Research Article
BibTex RIS Cite

Investigation of Freestyle Performance in Swimmers with Different Equipments

Year 2023, Volume: 7 Issue: 1, 33 - 40, 25.12.2023
https://doi.org/10.46463/ijrss.1363220

Abstract

The present study sought to examine the freestyle proficiency of juvenile swimmers deploying various accessories, namely fins, kickboard, and pull-buoy. Twenty-three participants, comprising 14 females and 9 males aged between 10 and 11 years, who reside in Istanbul, pursue activities in exclusive clubs, have held an athlete license for no less than three years, and expressed a keen interest in swimming opted to take part in the study. The research was implemented voluntarily in a private club's indoor swimming pool (25 m short lane). First, the swimmers' body weight, height, and arm length were measured. They then demonstrated their freestyle performance at distances of 25 m, 50 m, 75 m, and 100 m using different equipment: maximal, fins, pull-buoy, and kickboard-only flutter kick. Swimming performances with each piece of equipment were performed two days apart, and all swimmers' performances were recorded with an SJCAM 4k external camera. After conducting the test, the captured images were transferred to the computer and processed using the Kinovea 0.9.5 program in MP4 format. Individual calculations were made for each swimmer's finish time, lap times and velocity for each distance and equipment. The data were evaluated using the IBM SPSS 24.0 analysis program. It was ensured that the data followed a normal distribution ("±1.5"). The comparison of finish times, lap times and velocity of swimmers using different equipment was analysed using repeated measures variance. There was a statistical difference between the fins, kickboard and pull-buoy in finish time, lap times and velocity (p<0.05). While 100 m finish time (108.58±14.99 s) and lap times (21.73±2.71 s - 28.47±3.73 s) performed with fins were found lower than the other equipment, velocity (0.94±0.13 m/s) and lap velocity (1.17±0.14 m/s - 0.89±0.12 m/s) performed with fins were found higher than the other equipment. Therefore, it was concluded that the equipment used in training affected the performance of short-distance freestyle swimming.

