıyla 2,1, 0,74 eV ve 248 kΩ olarak belirlendi. C1 heterojunsiyonu için elde edilen BH değerinin, geleneksel C0 diyot için elde edilen değerden daha yüksek olduğu gözlendi. Hem C1 hem de C0 diyotların elektriksel parametreleri, özellikle seri direnç, Cheungs ve Norde yöntemleri kullanılarak yeniden hesaplandı. Oda sıcaklığında, diyotların C-V ölçümleri farklı frekanslarda gerçekleştirildi. C-V karakteristiklerinden, her iki diyotun difüzyon potansiyeli (Vd), bariyer yüksekliği (Φb(C-V)) ve serbest taşıyıcı yoğunluğu (NA) hesaplandı. Ayrıca, C1’in fotovoltaik parametreleri aydınlatma koşulları altında ölçüldü. C1 heteroeklemi, elde edilen fotovoltaik parametreler Voc ve Isc ile bir fotodiyot davranışı göstermektedir.

Kaynakça

  • Gündüz, B., Kurban, M. (2018). Photonic, spectroscopic properties and electronic structure of PTCDI-C8 organic nanostructure. Vibrational Spectroscopy, 96, 46–51.
  • Bedeloğlu, A., Demir, A., Bozkurt, Y., Sariciftci, N.S. (2010). Photovoltaic properties of polymer based organic solar cells adapted for non-transparent substrates. Renewable Energy, 35, 2301-2306.
  • Zafer, C., Kus, M., Turkmen, G., Dincalp, H., Demic, S., Kuband, B., Teoman, Y., Icli, S. (2007). New perylene derivative dyes for dye-sensitized solar cells. Solar Energy Materials & Solar Cells, 91, 427–431.
  • Peumans, P., Uchida, S., Forrest, S.R. (2003). Efficient bulk heterojunction photovoltaic cells using smallmolecular-weight organic thin films. Nature, 425, 158-162.
  • Fana, H., Shia, W., Yub, X., Yu, J. (2016). High performance nitrogen dioxide sensor based on organic field-effect transistor utilizing ultrathin CuPc/PTCDI-C8 heterojunction. Synthetic Metals, 211, 161–166.
  • Kucinska, M., Frac, I., Ulanski, J., Makowski, T., Nosal, A., Gazicki-Lipman, M. (2019). The role of surface morphology in a performance of top-gate OFETs prepared from a solution processable derivative of perylene bisimide. Synthetic Metals, 250, 12-19.
  • Welford, A., Maniam, S., Ganna, E., Jiaoa, X., Thomsen, L., Langfordd, S.J., McNeill, C.R. (2019). Influence of alkyl side-chain type and length on the thin film microstructure and OFET per-formance of naphthalene diimide-based organic semiconductors. Organic Electronics, 75, 10537.
  • Das, A.K., Mandal, R., Mandal, D.K. (2022). The current transport mechanism of Al/Beetroot/Cu used as an organic semiconductor Schottky diode is superior than natural dye-based thin film devices. Microelectronic Engineering, 261, 111816.
  • Hendi, A.A., Al Orainy, R.H. (2014). Rectifying properties of TIPS-pentacene:rhodamine blend organic semiconductor-on-p-silicon diodes. Synthetic Metals, 193, 31–34.
  • Barış, B. (2013). Frequency dependent dielectric properties in Schottky diodes based on rubrene organic semiconductor. Physica E, 54, 171–176.
  • He, J., Liang, B., Yan, X., Liu, F., Wang, J., Yang, Y., and et al. (2021). A TPA-DCPP organic semiconductor film-based room temperature NH3 sensor for insight into the sensing properties. Sensors & Actuators: B. Chemical, 327, 128940.
  • Aziz, F., Sayyad, M.H., Sulaiman, K., Majlis, B.H., Karimov, K.S., Ahmad, Z., and Sugandi, G. (2012). Corrigendum: Influence of humidity conditions on the capacitive and resistive response of an Al/VOPc/Pt co-planar humidity sensor. Meas. Sci. Technol., 23, 069501.
  • Huang, Y., Fu, F., Zouc, W., and Zhang, F. (2012). Probing the effect of substituted groups on sensory properties based on single-crystalline micro/nanostructures of perylenediimide dyes. New J. Chem., 36, 1080–1084.
