Research Article
BibTex RIS Cite

Molecular Docking, Antibacterial and Antioxidant Activities of Compounds Isolated from Ethiopian Plants

Year 2022, , 208 - 328, 15.06.2022
https://doi.org/10.21448/ijsm.1023864

Abstract

This study evaluated the antibacterial and antioxidant activities of the constituents of L. tomentosa and S. longipedunculata. The in-silico molecular docking analysis of the isolated compounds was also reported herein for the first time. The GC-MS analysis of the essential oil of L. tomentosa led to the identification of eleven components with 2,5-dimethoxy-p-cymene identified as the principal constituent (59.39%). Lauric acid (1), β-stigmasterol (2), chrysophanol (3), and emodin (4) were isolated from L. tomentosa using silica gel column chromatography. Likewise, 9H-xanthene-3,5-diol (5), 1,7-dihydroxy-4-methoxyxanthone (6), and oleic acid (7) were isolated from S. longipedunculata. The structures of the isolated compounds were elucidated using UV-Vis, IR, and NMR spectroscopic methods. Compounds 3 and 4 are new to the genus Laggera, while 5 and 6 are new to the species S. longipedunculata. Compounds 3-6 inhibited DPPH radical by 86, 92, 88, and 90%, respectively. Compounds 5 and 6 inhibited 79.2 and 81.9% peroxide formation, respectively. The antioxidant activities displayed by compounds 4-6 suggest their use as a natural antioxidant. Compounds 4 and 6 inhibited the growth of bacteria by 18.00±0.10 and 16.06±0.22 mm, respectively. Compounds 3, 4, and 6 showed binding affinities of −10.4, −10.4, and −9.9 kcal/mol against Staphylococcus aureus DNA Gyrase, respectively, while 4 showed −10.4 kcal/mol against human topoisomerase IIβ. Therefore, the present study results showed that emodin and 1,7-dihydroxy-4-methoxyxanthone might be considered lead compounds for further development as antibacterial and anti-cancer agents. The findings also substantiate the traditional use of these plants against bacteria.

