Research Article
BibTex RIS Cite
Year 2024, Volume: 6 Issue: 1, 377 - 410, 16.03.2024

Abstract

References

  • Adetumbi, J.A., Akinyosoye, S.T., Agbeleye, A., Kareem, K.T., Oduwaye, O.F., Adebayo, G.G., Olakojo, S.A. 2019. Genetic variability in the agronomic traits, inheritance pattern of seed coat colour, and response to brown blotch disease among cowpea hybrids, Euphytica, 215: 142.
  • Ajayi, A.T., Adekola, M.O., Taiwo, B.H., Azuh, V.O. 2014. Character expression and differences in yield potential of ten genotypes of cowpea (Vigna unguiculata L. Walp), International Journal of Plant Research, 4(3): 63–71.
  • Ajayi, A.T., Gbadamosi, A.E., Olumekun, V.O., Nwosu, P.O. 2020. GT biplot analysis of shoot traits indicating drought tolerance in cowpea [Vigna unguiculata (L.) Walp] accessions at vegetative stage, International Journal of BioSciences and Technology, 13(2): 18–33.
  • Ajayi, A.T., Gbadamosi, A.E., Osekita, O.S., Taiwo, B.H., Fawibe, A.B., Adedeji, I., Omisakin, T. 2022. Genotype × environment interaction and adaptation of cowpea genotypes across six planting seasons, Frontiers in Life Sciences and Related Technologies, 3(1): 7–15.
  • Ajayi, A.T. 2020. Relationships among drought tolerance indices and yield characters of cowpea (Vigna unguiculata L. Walp), International Journal of Scientific Research in Biological Sciences, 7(5): 93–103.
  • Al-rawi, I.M.D. 2016. Study of drought tolerance indices in some bread and durum wheat cultivars, Jordan Journal of Agricultural Sciences, 12(4): 1125–1139.
  • Anwar, J., Subhani, G.M., Hussain, M., Ahmad, J., Hussain, M., Munir, M. 2011. Drought tolerance indices and their correlation with yield in exotic wheat genotypes, Pakistan Journal of Botany, 43(3): 1527–1530.
  • Atnaf, M., Tesfaye, K., Wegary, D. 2017. Genotype by trait biplot analysis to study associations and profiles of Ethiopian white lupin (Lupinus albus L.) landraces, Australian Journal of Crop Science, 11(1): 55–62.
  • Badu-apraku, B., Obesesan, O., Abiodun, A., Obeng-Bio, E. 2021. Genetic gains from selection for drought tolerance during three breeding periods in extra-early maturing maize hybrids under drought and rainfed environments, Agronomy, 11: 831.
  • Batieno, B.J., Tignegreb, J., Hamadouc, S., Hamadoud, Z., Ouedraogoe, T.J., Danquahf, E. Oforig, K. 2016. Field assessment of cowpea genotypes for drought tolerance, International Journal of Sciences: Basic and Applied Research, 30(4): 358–369.
  • Bennani, S., Nsarellah, N., Jlibene, M., Tadesse, W., Birouk, A., Ouabbou, H. 2017. Efficiency of drought tolerance indices under different stress severities for bread wheat selection, Australian Journal of Crop Science, 11(4): 395–405.
  • Bogale, G., Rensburg, J.B.J., van Deventer, C.S. 2012. Heritability of drought adaptive traits and relationships with grain yield in maize grown under a high plant population, Ethiopian Journal of Agricultural Sciences, 22(1): 126–126.
  • Bonea, D. 2020. Grain yield and drought tolerance indices in maize hybrids, Notulae Scientia Biologicae, 12(2): 376–386.
  • Bouslama, M., Schapaugh, W.T. 1984. Stress tolerance in soybean. I. Evaluation of three screening techniques for heat and drought tolerance, Crop Science, 24: 933–937.
  • Choudhary, R.S., Biradar, D.P., Katageri, I.S. 2021. Evaluation of sorghum RILs for moisture stress tolerance using drought tolerance indices, The Pharma Innovation Journal, 10(4): 39–45.
  • de Nóvoa Pinto, J.V., Sousa, D., de P. Nunes, H.G.G.C., de Souza, E.B., de Melo-Abreu, J.P., Sousa, A.M.L., de Souza, P.J.O.P. 2021. Impacts of climate changes on risk zoning for cowpea in the Amazonian tropical conditions, Bragantia, 80: e5521.
  • Eid, M.H., Sabry, S. 2019. Assessment of variability for drought tolerance indices in some wheat (Triticum aestivum L.) genotypes, Egyptian Journal of Agronomy, 41(2): 79–91.
  • El haddad, N., Rajendran, K., Smouni, A., Es-Safi, N.E., Benbrahim, N., Mentag, R., Nayyar, H., Maalouf, F., Kumar, S. 2020. Screening the FIGS set of lentil (Lens culinaris Medikus) germplasm for tolerance to terminal heat and combined drought-heat stress, Agronomy, 10: 1036.
  • El-Rawy, M.A., Hassan, M.I. 2014. Effectiveness of drought tolerance indices to identify tolerant genotypes in bread wheat (Triticum aestivum L.), Journal of Crop Science and Biotechnology, 17(4): 255–266.
  • FAOSTAT. 2022. Official Website of Food and Agriculture Organization, FAOSTAT_data_8-29-2020-Excel, http://faostat.fao.org, Last Accessed on January 29, 2022. Farshadfar, F., Sutka, J. 2002. Screening drought tolerance criteria in maize, Acta Agron Hung, 50(4): 411–416.
  • Fayeun, L.S., Hammed, L.A., Oduwaye, O.A., Madike, J.U., Ushie, E.U. 2016. Estimates of genetic variability for seedling traits in fluted pumpkin (Telfairia occidentalis Hook. F), Plant Breeding and Biotechnology, 4(2): 262–270.