  • Chae, H., Hwang, S., Kwon, J.E., Pham, Q.B., Kim, S.J., Lee, W.H., Kim, B.G. (2021). Comparative study on the intrinsic NO2 gas sensing capability of triarylamine-based amorphous organic semiconductors. Dyes and Pigments, 186, 109017.
  • Abhijith, T., Ameen, M.Y., and Reddy, V.S. (2015). Synthesis of PTCDI-C8 one dimensional nanostructures for photovoltaic applications. IOP Conf. Series: Materials Science and Engineering, 73, 012052.
  • Erdoğan, E. and Gündüz, B. (2106). Controlling of the Optical Properties of the Solutions of the PTCDI-C8 Organic Semiconductor. Electronic Materials Letters, 12, 773–778.
  • Rahimi, R. and Korakakis, D. (2009). Organic thin film transistors based on Pentacene and PTCDI as the active layer and LiF as the insulating layer. MRS Online Proceedings Library, 1197, 38–43.
  • Balakrishnan, K., Datar, A., Naddo, T., Huang, J., Oitker, R., Yen, M., Zhao, J., and Zang, L. (2006). Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules: Morp-hology Control. J. AM. CHEM. SOC., 128, 7390-7398.
  • Nguyen, M., Turak, A.Z., Maye, F., Heidkamp, J., Wrachtrup, J., Dosch, H. (2010). Island size effects in organic optoelectronic devices. Proc. SPIE 7722, Organic Photonics IV, 77221O.
  • Huang, C, Barlow, S., and Marder, S.R. (2011). Perylene-3,4,9,10-tetracarboxylic Acid Diimides: Synthesis, Physical Properties, and Use in Organic Electronics. J. Org. Chem., 76, 2386–2407.
  • Karak, S., Reddy, V.S., Ray, S.K., Dhar, A. (2009). Organic photovoltaic devices based on pentacene/N, N0 -dioctyl-3,4,9,10- perylenedicarboximide heterojunctions. Organic Electronics, 10, 1006–1010.
  • Güllü, Ö. (2022). Dielectric spectroscopy studies on AL/p-Si photovoltaic diodes with Coomassie Brilliant Blue G-250. Applied Physics A, 128, 7, 587.
  • Barıs¸ B., Yüksel, Ö.F., Tugluoglu, N., Karadeniz, S. (2013). Double barrier heights in 5,6,11,12-tetraphenylnaphthacene (rubrene) based organic Schottky diode. Synthetic Metals, 180, 38–42.
  • Forrest, S.R., Kaplan, M. L., Schmidt, P. H. (1984). Organic-on-inorganic semiconductor contact barrier diodes. I. Theory with applications to organic thin films and prototype devices. Journal of Applied Physics, 55, 1492.
  • Campbell, I. H., Rubin, S., Zawodzinski, T. A., Kress, J. D., Martin, R. L., Smith, D. L., Ba-rashkov, N. N., Ferraris, J. P. (1996). Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Phys. Rev. B, 54, R14321(R).
  • Huang, W.C., Lin, T.C., Horng, C.T., Chen, C.C. (2013). Barrier heights engineering of Al/p-Si Schottky contact by a thin organic interlayer. Microelectronic Engineering, 107, 200–204.
  • Stella, M., Villar, F., Rojas, F.E., Pirriera, M.D., Voz, C., Puigdollers, J., Asensi, J.M., Andreu, J., and Bertomeu, J. “Optical and Morphological Characterization of PTCDI-C13”, MRS Online Proceedings Library (OPL), 1091: Symposium AA – Conjugated Organic Materials–Synthesis, Structure, Device and Applications, 1091-AA05-40, 2008.
  • Tung, R. T. (1992). Electron transport at metal-semiconductor interfaces: General theory. Phys. Rev. B, 45, 13509.
  • Güllü, Ö., Kılıçoğlu, T., Türüt, A. (2010). Electronic properties of the metal/organic interla-yer/inorganic semiconductor sandwich device. Journal of Physics and Chemistry of Solids, 71, 351-356.
  • Rhoderick E.H. and Williams R.H. (1988). Metal-semiconductor contacts. Oxford science pub-lication, 2nd edn., Oxford.