References

  • Abu-Melha, S. (2018). Design, Synthesis and DFT/DNP Modeling Study of New 2-Amino-5-arylazothiazole Derivatives as Potential Antibacterial Agents. Molecules, 23(2). https://doi.org/10.3390/molecules23020434
  • Ah, A., & Yi, A. (2019). In silico Pharmacokinetics and Molecular Docking Studies of Lead Compounds Derived from Diospyros Mespiliformis. PharmaTutor, 7, 31-37.
  • Akpemi, A., Oyewale, A.O., Ndukwe, I.G. (2013). Phytochemical screening and antimicrobial activity of extracts of Securidaca longepedunclata root bark MeOH extract. [Department of Chemistry, Thesis, Federal Collage of Education, Zaria, Nigeria].
  • Asfaw, N., Storesund, H.J., Aasen, A.J., & Skattebol, L. (2003). Constituents of the Essential Oil of Laggera tomentosa Sch. Bip. ex Oliv. et Hiern Endemic to Ethiopia. Journal of Essential Oil Research, 15(2), 102-105. https://doi.org/10.1080/10412905.2003.9712081
  • Baker, J.T., Borris, R.P., Carté, B., Cordell, G.A., Soejarto, D.D., Cragg, G.M., . . . Tyler, V. E. (1995). Natural product drug discovery and development: new perspectives on international collaboration. J Nat Prod, 58(9), 1325 1357. https://doi.org/10.1021/np50123a003
  • Banerjee, P., Eckert, A.O., Schrey, A.K., & Preissner, R. (2018). ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res, 46(W1), W257-w263. https://doi.org/10.1093/nar/gky318
  • Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity. Lwt - Food Science and Technology, 28, 25-30.
  • Chaturvedula, V., & Prakash, I. (2012). Isolation of Stigmasterol and ?-Sitosterol from the dichloromethane extract of Rubus suavissimus. International Current Pharmaceutical Journal, 1(9), 239-242. https://doi.org/10.3329/icpj.v1i9.11613
  • Coopoosamy, R.M. and Magwa, M.L. (2006). Antibacterial activity of chrysophanol isolated from Aloe excelsa. African Journal of Biotechnology, 5(16). 1508-1510.
  • Cuauthemone Sesquiterpenes and Flavones From Laggera Tomentosa Endemic TO ETHIOPIA. (2010). Bulletin of the Chemical Society of Ethiopia, 24(2), 267-271.
  • Debella, A., Kunert, O., Schmid, M.G., Michl, G., Bucar, F., Abebe, D.S., & Haslinger, E. (2000). A Diterpene, a Flavonol Glycoside, and a Phytosterol Glycoside from Securidaca longipedunculata and Entada abyssinica. ChemInform, 131, 401-408.
  • Declercq, J.P., Evrard, C., Clippe, A., Stricht, D.V., Bernard, A., & Knoops, B. (2001). Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 A resolution. J Mol Biol, 311(4), 751-759. https://doi.org/10.1006/jmbi.2001.4853
  • Dibwe, D.F., Awale, S., Kadota, S., Morita, H., & Tezuka, Y. (2013). Heptaoxygenated xanthones as anti-austerity agents from Securidaca longepedunculata. Bioorg Med Chem, 21(24), 7663-7668. https://doi.org/10.1016/j.bmc.2013.10.027
  • El-Etrawy, A.-A.S., & Sherbiny, F. F. (2021). Design, synthesis, biological assessment and molecular docking studies of some new 2-Thioxo-2,3-dihydropyrimidin-4(1H)-ones as potential anticancer and antibacterial agents. Journal of Molecular Structure, 1225, 129014. https://doi.org/10.1016/j.molstruc.2020.129014
  • Fekade, B. (2008). Phytochemical investigation of the pods of Senna occidentalis. [Master Thesis, AAU, Addis Ababa, Ethiopia].
  • Garg, A., Tadesse, A., & Eswaramoorthy, R. (2021). A Four-Component Domino Reaction: An Eco-Compatible and Highly Efficient Construction of 1,8-Naphthyridine Derivatives, Their In Silico Molecular Docking, Drug Likeness, ADME, and Toxicity Studies. Journal of Chemistry, 2021, 5589837. https://doi.org/10.1155/2021/5589837
  • Ghasemi, K., Ghasemi, Y., & Ebrahimzadeh, M. A. (2009). Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak J Pharm Sci, 22(3), 277-281.
  • Gülçin, İ., Huyut, Z., Elmastaş, M., & Aboul-Enein, H.Y. (2010). Radical scavenging and antioxidant activity of tannic acid. Arabian Journal of Chemistry, 3(1), 43-53. https://doi.org/10.1016/j.arabjc.2009.12.008
  • Guo, S., Feng, B., Zhu, R., Ma, J., & Wang, W. (2011). Preparative isolation of three anthraquinones from Rumex japonicus by high-speed counter-current chromatography. Molecules, 16(2), 1201-1210. https://doi.org/10.3390/molecules16021201
  • Hakim, A., Akssira, M., Mina, L., Idrissi Hassani, L. M., Chebli, B., Hakmoui, A., . . . Blázquez, M. (2008). Chemical composition and antifungal activity of Bubonium imbricatum volatile oil. Phytopathologia Mediterranea, 47(1), 3 10. https://doi.org/10.14601/Phytopathol_Mediterr-2541