  • Fernandez, G.C.J. 1992. Effective selection criteria for assessing plant stress tolerance, Proceedings of the Symposium Taiwan, 25: 257–270.
  • Fisher, R.A., Yates, F. 1963. Statistical tables for biological, agricultural, and medical research, Biometrical Journal, 13(4): 225–286.
  • Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R.G., Ricciardi G.L., Borghi, B. 1997. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals, Canadian Journal of Plant Science, 77: 523–531.
  • Guendouz, A., Frih, B., Oulmi, A. 2021. Canopy cover temperature and drought tolerance indices in durum wheat (Triticum durum Desf.) genotypes under the semi-arid condition in Algeria, International Journal of Bio-Resource and Stress Management, 12(6): 638–644.
  • Hammer, Ø., Harper, D.A.T., Ryan, P.D. 2001. PAST: Paleontological statistics software package for data analysis, Palaeontologia Electronica, 4(1): 9.
  • Hossain, K.G., Islam, N., Jacob, D., Ghavami, F., Tucker, M., Kowalski, T., Leilani, A., Zacharias, J. 2013. Interdependence of genotype and growing site on seed mineral compositions in common bean, Asian Journal of Plant Sciences, 12(1): 11–20.
  • Hosseini, A.D., Dadkhodaie, A., Heidari, B., Kazemeini, S.A. 2020. Evaluation of a hexaploid wheat collection (Triticum aestivum L.) under drought stress conditions using stress tolerance indices, Annual Research and Review in Biology, 34(6): 1–10.
  • Hussain, T., Hussain, N., Ahmed, M., Nualsri, C., Duangpan, S. 2021. Responses of lowland rice genotypes under terminal water stress and identification of drought tolerance to stabilize rice productivity in southern Thailand, Plants, 10: 2565.
  • Kristin, A.S., Senra, R.R., Perez, F.I., Enriquez, B.C., Gallegos, J.A.A., Vallego, P.R., Wassimi, N., Kelley, J.D. 1997. Improving common bean performance under drought stress, Crop Science, 37: 43–50.
  • Lao, Y., Dong, Y., Shi, Y., Wang, Y., Xu, S., Xue, J., Zhang, X. 2022. Evaluation of drought tolerance in maize inbred lines selected from the Shaan A group and Shaan B group, Agriculture, 12: 11.
  • Mahdi, Z. 2012. Evaluation of drought tolerance indices for the selection of Iranian barley (Hordeum vulgare) cultivars, African Journal of Biotechnology, 11(93): 15975–15981.
  • Moosavi, S.S., Samadi, B.Y., Naghavi, M.R., Zali, A.A., Dashti, H., Pourshahbazi, A. 2008. Introduction of new indices to identify relative drought tolerance and resistance in wheat cultivars, Desert, 12: 165–178.
  • Nauditt, A., Stahl, K., Rodríguez, E., Birkel, C., Formiga-Johnsson, R.M., Kallio, M., Ribbe, L., Baez-Villanueva, O.M., Thurner, J., Hann, H. 2022. Evaluating tropical drought risk by combining open access gridded vulnerability and hazard data products, Science of the Total Environment, 882: 153493.
  • Ogbaga, C.C., Stepien, P., Johnson, G.N. 2014. Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought, Physiologia Plantarum, 152(2): 389–401.
  • Padmashree, R., Reddy, V., Mogar, N.D., Barbadikar, K.M., Balakrishnan, D., Gireesh, C., Siddaiah, A.M., Badri, J., Lokesha, R., Ramesha, Y.M., Senguttuvel, P., Diwan, J.R., Madhav, M.S., Rani, S.C., Sundaram, R.M. 2023. Assessment of multiple tolerance indices to identify rice lines suitable for aerobic system cultivation, International Journal of Plant and Soil Science, 35(11): 16–28.
  • Rosielle, A.A., Hamblin, J. 1981. Theoretical aspects of selection for yield in stress and non-stress environments, Crop Science, 21: 943–946.
  • Sanogo, S.A., Diallo, S., Batieno, T.B., Ishola, A.I., Sawadogo, N., Nyadanu, D. 2023. Screen house assessment of cowpea genotypes for drought tolerance using selection indices, Agricultural Sciences, 14: 457–473.
  • Sareen, S., Budhlakoti, N., Mishra, K.K., Bharad, S., Potdukhe, N.R., Tyagi, B.S., Singh, G.P. 2023. Resilience to terminal drought, heat, and their combination stress in wheat genotypes, Agronomy, 13: 891.
  • Sellammal, R., Robin, S., Raveendran, M. 2014. Association and heritability studies for drought resistance under varied moisture stress regimes in backcross inbred population of rice, Rice Science, 21(3): 150–161.
  • Songsri, P., Jogloy, S., Kesmala, T., Vorasoot, N., Akkasaeng, C., Patanothai, A., Holbrook, C.C. 2008. Heritability of drought resistance traits and correlation of drought resistance and agronomic traits in peanut, Crop Science, 48(6): 2245–2253.
  • Teklay, A., Gurja, B., Taye, T., Gemechu, K. 2020. Selection efficiency of yield-based drought tolerance indices to identify superior sorghum [Sorghum bicolor (L.) Moench] near-isogenic lines (NILs) under two-contrasting environments, African Journal of Agricultural Research, 15(3): 379–392.
  • Yahaya, M.A., Shimelis, H., Nebie, B., Mashilo, J., Pop, G. 2023. Response of African sorghum genotypes for drought tolerance under variable environments, Agronomy, 13: 557.