  • Marıl, E. (2021). The effect of (PVP-Cu2Te) organic interlayer on the electrical parameters of Al/p-Si Schottky barrier diodes (SBDs) at room temperature. Physica B, 604, 412732.
  • Karadeniz, S., Barıs¸ B., Yüksel, Ö.F., Tugluoglu, N. (2013). Analysis of electrical properties of Al/p-Si Schottky contacts with and without rubrene layer. Synthetic Metals, 168, 16–22.
  • Imer, A.G., Korkut, A., Farooq, W. A., Dere, A., Atif, M., Atif, H., Karabulut, A. (2019). In-terface controlling study of silicon based Schottky diode by organic layer. Journal of Materials Science: Materials in Electronics, 30, 19239–19246.
  • Güllü, Ö., Türüt, A. (2010). Electrical analysis of organic dye-based MIS Schottky contacts. Microelectronic Engineering, 87, 12, 2482-2487.
  • Cheung, S.K., Cheung, N.W. (1986). Extraction of Schottky diode parameters from forward current‐voltage characteristics. Appl. Phys. Lett., 49, 85–87.
  • Norde, H. (1979). A modified forward I‐V plot for Schottky diodes with high series resistance. J. Appl. Phys, 50, 5052–5053.
  • Bohlin, K.E. (1986). Generalized Norde plot including determination of the ideality factor. Jo-urnal of Applied Physics, 60, 1223.
  • Aydoğan, Ş., Sağlam, M., Türüt, A., Onganer, Y. (2009). Series resistance determination of Au/Polypyrrole/p-Si/Al structure by current–voltage measurements at low temperatures. Materials Science and Engineering C, 29, 1486–1490.
  • Farag, A.A.M., Soliman, H.S., Atta, A.A. (2012). Analysis of dark and photovoltaic characte-ristics of Au/Pyronine G(Y)/p-Si/Al heterojunction. Synthetic Metals, 161, 23–24, 2759-2764.
  • Sze, S.M. (1981). Physics of Semiconductor Devices. Wiley, second ed., New York.
  • Özaydin, C., Tombak, A., Boğa, M., Kiliçoğlu, T. (2015). Optical, Electrical and Photoelectrical Properties of Quercetin Co(II) Complex/n-Si Organic-Inorganic Hybrid Device, Middle East Journal of Science(MEJS), 1, 15–27.
  • Gunduz, B., Yahia, I.S., Yakuphanoglu, F. (2012). Electrical and photoconductivity properties of p-Si/P3HT/Al and p-Si/P3HT: MEH-PPV/Al organic devices: Comparison study. Microelectronic Engineering, 98, 41–57.
  • Yakuphanoglu, F., Farooq, W.A. (2011). Flexible pentacene organic field-effect phototransistor. Synthetic Metals 161, 79–383.
  • Yakuphanoglu, F., Senkal, B.F. (2008). Electrical characterization of the polyaniline including boron/p-type silicon structure for optical sensor applications. Synthetic Metals, 158, 821–825.
  • Tezcan, A.O., Oruç, P., Tuğluoğlu, N., Eymur, S. (2023). Photosensitive properties of Schottky type photodiodes prepared by spin coating of isoniazid Schiff base thin film on p-Si. Optical and Quantum Electronics, 56:989.
  • Şahin, M.F., Taşcı, E., Emrullahoğlu, M., Gökçe, H., Tuğluoğlu, N., Eymur, S. (2021). Electrical, photodiode, and DFT studies of newly synthesized π-conjugated BODIPY dye-based Au/BOD-Dim/n-Si device. Physica B, 614, 413029.
  • Sunkur, M., Gullu, O. (2023). Spectroscopic analysis and device application of molecular organic dye layer in the Al/p-Si MIS contacts. Journal of Physics and Chemistry of Solids, 178, 111360.
  • Orak, İ., Turut, A., Toprak, M. (2015). The comparison of electrical characterizations and pho-tovoltaic performance of Al/p-Si and Al/Azure C/p-Si junctions devices. Synthetic Metals, 200, 66-73.
  • Aslan, F., Esen, H., Yakuphanoglu, F. (2019). Al/P-Si/Coumarin:TiO2/Al Organic-Inorganic Hybrid Photodiodes: Investigation of Electrical and Structural Properties. Siliicon, 12, 2149-2164.