  • Joshi, R.K. (2013). Chemical constituents and antibacterial property of the essential oil of the roots of Cyathocline purpurea. J Ethnopharmacol, 145(2), 621 625. https://doi.org/10.1016/j.jep.2012.11.045
  • Lipinski, C.A., Lombardo, F., Dominy, B.W., & Feeney, P.J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev, 46(1-3), 3-26. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Martin, N., Jirovetz, L., Buchbauer, G., & Fleischhacker, W. (2000). Investigation of the Essential Oil and Headspace of Laggera pterodonta (DC.) Sch. Bip. ex Oliv., a Medicinal Plant from Cameroon. The Journal of Essential Oil Research, 12, 345-349. https://doi.org/10.1080/10412905.2000.9699532
  • Mongalo, N.I., McGaw, L.J., Finnie, J.F., & Staden, J.V. (2015). Securidaca longipedunculata Fresen (Polygalaceae): a review of its ethnomedicinal uses, phytochemistry, pharmacological properties and toxicology. J Ethnopharmacol, 165, 215 226. https://doi.org/10.1016/j.jep.2015.02.041
  • Muto, A., Hori, M., Sasaki, Y., Saitoh, A., Yasuda, I., Maekawa, T., . . . Yoshida, T. (2007). Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol Cancer Ther, 6(3), 987-994. https://doi.org/10.1158/1535-7163.Mct-06-0605
  • Nagatsu, A. (2004). Investigation of Anti-oxidative Compounds from Oil Plant Seed, Fabad J. Pharm. Sci., 29, 203–210.
  • Ndukwe, K., Okeke, I., Lamikanra, A., Adesina, S., & Aboderin, O. (2005). Antibacterial Activity of Aqueous Extracts of Selected Chewing Sticks. The journal of contemporary dental practice, 6, 86-94. https://doi.org/10.5005/jcdp-6-3-86
  • Ołdak, A., Zielińska, D., Rzepkowska, A., & Kołożyn-Krajewska, D. (2017). Comparison of Antibacterial Activity of Lactobacillus plantarum Strains Isolated from Two Different Kinds of Regional Cheeses from Poland: Oscypek and Korycinski Cheese. Biomed Res Int, 2017, 6820369. https://doi.org/10.1155/2017/6820369
  • Omoregie, H., Okwute, & Koma, S. (2014). Some Bioactive Fatty Derivatives from L. pterodonta. Nature and Science, 12(1), 79-86.
  • Owolabi, M.S., Lajide, L., Villanueva, H.E., & Setzer, W.N. (2010). Essential oil composition and insecticidal activity of Blumea perrottetiana growing in southwestern Nigeria. Nat Prod Commun, 5(7), 1135-1138.
  • Panda, S., Jafri, M., Kar, A., & Meheta, B.K. (2009). Thyroid inhibitory, antiperoxidative and hypoglycemic effects of stigmasterol isolated from Butea monosperma. Fitoterapia, 80(2), 123-126. https://doi.org/10.1016/j.fitote.2008.12.002
  • Popelier, P.L.A. (2000). Atoms in Molecules: An Introduction; Pearson Education.
  • Qusti, S.Y., Abo-khatwa, A.N., Lahwa, M.A.B., & Qusti, S.Y. (2010). Screening of antioxidant activity and phenolic content of selected food items cited in the holly Quran. EJBS, 2(1), 40–52
  • Rawat, D., Rawat, M. s. M., Semalty, A., & Semalty, M. (2013). Crysophanol-Phospholipid Complex: A Drug Delivery Strategy in Herbal Novel Drug Delivery System-HNDDS. Journal of Thermal Analysis and Calorimetry, 111, 2069 2077. https://doi.org/10.1007/s10973-012-2448-6
  • Tamano, M., & Koketsu, J. (1982). Isolation of Hydroxyanthrones from the Roots of Rumex acetosa Linn. Agricultural and Biological Chemistry, 46(7), 1913 1914. https://doi.org/10.1080/00021369.1982.10865350
  • Trott, O., & Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31(2), 455-461. https://doi.org/10.1002/jcc.21334
  • Verma, R., Padalia, R., Chanotiya, C., Chauhan, A., & Yadav, A. (2011). Chemical investigation of the essential oil of Laggera crispata (Vahl) Hepper & Wood from India. J. Serb. Chem. Soc., 76, 523–528. https://doi.org/10.2298/JSC100801048V
  • Vujovic, M., Ragavendran, V., Arsic, B., Kostic, E., & Mladenović, M. (2020). DFT calculations as an efficient tool for prediction of Raman and infra-red spectra and activities of newly synthesized cathinones. Open Chemistry, 18, 185 195. https://doi.org/10.1515/chem-2020-0021
  • Yamashita, S., Igarashi, M., Hayashi, C., Shitara, T., Nomoto, A., Mizote, T., & Shibasaki, M. (2015). Identification of self-growth-inhibiting compounds lauric acid and 7-(Z)-tetradecenoic acid from Helicobacter pylori. Microbiology (Reading), 161(6), 1231-1239. https://doi.org/10.1099/mic.0.000077