Genetic variation, genotype × environment interaction, and correlation among drought tolerance indices in cowpea

Year 2024, Volume: 6 Issue: 1, 377 - 410, 16.03.2024

Abstract

Drought tolerance indices are valuable indicators for selecting cowpea genotypes with improved drought tolerance. However, there is a limited understanding of the variability and the impact of genotype (G) × environment (E) interaction (I) on these drought tolerance indices. Therefore, the objective of this study was to assess the extent of genetic variability and the influence of GEI on drought tolerance indices in cowpeas. The experiment was conducted over two seasons under controlled conditions in a screen house. The results revealed that seed yield and all drought tolerance indices were significantly influenced by genotype, environment, and GEI. When the data from both years were combined, the yield under non-stress conditions ranged from 10.47 g in G2 to 17.27 g in G7, while under drought stress, it ranged from 2.19 g in G3 to 6.89 g in G1. Through mean rank analysis, principal component (PC) analysis, and clustering, highly tolerant accessions (G1 and G6) and highly susceptible ones (G2, G3, and G8) were identified. This study identified several indices, including geometric mean (GM), yield index (YI), mean productivity (MP), stress tolerance index (STI), modified stress tolerance index for non-stress (MST1), and stress (MST2), GMP, and HM, as effective in selecting high-yielding and drought-tolerant accessions under non-stress and drought conditions. Additionally, the drought resistance index (DRI) and yield stability index (YSI) were reliable indicators under drought stress. Most of the indices exhibited moderate (≥ 30%) to high heritability (≥ 60%) and high genetic advance (≥ 20%), except for MST2, which had low heritability (12.73%).