References

  • Agopyan, A., Bozdogan, F. S., Tekin, D., Yetgin, M. K., & Guler, C. G. (2012). Acute effects of static stretching exercises on short-distance flutter kicking time in child swimmers. International Journal of Performance Analysis in Sport, 12(3), 484-497. https://doi.org/10.1080/24748668.2012.11868613
  • Bíró, M., Révész, L., & Hidvégi, P. (2015). Swimming. Eszterházy Károly Catholic University: EKC Líceum Press.
  • Burac, D. G. (2015). The playful behavior in swimming and its interferences in 1-3 years child's development. Procedia-Social and Behavioral Sciences, 180, 1229-1234. https://doi.org/10.1016/j.sbspro.2015.02.252
  • Cohen, R. C., Cleary, P. W., Mason, B. R., & Pease, D. L. (2015). The role of the hand during freestyle swimming. Journal of Biomechanical Engineering, 137(11), 111007. https://doi.org/10.1115/1.4031586
  • Cohen, J. (1988). Statistical power analysis for the behavioural sciences-2 nd edition. New Jersey: Lawrence Erbaum Associates.
  • Fone, L., & van den Tillaar, R. (2022). Effect of different types of strength training on swimming performance in competitive swimmers: a systematic review. Sports Medicine-Open, 8(1), 19. https://doi.org/10.1186/s40798-022-00410-5
  • Gelinas, J. E., & Reid, G. (2000). The developmental validity of traditional learn-to-swim progressions for children with physical disabilities. Adapted Physical Activity Quarterly, 17(3), 269-285. https://doi.org/10.1123/apaq.17.3.269 Gonjo, T., Polach, M., Olstad, B. H., Romann, M., & Born, D. P. (2022). Differences in race characteristics between world-class individual-medley and stroke-specialist swimmers. International Journal of Environmental Research and Public Health, 19(20), 13578. https://doi.org/10.3390/ijerph192013578 Guzik-Kopyto, A., Nowakowska-Lipiec, K., Nocoń, A., Gzik, M., & Michnik, R. (2021). Effectiveness of the power and speed dry-land training in female swimmers aged 15–16. Acta of Bioengineering and Biomechanics, 23(2), 13-21. https://doi.org/10.37190/ABB-01771-2020-03
  • Hagem, R. M., O'Keefe, S. G., Fickenscher, T., & Thiel, D. V. (2013). Self contained adaptable optical wireless communications system for stroke rate during swimming. IEEE Sensors Journal, 13(8), 3144-3151. https://doi.org/10.1109/JSEN.2013.2262933
  • Hair, J. F, Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2014). Multivariate Data Analysis. 7th ed. upper Saddle River: Pearson Education Limited.
  • Hollander, A. P., Groot, G. De, Van Ingen Schneau, G. J., Kahman, R., Toussaint, H. M. (1988). Contributions of the legs to propulsion in front crawl swimming. In:. Ungerechts BE, Wilke K, Reischle K, (Eds.) Swimming Science. (pp. 39-43). Champaign, IL: Human Kinetics.
  • Jagomägi, G., & Jürimäe, T. (2005). The influence of anthropometrical and flexibility parameters on the results of breaststroke swimming. Anthropologischer Anzeiger, 63(2), 213-219.
  • Karagöz, Y. (2021). SPSS ve AMOS uygulamalı nicel-nitel-karma bilimsel araştırma yöntemleri ve yayın etiği. Ankara: Nobel Akademik Yayıncılık.
  • Maglischo EW. (2003). Swimming fastest: The essentail reference on technique, training, and program design. Champaign, Il.: Human Kinetics.
  • Matos, C. C. D., Barbosa, A. C., & Castro, F. A. D. S. (2013). The use of hand paddles and fins in front crawl: Biomechanical and physiological responses. Revista Brasileira de Cineantropometria & Desempenho Humano, 15, 382-392. https://doi.org/10.5007/1980-0037.2013v15n3p382
  • McCullough, A. S., Kraemer, W. J., Volek, J. S., Solomon-Hill Jr, G. F., Hatfield, D. L., Vingren, J. L., Jen-Yu, H., Maren, S. F., Gwendolyn, A. T., Keijo, H., & Maresh, C. M. (2009). Factors affecting flutter kicking speed in women who are competitive and recreational swimmers. The Journal of Strength & Conditioning Research, 23(7), 2130-2136. https://doi.org/10.1519/JSC.0b013e31819ab977
  • Montgomery, J. P., & Chambers, M. A. (2008). Mastering swimming. Human Kinetics.
  • Mujika, I., & Crowley, E. (2019). Strength training for swimmers. InConcurrent Aerobic and Strength Training (pp. 369-386). Springer, Cham.
  • Oh, S., Licari, M., Lay, B., & Blanksby, B. (2011). Effects of teaching methods on swimming skill acquisition in children with developmental coordination disorder. International Journal of Aquatic Research and Education, 5(4), 9. https://doi.org/10.25035/ijare.05.04.09
  • Peyton, M., & Krabak, B. J. (2023). Swimming. In The Youth Athlete (pp. 913-928). Academic Press. https://doi.org/10.1016/B978-0-323-99992-2.00066-9
  • Puig-Diví, A., Escalona-Marfil, C., Padullés-Riu, J. M., Busquets, A., Padullés-Chando, X., & Marcos-Ruiz, D. (2019). Validity and reliability of the Kinovea program in obtaining angles and distances using coordinates in 4 perspectives. PloS one, 14(6), e0216448. https://doi.org/10.1371/journal.pone.0216448
  • Ramón, J. M. S., & Valero, A. F. (2018). Use of floating material in swimming. Apunts Educacion Fisica Y Deportes, 34(132), 48-59. https://doi.org/10.5672/apunts.2014-0983.es.(2018/2).132.04
  • Roj, K., Planinšec, J., & Schmidt, M. (2016). Effect of swimming activities on the development of swimming skills in student with physical disability–case study. The New Educational Review, 46, 221-230. https://doi.org/10.15804/tner.2016.46.4.19
  • Rozi, F., Setijono, H., & Kusnanik, N. W. (2020). The identification model on swimming athletes skill. Sport and Tourism Central European Journal, 3(2), 91-101. https://doi.org/10.16926/sit.2020.03.15
  • Smith, D. J., Norris, S. R., & Hogg, J. M. (2002). Performance evaluation of swimmers: Scientific tools. Sports Medicine, 32, 539-554. https://doi.org/10.2165/00007256-200232090-00001
  • Yanai, T., & Wilson, B. D. (2008). How does buoyancy influence front‐crawl performance? Exploring the assumptions. Sports Technology, 1(2-3), 89-99. https://doi.org/10.1080/19346182.2008.9648458
  • Zamparo, P., Pendergast, D. R., Termin, B., & Minetti, A. E. (2002). How fins affect the economy and efficiency of human swimming. Journal of Experimental Biology, 205(17), 2665-2676. https://doi.org/10.1242/jeb.205.17.2665
  • Zamparo, P., Pendergast, D. R., Mollendorf, J., Termin, A., Minetti, A.E. (2005). An energy balance of front crawl. European Journal of Applied Physiology, 94, 134-144. https://doi.org/10.1007/s00421-004-1281-4