The Ptcdi-C8/P-Si Heterojunction Diode: Its Construction and Electrical Characterization

Yıl 2024, Cilt: 10 Sayı: 2, 604 - 622, 31.12.2024
https://doi.org/10.29132/ijpas.1569593

Öz

In this study, an Al/PTCDI-C8/p-Si organic-inorganic (OI) heterojunction diode (C1) was fabricated by depositing a PTCDI-C8 thin film onto p-Si using the spin coating method. Likewise, a conventional Al/p-Si metal-semiconductor (MS) diode (C0) was fabricated without the use of an interlayer. I-V and C-V measurements of the C0 and C1 diodes were taken in the dark and at room temperature. The rectifying properties of both diodes were good. From the I–V characteristics, the ideality factor, barrier height, and series resistance of the C1 diode were determined to be 2.1, 0.74 eV, and 248 kΩ, respectively. The BH value obtained for the C1 heterojunction is higher than the value obtained for the conventional C0 diode. The electrical parameters of both the C1 and C0 diodes, particularly the series resistance, were recalculated using Cheungs and Norde methods. At room temperature, the C-V measurements of the diodes were carried out at various frequencies. From the evaluation of the C-V characteristics, the diffusion potential (Vd), barrier height (Φb(C-V)), and free carrier density (NA) of both diodes were calculated. Additionally, the device's photovoltaic parameters were measured under illumination conditions. The C1 heterojunction shows a photodiode behavior with the obtained photovoltaic parameters Voc and Isc.