Molecular Docking, Antibacterial and Antioxidant Activities of Compounds Isolated from Ethiopian Plants

Year 2022, , 208 - 328, 15.06.2022
https://doi.org/10.21448/ijsm.1023864

Abstract

This study evaluated the antibacterial and antioxidant activities of the constituents of L. tomentosa and S. longipedunculata. The in-silico molecular docking analysis of the isolated compounds was also reported herein for the first time. The GC-MS analysis of the essential oil of L. tomentosa led to the identification of eleven components with 2,5-dimethoxy-p-cymene identified as the principal constituent (59.39%). Lauric acid (1), β-stigmasterol (2), chrysophanol (3), and emodin (4) were isolated from L. tomentosa using silica gel column chromatography. Likewise, 9H-xanthene-3,5-diol (5), 1,7-dihydroxy-4-methoxyxanthone (6), and oleic acid (7) were isolated from S. longipedunculata. The structures of the isolated compounds were elucidated using UV-Vis, IR, and NMR spectroscopic methods. Compounds 3 and 4 are new to the genus Laggera, while 5 and 6 are new to the species S. longipedunculata. Compounds 3-6 inhibited DPPH radical by 86, 92, 88, and 90%, respectively. Compounds 5 and 6 inhibited 79.2 and 81.9% peroxide formation, respectively. The antioxidant activities displayed by compounds 4-6 suggest their use as a natural antioxidant. Compounds 4 and 6 inhibited the growth of bacteria by 18.00±0.10 and 16.06±0.22 mm, respectively. Compounds 3, 4, and 6 showed binding affinities of −10.4, −10.4, and −9.9 kcal/mol against Staphylococcus aureus DNA Gyrase, respectively, while 4 showed −10.4 kcal/mol against human topoisomerase IIβ. Therefore, the present study results showed that emodin and 1,7-dihydroxy-4-methoxyxanthone might be considered lead compounds for further development as antibacterial and anti-cancer agents. The findings also substantiate the traditional use of these plants against bacteria.