References

  • Adetumbi, J.A., Akinyosoye, S.T., Agbeleye, A., Kareem, K.T., Oduwaye, O.F., Adebayo, G.G., Olakojo, S.A. 2019. Genetic variability in the agronomic traits, inheritance pattern of seed coat colour, and response to brown blotch disease among cowpea hybrids, Euphytica, 215: 142.
  • Ajayi, A.T., Adekola, M.O., Taiwo, B.H., Azuh, V.O. 2014. Character expression and differences in yield potential of ten genotypes of cowpea (Vigna unguiculata L. Walp), International Journal of Plant Research, 4(3): 63–71.
  • Ajayi, A.T., Gbadamosi, A.E., Olumekun, V.O., Nwosu, P.O. 2020. GT biplot analysis of shoot traits indicating drought tolerance in cowpea [Vigna unguiculata (L.) Walp] accessions at vegetative stage, International Journal of BioSciences and Technology, 13(2): 18–33.
  • Ajayi, A.T., Gbadamosi, A.E., Osekita, O.S., Taiwo, B.H., Fawibe, A.B., Adedeji, I., Omisakin, T. 2022. Genotype × environment interaction and adaptation of cowpea genotypes across six planting seasons, Frontiers in Life Sciences and Related Technologies, 3(1): 7–15.
  • Ajayi, A.T. 2020. Relationships among drought tolerance indices and yield characters of cowpea (Vigna unguiculata L. Walp), International Journal of Scientific Research in Biological Sciences, 7(5): 93–103.
  • Al-rawi, I.M.D. 2016. Study of drought tolerance indices in some bread and durum wheat cultivars, Jordan Journal of Agricultural Sciences, 12(4): 1125–1139.
  • Anwar, J., Subhani, G.M., Hussain, M., Ahmad, J., Hussain, M., Munir, M. 2011. Drought tolerance indices and their correlation with yield in exotic wheat genotypes, Pakistan Journal of Botany, 43(3): 1527–1530.
  • Atnaf, M., Tesfaye, K., Wegary, D. 2017. Genotype by trait biplot analysis to study associations and profiles of Ethiopian white lupin (Lupinus albus L.) landraces, Australian Journal of Crop Science, 11(1): 55–62.
  • Badu-apraku, B., Obesesan, O., Abiodun, A., Obeng-Bio, E. 2021. Genetic gains from selection for drought tolerance during three breeding periods in extra-early maturing maize hybrids under drought and rainfed environments, Agronomy, 11: 831.
  • Batieno, B.J., Tignegreb, J., Hamadouc, S., Hamadoud, Z., Ouedraogoe, T.J., Danquahf, E. Oforig, K. 2016. Field assessment of cowpea genotypes for drought tolerance, International Journal of Sciences: Basic and Applied Research, 30(4): 358–369.
  • Bennani, S., Nsarellah, N., Jlibene, M., Tadesse, W., Birouk, A., Ouabbou, H. 2017. Efficiency of drought tolerance indices under different stress severities for bread wheat selection, Australian Journal of Crop Science, 11(4): 395–405.
  • Bogale, G., Rensburg, J.B.J., van Deventer, C.S. 2012. Heritability of drought adaptive traits and relationships with grain yield in maize grown under a high plant population, Ethiopian Journal of Agricultural Sciences, 22(1): 126–126.
  • Bonea, D. 2020. Grain yield and drought tolerance indices in maize hybrids, Notulae Scientia Biologicae, 12(2): 376–386.
  • Bouslama, M., Schapaugh, W.T. 1984. Stress tolerance in soybean. I. Evaluation of three screening techniques for heat and drought tolerance, Crop Science, 24: 933–937.
  • Choudhary, R.S., Biradar, D.P., Katageri, I.S. 2021. Evaluation of sorghum RILs for moisture stress tolerance using drought tolerance indices, The Pharma Innovation Journal, 10(4): 39–45.
  • de Nóvoa Pinto, J.V., Sousa, D., de P. Nunes, H.G.G.C., de Souza, E.B., de Melo-Abreu, J.P., Sousa, A.M.L., de Souza, P.J.O.P. 2021. Impacts of climate changes on risk zoning for cowpea in the Amazonian tropical conditions, Bragantia, 80: e5521.
  • Eid, M.H., Sabry, S. 2019. Assessment of variability for drought tolerance indices in some wheat (Triticum aestivum L.) genotypes, Egyptian Journal of Agronomy, 41(2): 79–91.
  • El haddad, N., Rajendran, K., Smouni, A., Es-Safi, N.E., Benbrahim, N., Mentag, R., Nayyar, H., Maalouf, F., Kumar, S. 2020. Screening the FIGS set of lentil (Lens culinaris Medikus) germplasm for tolerance to terminal heat and combined drought-heat stress, Agronomy, 10: 1036.
  • El-Rawy, M.A., Hassan, M.I. 2014. Effectiveness of drought tolerance indices to identify tolerant genotypes in bread wheat (Triticum aestivum L.), Journal of Crop Science and Biotechnology, 17(4): 255–266.
  • FAOSTAT. 2022. Official Website of Food and Agriculture Organization, FAOSTAT_data_8-29-2020-Excel, http://faostat.fao.org, Last Accessed on January 29, 2022. Farshadfar, F., Sutka, J. 2002. Screening drought tolerance criteria in maize, Acta Agron Hung, 50(4): 411–416.
  • Fayeun, L.S., Hammed, L.A., Oduwaye, O.A., Madike, J.U., Ushie, E.U. 2016. Estimates of genetic variability for seedling traits in fluted pumpkin (Telfairia occidentalis Hook. F), Plant Breeding and Biotechnology, 4(2): 262–270.