Kaynakça

  • Gündüz, B., Kurban, M. (2018). Photonic, spectroscopic properties and electronic structure of PTCDI-C8 organic nanostructure. Vibrational Spectroscopy, 96, 46–51.
  • Bedeloğlu, A., Demir, A., Bozkurt, Y., Sariciftci, N.S. (2010). Photovoltaic properties of polymer based organic solar cells adapted for non-transparent substrates. Renewable Energy, 35, 2301-2306.
  • Zafer, C., Kus, M., Turkmen, G., Dincalp, H., Demic, S., Kuband, B., Teoman, Y., Icli, S. (2007). New perylene derivative dyes for dye-sensitized solar cells. Solar Energy Materials & Solar Cells, 91, 427–431.
  • Peumans, P., Uchida, S., Forrest, S.R. (2003). Efficient bulk heterojunction photovoltaic cells using smallmolecular-weight organic thin films. Nature, 425, 158-162.
  • Fana, H., Shia, W., Yub, X., Yu, J. (2016). High performance nitrogen dioxide sensor based on organic field-effect transistor utilizing ultrathin CuPc/PTCDI-C8 heterojunction. Synthetic Metals, 211, 161–166.
  • Kucinska, M., Frac, I., Ulanski, J., Makowski, T., Nosal, A., Gazicki-Lipman, M. (2019). The role of surface morphology in a performance of top-gate OFETs prepared from a solution processable derivative of perylene bisimide. Synthetic Metals, 250, 12-19.
  • Welford, A., Maniam, S., Ganna, E., Jiaoa, X., Thomsen, L., Langfordd, S.J., McNeill, C.R. (2019). Influence of alkyl side-chain type and length on the thin film microstructure and OFET per-formance of naphthalene diimide-based organic semiconductors. Organic Electronics, 75, 10537.
  • Das, A.K., Mandal, R., Mandal, D.K. (2022). The current transport mechanism of Al/Beetroot/Cu used as an organic semiconductor Schottky diode is superior than natural dye-based thin film devices. Microelectronic Engineering, 261, 111816.
  • Hendi, A.A., Al Orainy, R.H. (2014). Rectifying properties of TIPS-pentacene:rhodamine blend organic semiconductor-on-p-silicon diodes. Synthetic Metals, 193, 31–34.
  • Barış, B. (2013). Frequency dependent dielectric properties in Schottky diodes based on rubrene organic semiconductor. Physica E, 54, 171–176.
  • He, J., Liang, B., Yan, X., Liu, F., Wang, J., Yang, Y., and et al. (2021). A TPA-DCPP organic semiconductor film-based room temperature NH3 sensor for insight into the sensing properties. Sensors & Actuators: B. Chemical, 327, 128940.
  • Aziz, F., Sayyad, M.H., Sulaiman, K., Majlis, B.H., Karimov, K.S., Ahmad, Z., and Sugandi, G. (2012). Corrigendum: Influence of humidity conditions on the capacitive and resistive response of an Al/VOPc/Pt co-planar humidity sensor. Meas. Sci. Technol., 23, 069501.
  • Huang, Y., Fu, F., Zouc, W., and Zhang, F. (2012). Probing the effect of substituted groups on sensory properties based on single-crystalline micro/nanostructures of perylenediimide dyes. New J. Chem., 36, 1080–1084.
  • Chae, H., Hwang, S., Kwon, J.E., Pham, Q.B., Kim, S.J., Lee, W.H., Kim, B.G. (2021). Comparative study on the intrinsic NO2 gas sensing capability of triarylamine-based amorphous organic semiconductors. Dyes and Pigments, 186, 109017.
  • Abhijith, T., Ameen, M.Y., and Reddy, V.S. (2015). Synthesis of PTCDI-C8 one dimensional nanostructures for photovoltaic applications. IOP Conf. Series: Materials Science and Engineering, 73, 012052.
  • Erdoğan, E. and Gündüz, B. (2106). Controlling of the Optical Properties of the Solutions of the PTCDI-C8 Organic Semiconductor. Electronic Materials Letters, 12, 773–778.
  • Rahimi, R. and Korakakis, D. (2009). Organic thin film transistors based on Pentacene and PTCDI as the active layer and LiF as the insulating layer. MRS Online Proceedings Library, 1197, 38–43.
  • Balakrishnan, K., Datar, A., Naddo, T., Huang, J., Oitker, R., Yen, M., Zhao, J., and Zang, L. (2006). Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules: Morp-hology Control. J. AM. CHEM. SOC., 128, 7390-7398.
  • Nguyen, M., Turak, A.Z., Maye, F., Heidkamp, J., Wrachtrup, J., Dosch, H. (2010). Island size effects in organic optoelectronic devices. Proc. SPIE 7722, Organic Photonics IV, 77221O.
  • Huang, C, Barlow, S., and Marder, S.R. (2011). Perylene-3,4,9,10-tetracarboxylic Acid Diimides: Synthesis, Physical Properties, and Use in Organic Electronics. J. Org. Chem., 76, 2386–2407.
  • Karak, S., Reddy, V.S., Ray, S.K., Dhar, A. (2009). Organic photovoltaic devices based on pentacene/N, N0 -dioctyl-3,4,9,10- perylenedicarboximide heterojunctions. Organic Electronics, 10, 1006–1010.
  • Güllü, Ö. (2022). Dielectric spectroscopy studies on AL/p-Si photovoltaic diodes with Coomassie Brilliant Blue G-250. Applied Physics A, 128, 7, 587.
  • Barıs¸ B., Yüksel, Ö.F., Tugluoglu, N., Karadeniz, S. (2013). Double barrier heights in 5,6,11,12-tetraphenylnaphthacene (rubrene) based organic Schottky diode. Synthetic Metals, 180, 38–42.
  • Forrest, S.R., Kaplan, M. L., Schmidt, P. H. (1984). Organic-on-inorganic semiconductor contact barrier diodes. I. Theory with applications to organic thin films and prototype devices. Journal of Applied Physics, 55, 1492.