Yüzücülerde Farklı Ekipmanlarla Serbest Stil Performansının İncelenmesi

Year 2023, Volume: 7 Issue: 1, 33 - 40, 25.12.2023
https://doi.org/10.46463/ijrss.1363220

Abstract

Bu çalışmanın amacı küçük yaş grubu yüzücülerde farklı ekipmanlarla (ayak paleti, ayak tahtası ve pull-buoy) uygulanan serbest stil performansının incelenmesidir. Araştırmaya İstanbul ilinde yaşayan, özel kulüplerde aktif yüzme hayatına devam eden, en az üç yıldır yüzme sporu ile ilgilenen; sporcu kartı/lisanslı olan; 10-11 yaş grubu 14 kız 9 erkek toplam 23 yüzücü gönüllü olarak katılmıştır. Araştırma özel bir kulübe ait kapalı yüzme havuzunda (kısa kulvar-25 m) gerçekleştirimiştir. Öncelikle yüzücülerin vücut ağırlığı, boy uzunluğu ve kulaç uzunluğu ölçülmüştür. Sonrasında yüzücülerin maksimal, ayak paletli, pull-buoylu ve sadece tahta ile ayak vurarak 25 metre (m), 50 m, 75 m, 100 m mesafelerinde serbest stil performanslarını göstermeleri istenilmiştir. Her bir ekipmanla uygulanan yüzme performansı iki gün ara ile yapılmıştır. Yüzme performansı sırasında bir adet SJCAM 4k marka dış kamera ile tüm yüzücülerin performansları kaydedilmiştir. Test sonrasında görüntüler bilgisayar ortamına ve Kinovea 0.9.5. programına MP4 formatında aktarılmıştır. Her bir yüzücünün her bir mesafeye ve ekipmana ait bitiş süresi, geçiş süreleri, hız değerleri bireysel olarak hesaplanmıştır. Verilerin değerlendirilmesinde IBM SPSS 24.0 analiz programı kullanılmıştır. Verilerin normal dağılım gösterdiği kabul edilmiştir (“-1,5” ile “+1,5”) ve yüzücülerin farklı ekipmanlarla elde edilen bitiş süresi, geçiş süreleri, hız değerlerinin karşılaştırılması tekrarlı ölçümlü varyans ile analiz edilmiştir. Bitiş süresi, geçiş süreleri ve hız değerlerinde ayak paleti ile ayak tahtası ve pull-buoy arasında istatistiksel olarak farklılık bulunmuştur (p<0.05). Ayak paletli yapılan 100 m bitiş süresi (108.58±14.99 s) ve geçiş süreleri (21.73±2.71 s - 28.47±3.73 s) diğer ekipmanlara göre daha düşük bulunurken ayak paletli yapılan hız (0.94±0.13 m/s) ve geçiş hızları (1.17±0.14 m/s - 0.89±0.12 m/s) diğer ekipmanlara göre daha yüksek tespit edilmiştir. Sonuç olarak, kısa mesafe serbest yüzme performansının antrenmanlarında kullanılan ekipmanlara göre farklılık gösterdiği tespit edilmiştir.