  • Fernandez, G.C.J. 1992. Effective selection criteria for assessing plant stress tolerance, Proceedings of the Symposium Taiwan, 25: 257–270.
  • Fisher, R.A., Yates, F. 1963. Statistical tables for biological, agricultural, and medical research, Biometrical Journal, 13(4): 225–286.
  • Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R.G., Ricciardi G.L., Borghi, B. 1997. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals, Canadian Journal of Plant Science, 77: 523–531.
  • Guendouz, A., Frih, B., Oulmi, A. 2021. Canopy cover temperature and drought tolerance indices in durum wheat (Triticum durum Desf.) genotypes under the semi-arid condition in Algeria, International Journal of Bio-Resource and Stress Management, 12(6): 638–644.
  • Hammer, Ø., Harper, D.A.T., Ryan, P.D. 2001. PAST: Paleontological statistics software package for data analysis, Palaeontologia Electronica, 4(1): 9.
  • Hossain, K.G., Islam, N., Jacob, D., Ghavami, F., Tucker, M., Kowalski, T., Leilani, A., Zacharias, J. 2013. Interdependence of genotype and growing site on seed mineral compositions in common bean, Asian Journal of Plant Sciences, 12(1): 11–20.
  • Hosseini, A.D., Dadkhodaie, A., Heidari, B., Kazemeini, S.A. 2020. Evaluation of a hexaploid wheat collection (Triticum aestivum L.) under drought stress conditions using stress tolerance indices, Annual Research and Review in Biology, 34(6): 1–10.
  • Hussain, T., Hussain, N., Ahmed, M., Nualsri, C., Duangpan, S. 2021. Responses of lowland rice genotypes under terminal water stress and identification of drought tolerance to stabilize rice productivity in southern Thailand, Plants, 10: 2565.
  • Kristin, A.S., Senra, R.R., Perez, F.I., Enriquez, B.C., Gallegos, J.A.A., Vallego, P.R., Wassimi, N., Kelley, J.D. 1997. Improving common bean performance under drought stress, Crop Science, 37: 43–50.
  • Lao, Y., Dong, Y., Shi, Y., Wang, Y., Xu, S., Xue, J., Zhang, X. 2022. Evaluation of drought tolerance in maize inbred lines selected from the Shaan A group and Shaan B group, Agriculture, 12: 11.
  • Mahdi, Z. 2012. Evaluation of drought tolerance indices for the selection of Iranian barley (Hordeum vulgare) cultivars, African Journal of Biotechnology, 11(93): 15975–15981.
  • Moosavi, S.S., Samadi, B.Y., Naghavi, M.R., Zali, A.A., Dashti, H., Pourshahbazi, A. 2008. Introduction of new indices to identify relative drought tolerance and resistance in wheat cultivars, Desert, 12: 165–178.
  • Nauditt, A., Stahl, K., Rodríguez, E., Birkel, C., Formiga-Johnsson, R.M., Kallio, M., Ribbe, L., Baez-Villanueva, O.M., Thurner, J., Hann, H. 2022. Evaluating tropical drought risk by combining open access gridded vulnerability and hazard data products, Science of the Total Environment, 882: 153493.
  • Ogbaga, C.C., Stepien, P., Johnson, G.N. 2014. Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought, Physiologia Plantarum, 152(2): 389–401.
  • Padmashree, R., Reddy, V., Mogar, N.D., Barbadikar, K.M., Balakrishnan, D., Gireesh, C., Siddaiah, A.M., Badri, J., Lokesha, R., Ramesha, Y.M., Senguttuvel, P., Diwan, J.R., Madhav, M.S., Rani, S.C., Sundaram, R.M. 2023. Assessment of multiple tolerance indices to identify rice lines suitable for aerobic system cultivation, International Journal of Plant and Soil Science, 35(11): 16–28.
  • Rosielle, A.A., Hamblin, J. 1981. Theoretical aspects of selection for yield in stress and non-stress environments, Crop Science, 21: 943–946.
  • Sanogo, S.A., Diallo, S., Batieno, T.B., Ishola, A.I., Sawadogo, N., Nyadanu, D. 2023. Screen house assessment of cowpea genotypes for drought tolerance using selection indices, Agricultural Sciences, 14: 457–473.
  • Sareen, S., Budhlakoti, N., Mishra, K.K., Bharad, S., Potdukhe, N.R., Tyagi, B.S., Singh, G.P. 2023. Resilience to terminal drought, heat, and their combination stress in wheat genotypes, Agronomy, 13: 891.
  • Sellammal, R., Robin, S., Raveendran, M. 2014. Association and heritability studies for drought resistance under varied moisture stress regimes in backcross inbred population of rice, Rice Science, 21(3): 150–161.
  • Songsri, P., Jogloy, S., Kesmala, T., Vorasoot, N., Akkasaeng, C., Patanothai, A., Holbrook, C.C. 2008. Heritability of drought resistance traits and correlation of drought resistance and agronomic traits in peanut, Crop Science, 48(6): 2245–2253.
  • Teklay, A., Gurja, B., Taye, T., Gemechu, K. 2020. Selection efficiency of yield-based drought tolerance indices to identify superior sorghum [Sorghum bicolor (L.) Moench] near-isogenic lines (NILs) under two-contrasting environments, African Journal of Agricultural Research, 15(3): 379–392.
  • Yahaya, M.A., Shimelis, H., Nebie, B., Mashilo, J., Pop, G. 2023. Response of African sorghum genotypes for drought tolerance under variable environments, Agronomy, 13: 557.
There are 43 citations in total.