  • Campbell, I. H., Rubin, S., Zawodzinski, T. A., Kress, J. D., Martin, R. L., Smith, D. L., Ba-rashkov, N. N., Ferraris, J. P. (1996). Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Phys. Rev. B, 54, R14321(R).
  • Huang, W.C., Lin, T.C., Horng, C.T., Chen, C.C. (2013). Barrier heights engineering of Al/p-Si Schottky contact by a thin organic interlayer. Microelectronic Engineering, 107, 200–204.
  • Stella, M., Villar, F., Rojas, F.E., Pirriera, M.D., Voz, C., Puigdollers, J., Asensi, J.M., Andreu, J., and Bertomeu, J. “Optical and Morphological Characterization of PTCDI-C13”, MRS Online Proceedings Library (OPL), 1091: Symposium AA – Conjugated Organic Materials–Synthesis, Structure, Device and Applications, 1091-AA05-40, 2008.
  • Tung, R. T. (1992). Electron transport at metal-semiconductor interfaces: General theory. Phys. Rev. B, 45, 13509.
  • Güllü, Ö., Kılıçoğlu, T., Türüt, A. (2010). Electronic properties of the metal/organic interla-yer/inorganic semiconductor sandwich device. Journal of Physics and Chemistry of Solids, 71, 351-356.
  • Rhoderick E.H. and Williams R.H. (1988). Metal-semiconductor contacts. Oxford science pub-lication, 2nd edn., Oxford.
  • Marıl, E. (2021). The effect of (PVP-Cu2Te) organic interlayer on the electrical parameters of Al/p-Si Schottky barrier diodes (SBDs) at room temperature. Physica B, 604, 412732.
  • Karadeniz, S., Barıs¸ B., Yüksel, Ö.F., Tugluoglu, N. (2013). Analysis of electrical properties of Al/p-Si Schottky contacts with and without rubrene layer. Synthetic Metals, 168, 16–22.
  • Imer, A.G., Korkut, A., Farooq, W. A., Dere, A., Atif, M., Atif, H., Karabulut, A. (2019). In-terface controlling study of silicon based Schottky diode by organic layer. Journal of Materials Science: Materials in Electronics, 30, 19239–19246.
  • Güllü, Ö., Türüt, A. (2010). Electrical analysis of organic dye-based MIS Schottky contacts. Microelectronic Engineering, 87, 12, 2482-2487.
  • Cheung, S.K., Cheung, N.W. (1986). Extraction of Schottky diode parameters from forward current‐voltage characteristics. Appl. Phys. Lett., 49, 85–87.
  • Norde, H. (1979). A modified forward I‐V plot for Schottky diodes with high series resistance. J. Appl. Phys, 50, 5052–5053.
  • Bohlin, K.E. (1986). Generalized Norde plot including determination of the ideality factor. Jo-urnal of Applied Physics, 60, 1223.
  • Aydoğan, Ş., Sağlam, M., Türüt, A., Onganer, Y. (2009). Series resistance determination of Au/Polypyrrole/p-Si/Al structure by current–voltage measurements at low temperatures. Materials Science and Engineering C, 29, 1486–1490.
  • Farag, A.A.M., Soliman, H.S., Atta, A.A. (2012). Analysis of dark and photovoltaic characte-ristics of Au/Pyronine G(Y)/p-Si/Al heterojunction. Synthetic Metals, 161, 23–24, 2759-2764.
  • Sze, S.M. (1981). Physics of Semiconductor Devices. Wiley, second ed., New York.
  • Özaydin, C., Tombak, A., Boğa, M., Kiliçoğlu, T. (2015). Optical, Electrical and Photoelectrical Properties of Quercetin Co(II) Complex/n-Si Organic-Inorganic Hybrid Device, Middle East Journal of Science(MEJS), 1, 15–27.
  • Gunduz, B., Yahia, I.S., Yakuphanoglu, F. (2012). Electrical and photoconductivity properties of p-Si/P3HT/Al and p-Si/P3HT: MEH-PPV/Al organic devices: Comparison study. Microelectronic Engineering, 98, 41–57.
  • Yakuphanoglu, F., Farooq, W.A. (2011). Flexible pentacene organic field-effect phototransistor. Synthetic Metals 161, 79–383.
  • Yakuphanoglu, F., Senkal, B.F. (2008). Electrical characterization of the polyaniline including boron/p-type silicon structure for optical sensor applications. Synthetic Metals, 158, 821–825.
  • Tezcan, A.O., Oruç, P., Tuğluoğlu, N., Eymur, S. (2023). Photosensitive properties of Schottky type photodiodes prepared by spin coating of isoniazid Schiff base thin film on p-Si. Optical and Quantum Electronics, 56:989.
  • Şahin, M.F., Taşcı, E., Emrullahoğlu, M., Gökçe, H., Tuğluoğlu, N., Eymur, S. (2021). Electrical, photodiode, and DFT studies of newly synthesized π-conjugated BODIPY dye-based Au/BOD-Dim/n-Si device. Physica B, 614, 413029.
  • Sunkur, M., Gullu, O. (2023). Spectroscopic analysis and device application of molecular organic dye layer in the Al/p-Si MIS contacts. Journal of Physics and Chemistry of Solids, 178, 111360.
  • Orak, İ., Turut, A., Toprak, M. (2015). The comparison of electrical characterizations and pho-tovoltaic performance of Al/p-Si and Al/Azure C/p-Si junctions devices. Synthetic Metals, 200, 66-73.
  • Aslan, F., Esen, H., Yakuphanoglu, F. (2019). Al/P-Si/Coumarin:TiO2/Al Organic-Inorganic Hybrid Photodiodes: Investigation of Electrical and Structural Properties. Siliicon, 12, 2149-2164.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fotonik, Optoelektronik ve Optik İletişim, Organik Yarı İletkenler
Bölüm Makaleler
Yazarlar