References

  • Agopyan, A., Bozdogan, F. S., Tekin, D., Yetgin, M. K., & Guler, C. G. (2012). Acute effects of static stretching exercises on short-distance flutter kicking time in child swimmers. International Journal of Performance Analysis in Sport, 12(3), 484-497. https://doi.org/10.1080/24748668.2012.11868613
  • Bíró, M., Révész, L., & Hidvégi, P. (2015). Swimming. Eszterházy Károly Catholic University: EKC Líceum Press.
  • Burac, D. G. (2015). The playful behavior in swimming and its interferences in 1-3 years child's development. Procedia-Social and Behavioral Sciences, 180, 1229-1234. https://doi.org/10.1016/j.sbspro.2015.02.252
  • Cohen, R. C., Cleary, P. W., Mason, B. R., & Pease, D. L. (2015). The role of the hand during freestyle swimming. Journal of Biomechanical Engineering, 137(11), 111007. https://doi.org/10.1115/1.4031586
  • Cohen, J. (1988). Statistical power analysis for the behavioural sciences-2 nd edition. New Jersey: Lawrence Erbaum Associates.
  • Fone, L., & van den Tillaar, R. (2022). Effect of different types of strength training on swimming performance in competitive swimmers: a systematic review. Sports Medicine-Open, 8(1), 19. https://doi.org/10.1186/s40798-022-00410-5
  • Gelinas, J. E., & Reid, G. (2000). The developmental validity of traditional learn-to-swim progressions for children with physical disabilities. Adapted Physical Activity Quarterly, 17(3), 269-285. https://doi.org/10.1123/apaq.17.3.269 Gonjo, T., Polach, M., Olstad, B. H., Romann, M., & Born, D. P. (2022). Differences in race characteristics between world-class individual-medley and stroke-specialist swimmers. International Journal of Environmental Research and Public Health, 19(20), 13578. https://doi.org/10.3390/ijerph192013578 Guzik-Kopyto, A., Nowakowska-Lipiec, K., Nocoń, A., Gzik, M., & Michnik, R. (2021). Effectiveness of the power and speed dry-land training in female swimmers aged 15–16. Acta of Bioengineering and Biomechanics, 23(2), 13-21. https://doi.org/10.37190/ABB-01771-2020-03
  • Hagem, R. M., O'Keefe, S. G., Fickenscher, T., & Thiel, D. V. (2013). Self contained adaptable optical wireless communications system for stroke rate during swimming. IEEE Sensors Journal, 13(8), 3144-3151. https://doi.org/10.1109/JSEN.2013.2262933
  • Hair, J. F, Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2014). Multivariate Data Analysis. 7th ed. upper Saddle River: Pearson Education Limited.
  • Hollander, A. P., Groot, G. De, Van Ingen Schneau, G. J., Kahman, R., Toussaint, H. M. (1988). Contributions of the legs to propulsion in front crawl swimming. In:. Ungerechts BE, Wilke K, Reischle K, (Eds.) Swimming Science. (pp. 39-43). Champaign, IL: Human Kinetics.
  • Jagomägi, G., & Jürimäe, T. (2005). The influence of anthropometrical and flexibility parameters on the results of breaststroke swimming. Anthropologischer Anzeiger, 63(2), 213-219.
  • Karagöz, Y. (2021). SPSS ve AMOS uygulamalı nicel-nitel-karma bilimsel araştırma yöntemleri ve yayın etiği. Ankara: Nobel Akademik Yayıncılık.
  • Maglischo EW. (2003). Swimming fastest: The essentail reference on technique, training, and program design. Champaign, Il.: Human Kinetics.
  • Matos, C. C. D., Barbosa, A. C., & Castro, F. A. D. S. (2013). The use of hand paddles and fins in front crawl: Biomechanical and physiological responses. Revista Brasileira de Cineantropometria & Desempenho Humano, 15, 382-392. https://doi.org/10.5007/1980-0037.2013v15n3p382