Details

Primary Language English
Subjects Genetics (Other)
Journal Section Research Articles
Authors

Abiola Toyin Ajayi

Publication Date March 16, 2024
Published in Issue Year 2024 Volume: 6 Issue: 1

Cite

APA Ajayi, A. T. (2024). Genetic variation, genotype × environment interaction, and correlation among drought tolerance indices in cowpea. International Journal of Science Letters, 6(1), 377-410.
AMA Ajayi AT. Genetic variation, genotype × environment interaction, and correlation among drought tolerance indices in cowpea. IJSL. March 2024;6(1):377-410.
Chicago Ajayi, Abiola Toyin. “Genetic Variation, Genotype × Environment Interaction, and Correlation Among Drought Tolerance Indices in Cowpea”. International Journal of Science Letters 6, no. 1 (March 2024): 377-410.
EndNote Ajayi AT (March 1, 2024) Genetic variation, genotype × environment interaction, and correlation among drought tolerance indices in cowpea. International Journal of Science Letters 6 1 377–410.
IEEE A. T. Ajayi, “Genetic variation, genotype × environment interaction, and correlation among drought tolerance indices in cowpea”, IJSL, vol. 6, no. 1, pp. 377–410, 2024.
ISNAD Ajayi, Abiola Toyin. “Genetic Variation, Genotype × Environment Interaction, and Correlation Among Drought Tolerance Indices in Cowpea”. International Journal of Science Letters 6/1 (March 2024), 377-410.
JAMA Ajayi AT. Genetic variation, genotype × environment interaction, and correlation among drought tolerance indices in cowpea. IJSL. 2024;6:377–410.
MLA Ajayi, Abiola Toyin. “Genetic Variation, Genotype × Environment Interaction, and Correlation Among Drought Tolerance Indices in Cowpea”. International Journal of Science Letters, vol. 6, no. 1, 2024, pp. 377-10.
Vancouver Ajayi AT. Genetic variation, genotype × environment interaction, and correlation among drought tolerance indices in cowpea. IJSL. 2024;6(1):377-410.