Murat Erdal Bu kişi benim 0000-0003-0626-0201

Cihat Özaydın 0000-0001-6690-0122

Erken Görünüm Tarihi 30 Aralık 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 18 Ekim 2024
Kabul Tarihi 25 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 2

Kaynak Göster

APA Erdal, M., & Özaydın, C. (2024). The Ptcdi-C8/P-Si Heterojunction Diode: Its Construction and Electrical Characterization. International Journal of Pure and Applied Sciences, 10(2), 604-622. https://doi.org/10.29132/ijpas.1569593
AMA Erdal M, Özaydın C. The Ptcdi-C8/P-Si Heterojunction Diode: Its Construction and Electrical Characterization. International Journal of Pure and Applied Sciences. Aralık 2024;10(2):604-622. doi:10.29132/ijpas.1569593
Chicago Erdal, Murat, ve Cihat Özaydın. “The Ptcdi-C8/P-Si Heterojunction Diode: Its Construction and Electrical Characterization”. International Journal of Pure and Applied Sciences 10, sy. 2 (Aralık 2024): 604-22. https://doi.org/10.29132/ijpas.1569593.
EndNote Erdal M, Özaydın C (01 Aralık 2024) The Ptcdi-C8/P-Si Heterojunction Diode: Its Construction and Electrical Characterization. International Journal of Pure and Applied Sciences 10 2 604–622.
IEEE M. Erdal ve C. Özaydın, “The Ptcdi-C8/P-Si Heterojunction Diode: Its Construction and Electrical Characterization”, International Journal of Pure and Applied Sciences, c. 10, sy. 2, ss. 604–622, 2024, doi: 10.29132/ijpas.1569593.
ISNAD Erdal, Murat - Özaydın, Cihat. “The Ptcdi-C8/P-Si Heterojunction Diode: Its Construction and Electrical Characterization”. International Journal of Pure and Applied Sciences 10/2 (Aralık 2024), 604-622. https://doi.org/10.29132/ijpas.1569593.
JAMA Erdal M, Özaydın C. The Ptcdi-C8/P-Si Heterojunction Diode: Its Construction and Electrical Characterization. International Journal of Pure and Applied Sciences. 2024;10:604–622.
MLA Erdal, Murat ve Cihat Özaydın. “The Ptcdi-C8/P-Si Heterojunction Diode: Its Construction and Electrical Characterization”. International Journal of Pure and Applied Sciences, c. 10, sy. 2, 2024, ss. 604-22, doi:10.29132/ijpas.1569593.
Vancouver Erdal M, Özaydın C. The Ptcdi-C8/P-Si Heterojunction Diode: Its Construction and Electrical Characterization. International Journal of Pure and Applied Sciences. 2024;10(2):604-22.

154501544915448154471544615445