  • McCullough, A. S., Kraemer, W. J., Volek, J. S., Solomon-Hill Jr, G. F., Hatfield, D. L., Vingren, J. L., Jen-Yu, H., Maren, S. F., Gwendolyn, A. T., Keijo, H., & Maresh, C. M. (2009). Factors affecting flutter kicking speed in women who are competitive and recreational swimmers. The Journal of Strength & Conditioning Research, 23(7), 2130-2136. https://doi.org/10.1519/JSC.0b013e31819ab977
  • Montgomery, J. P., & Chambers, M. A. (2008). Mastering swimming. Human Kinetics.
  • Mujika, I., & Crowley, E. (2019). Strength training for swimmers. InConcurrent Aerobic and Strength Training (pp. 369-386). Springer, Cham.
  • Oh, S., Licari, M., Lay, B., & Blanksby, B. (2011). Effects of teaching methods on swimming skill acquisition in children with developmental coordination disorder. International Journal of Aquatic Research and Education, 5(4), 9. https://doi.org/10.25035/ijare.05.04.09
  • Peyton, M., & Krabak, B. J. (2023). Swimming. In The Youth Athlete (pp. 913-928). Academic Press. https://doi.org/10.1016/B978-0-323-99992-2.00066-9
  • Puig-Diví, A., Escalona-Marfil, C., Padullés-Riu, J. M., Busquets, A., Padullés-Chando, X., & Marcos-Ruiz, D. (2019). Validity and reliability of the Kinovea program in obtaining angles and distances using coordinates in 4 perspectives. PloS one, 14(6), e0216448. https://doi.org/10.1371/journal.pone.0216448
  • Ramón, J. M. S., & Valero, A. F. (2018). Use of floating material in swimming. Apunts Educacion Fisica Y Deportes, 34(132), 48-59. https://doi.org/10.5672/apunts.2014-0983.es.(2018/2).132.04
  • Roj, K., Planinšec, J., & Schmidt, M. (2016). Effect of swimming activities on the development of swimming skills in student with physical disability–case study. The New Educational Review, 46, 221-230. https://doi.org/10.15804/tner.2016.46.4.19
  • Rozi, F., Setijono, H., & Kusnanik, N. W. (2020). The identification model on swimming athletes skill. Sport and Tourism Central European Journal, 3(2), 91-101. https://doi.org/10.16926/sit.2020.03.15
  • Smith, D. J., Norris, S. R., & Hogg, J. M. (2002). Performance evaluation of swimmers: Scientific tools. Sports Medicine, 32, 539-554. https://doi.org/10.2165/00007256-200232090-00001
  • Yanai, T., & Wilson, B. D. (2008). How does buoyancy influence front‐crawl performance? Exploring the assumptions. Sports Technology, 1(2-3), 89-99. https://doi.org/10.1080/19346182.2008.9648458
  • Zamparo, P., Pendergast, D. R., Termin, B., & Minetti, A. E. (2002). How fins affect the economy and efficiency of human swimming. Journal of Experimental Biology, 205(17), 2665-2676. https://doi.org/10.1242/jeb.205.17.2665
  • Zamparo, P., Pendergast, D. R., Mollendorf, J., Termin, A., Minetti, A.E. (2005). An energy balance of front crawl. European Journal of Applied Physiology, 94, 134-144. https://doi.org/10.1007/s00421-004-1281-4
There are 27 citations in total.

Details

Primary Language English
Subjects Sports Science and Exercise (Other)
Journal Section Research Articles
Authors

Benil Kıstak Altan 0000-0002-5868-6856

Kerim Eren Bul 0009-0007-4393-0506

Aysel Pehlivan 0000-0003-4130-9672

Publication Date December 25, 2023
Submission Date September 19, 2023
Acceptance Date December 19, 2023
Published in Issue Year 2023 Volume: 7 Issue: 1

Cite

APA Kıstak Altan, B., Bul, K. E., & Pehlivan, A. (2023). Investigation of Freestyle Performance in Swimmers with Different Equipments. International Journal of Recreation and Sports Science, 7(1), 33-40. https://doi.org/10.46463/ijrss.1363220