References

  • Abu-Melha, S. (2018). Design, Synthesis and DFT/DNP Modeling Study of New 2-Amino-5-arylazothiazole Derivatives as Potential Antibacterial Agents. Molecules, 23(2). https://doi.org/10.3390/molecules23020434
  • Ah, A., & Yi, A. (2019). In silico Pharmacokinetics and Molecular Docking Studies of Lead Compounds Derived from Diospyros Mespiliformis. PharmaTutor, 7, 31-37.
  • Akpemi, A., Oyewale, A.O., Ndukwe, I.G. (2013). Phytochemical screening and antimicrobial activity of extracts of Securidaca longepedunclata root bark MeOH extract. [Department of Chemistry, Thesis, Federal Collage of Education, Zaria, Nigeria].
  • Asfaw, N., Storesund, H.J., Aasen, A.J., & Skattebol, L. (2003). Constituents of the Essential Oil of Laggera tomentosa Sch. Bip. ex Oliv. et Hiern Endemic to Ethiopia. Journal of Essential Oil Research, 15(2), 102-105. https://doi.org/10.1080/10412905.2003.9712081
  • Baker, J.T., Borris, R.P., Carté, B., Cordell, G.A., Soejarto, D.D., Cragg, G.M., . . . Tyler, V. E. (1995). Natural product drug discovery and development: new perspectives on international collaboration. J Nat Prod, 58(9), 1325 1357. https://doi.org/10.1021/np50123a003
  • Banerjee, P., Eckert, A.O., Schrey, A.K., & Preissner, R. (2018). ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res, 46(W1), W257-w263. https://doi.org/10.1093/nar/gky318
  • Brand-Williams, W., Cuvelier, M.E., & Berset, C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity. Lwt - Food Science and Technology, 28, 25-30.
  • Chaturvedula, V., & Prakash, I. (2012). Isolation of Stigmasterol and ?-Sitosterol from the dichloromethane extract of Rubus suavissimus. International Current Pharmaceutical Journal, 1(9), 239-242. https://doi.org/10.3329/icpj.v1i9.11613
  • Coopoosamy, R.M. and Magwa, M.L. (2006). Antibacterial activity of chrysophanol isolated from Aloe excelsa. African Journal of Biotechnology, 5(16). 1508-1510.
  • Cuauthemone Sesquiterpenes and Flavones From Laggera Tomentosa Endemic TO ETHIOPIA. (2010). Bulletin of the Chemical Society of Ethiopia, 24(2), 267-271.
  • Debella, A., Kunert, O., Schmid, M.G., Michl, G., Bucar, F., Abebe, D.S., & Haslinger, E. (2000). A Diterpene, a Flavonol Glycoside, and a Phytosterol Glycoside from Securidaca longipedunculata and Entada abyssinica. ChemInform, 131, 401-408.
  • Declercq, J.P., Evrard, C., Clippe, A., Stricht, D.V., Bernard, A., & Knoops, B. (2001). Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 A resolution. J Mol Biol, 311(4), 751-759. https://doi.org/10.1006/jmbi.2001.4853
  • Dibwe, D.F., Awale, S., Kadota, S., Morita, H., & Tezuka, Y. (2013). Heptaoxygenated xanthones as anti-austerity agents from Securidaca longepedunculata. Bioorg Med Chem, 21(24), 7663-7668. https://doi.org/10.1016/j.bmc.2013.10.027
  • El-Etrawy, A.-A.S., & Sherbiny, F. F. (2021). Design, synthesis, biological assessment and molecular docking studies of some new 2-Thioxo-2,3-dihydropyrimidin-4(1H)-ones as potential anticancer and antibacterial agents. Journal of Molecular Structure, 1225, 129014. https://doi.org/10.1016/j.molstruc.2020.129014
  • Fekade, B. (2008). Phytochemical investigation of the pods of Senna occidentalis. [Master Thesis, AAU, Addis Ababa, Ethiopia].
  • Garg, A., Tadesse, A., & Eswaramoorthy, R. (2021). A Four-Component Domino Reaction: An Eco-Compatible and Highly Efficient Construction of 1,8-Naphthyridine Derivatives, Their In Silico Molecular Docking, Drug Likeness, ADME, and Toxicity Studies. Journal of Chemistry, 2021, 5589837. https://doi.org/10.1155/2021/5589837
  • Ghasemi, K., Ghasemi, Y., & Ebrahimzadeh, M. A. (2009). Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak J Pharm Sci, 22(3), 277-281.
  • Gülçin, İ., Huyut, Z., Elmastaş, M., & Aboul-Enein, H.Y. (2010). Radical scavenging and antioxidant activity of tannic acid. Arabian Journal of Chemistry, 3(1), 43-53. https://doi.org/10.1016/j.arabjc.2009.12.008
  • Guo, S., Feng, B., Zhu, R., Ma, J., & Wang, W. (2011). Preparative isolation of three anthraquinones from Rumex japonicus by high-speed counter-current chromatography. Molecules, 16(2), 1201-1210. https://doi.org/10.3390/molecules16021201
  • Hakim, A., Akssira, M., Mina, L., Idrissi Hassani, L. M., Chebli, B., Hakmoui, A., . . . Blázquez, M. (2008). Chemical composition and antifungal activity of Bubonium imbricatum volatile oil. Phytopathologia Mediterranea, 47(1), 3 10. https://doi.org/10.14601/Phytopathol_Mediterr-2541
  • Joshi, R.K. (2013). Chemical constituents and antibacterial property of the essential oil of the roots of Cyathocline purpurea. J Ethnopharmacol, 145(2), 621 625. https://doi.org/10.1016/j.jep.2012.11.045
  • Lipinski, C.A., Lombardo, F., Dominy, B.W., & Feeney, P.J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev, 46(1-3), 3-26. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Martin, N., Jirovetz, L., Buchbauer, G., & Fleischhacker, W. (2000). Investigation of the Essential Oil and Headspace of Laggera pterodonta (DC.) Sch. Bip. ex Oliv., a Medicinal Plant from Cameroon. The Journal of Essential Oil Research, 12, 345-349. https://doi.org/10.1080/10412905.2000.9699532
  • Mongalo, N.I., McGaw, L.J., Finnie, J.F., & Staden, J.V. (2015). Securidaca longipedunculata Fresen (Polygalaceae): a review of its ethnomedicinal uses, phytochemistry, pharmacological properties and toxicology. J Ethnopharmacol, 165, 215 226. https://doi.org/10.1016/j.jep.2015.02.041
  • Muto, A., Hori, M., Sasaki, Y., Saitoh, A., Yasuda, I., Maekawa, T., . . . Yoshida, T. (2007). Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol Cancer Ther, 6(3), 987-994. https://doi.org/10.1158/1535-7163.Mct-06-0605
  • Nagatsu, A. (2004). Investigation of Anti-oxidative Compounds from Oil Plant Seed, Fabad J. Pharm. Sci., 29, 203–210.
  • Ndukwe, K., Okeke, I., Lamikanra, A., Adesina, S., & Aboderin, O. (2005). Antibacterial Activity of Aqueous Extracts of Selected Chewing Sticks. The journal of contemporary dental practice, 6, 86-94. https://doi.org/10.5005/jcdp-6-3-86
  • Ołdak, A., Zielińska, D., Rzepkowska, A., & Kołożyn-Krajewska, D. (2017). Comparison of Antibacterial Activity of Lactobacillus plantarum Strains Isolated from Two Different Kinds of Regional Cheeses from Poland: Oscypek and Korycinski Cheese. Biomed Res Int, 2017, 6820369. https://doi.org/10.1155/2017/6820369
  • Omoregie, H., Okwute, & Koma, S. (2014). Some Bioactive Fatty Derivatives from L. pterodonta. Nature and Science, 12(1), 79-86.
  • Owolabi, M.S., Lajide, L., Villanueva, H.E., & Setzer, W.N. (2010). Essential oil composition and insecticidal activity of Blumea perrottetiana growing in southwestern Nigeria. Nat Prod Commun, 5(7), 1135-1138.
  • Panda, S., Jafri, M., Kar, A., & Meheta, B.K. (2009). Thyroid inhibitory, antiperoxidative and hypoglycemic effects of stigmasterol isolated from Butea monosperma. Fitoterapia, 80(2), 123-126. https://doi.org/10.1016/j.fitote.2008.12.002
  • Popelier, P.L.A. (2000). Atoms in Molecules: An Introduction; Pearson Education.
  • Qusti, S.Y., Abo-khatwa, A.N., Lahwa, M.A.B., & Qusti, S.Y. (2010). Screening of antioxidant activity and phenolic content of selected food items cited in the holly Quran. EJBS, 2(1), 40–52
  • Rawat, D., Rawat, M. s. M., Semalty, A., & Semalty, M. (2013). Crysophanol-Phospholipid Complex: A Drug Delivery Strategy in Herbal Novel Drug Delivery System-HNDDS. Journal of Thermal Analysis and Calorimetry, 111, 2069 2077. https://doi.org/10.1007/s10973-012-2448-6
  • Tamano, M., & Koketsu, J. (1982). Isolation of Hydroxyanthrones from the Roots of Rumex acetosa Linn. Agricultural and Biological Chemistry, 46(7), 1913 1914. https://doi.org/10.1080/00021369.1982.10865350
  • Trott, O., & Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31(2), 455-461. https://doi.org/10.1002/jcc.21334
  • Verma, R., Padalia, R., Chanotiya, C., Chauhan, A., & Yadav, A. (2011). Chemical investigation of the essential oil of Laggera crispata (Vahl) Hepper & Wood from India. J. Serb. Chem. Soc., 76, 523–528. https://doi.org/10.2298/JSC100801048V
  • Vujovic, M., Ragavendran, V., Arsic, B., Kostic, E., & Mladenović, M. (2020). DFT calculations as an efficient tool for prediction of Raman and infra-red spectra and activities of newly synthesized cathinones. Open Chemistry, 18, 185 195. https://doi.org/10.1515/chem-2020-0021
  • Yamashita, S., Igarashi, M., Hayashi, C., Shitara, T., Nomoto, A., Mizote, T., & Shibasaki, M. (2015). Identification of self-growth-inhibiting compounds lauric acid and 7-(Z)-tetradecenoic acid from Helicobacter pylori. Microbiology (Reading), 161(6), 1231-1239. https://doi.org/10.1099/mic.0.000077
There are 39 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Articles
Authors

Yadessa Melaku 0000-0003-2599-0517

Tokuma Getahun This is me 0000-0003-4564-9252

Markos Addisu This is me

Hailemichael Tesso This is me

Rajalakshmanan Eswaramoorthy 0000-0002-8331-2100

Ankita Garg 0000-0002-6073-6138

Publication Date June 15, 2022
Submission Date November 15, 2021
Published in Issue Year 2022

Cite

APA Melaku, Y., Getahun, T., Addisu, M., Tesso, H., et al. (2022). Molecular Docking, Antibacterial and Antioxidant Activities of Compounds Isolated from Ethiopian Plants. International Journal of Secondary Metabolite, 9(2), 208-328. https://doi.org/10.21448/ijsm.1023864
International Journal of Secondary Metabolite

e-ISSN: 2148-6905