Research Article
BibTex RIS Cite

Effects of Different Salt Concentrations on Quinoa Seedling Quality

Year 2017, , 20 - 26, 25.11.2017
https://doi.org/10.21448/ijsm.356248

Abstract

The experiment designed a completely randomized experimental design was carried out Adnan Menderes University, Agriculture Faculties greenhouse. Quinoa variety candidate named “Saponinsiz” is used experimental material. The seeds were sowed in plastic pots filled with soil and perlite (%50+%50) at the greenhouse with six replicates. Five different salt concentrations were determined as 0 (control), 4 ds m-1, 8 ds m-1, 16 ds m-1 and 30 ds m-1 and were applied with NaCl solution which was prepared before sowing. Leaf number, leaf length, leaf width, leaf thickness, stem thickness and green biomass weight values ​​were measured when the quinoa plant reached 6 leaf stage. As a result of the study, it was observed that the differences between the salt concentrations in leaf number, leaf length, leaf width and green biomass weight were significant. The maximum leaf length (11.53 mm) was measured with 8 ds m-1 salt concentration applied plants, whereas the maximum leaf width (4.99 mm) and green biomass (1019.5 mg) were measured with 4 ds m-1. The control plot only showed the highest values ​​for the leaf number value. These results confirmed that the quinoa plant was facultative halophytic species (salt-resistant). It was determined that 16 ds m-1 dose gave the lowest values in all measurements. And any plant wasn’t growing at the 30 ds m-1 applied pots. The values of the experiment measured of 4 ds m-1 pots and 8 ds m-1 pots, which is considered the limit values for the field crops, were approximately equal or greater than control pots. Moreover, there was a rapid decline of plant on the 16 ds m-1 values.

References

  • Pitman, M. G., & Läuchli, A. (2002). Global impact of salinity and agricultural ecosystems. Salinity: environment-plants-molecules, 3, 20.
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681.
  • Wilson, C., Read, J. J., & Abo-Kassem, E. (2002). Effect of mixed-salt salinity on growth and ion relations of a quinoa and a wheat variety. Journal of Plant Nutrition, 25(12), 2689-2704.
  • Ruiz-Carrasco, K., Antognoni, F., Coulibaly, A. K., Lizardi, S., Covarrubias, A., Martínez, E. A., & Zurita-Silva, A. (2011). Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiology and Biochemistry, 49(11), 1333-1341.
  • Rindos, D. (1992). The Origins of Agriculture. An International Perspective, Smithsonian Institution Press, Washington, London, pp. 173-205.
  • Jacobsen, S. E., Mujica, A., & Jensen, C. R. (2003). The resistance of quinoa (Chenopodium quinoa Willd) to adverse abiotic factors. Food Reviews International, 19(1-2), 99-109.
  • Jacobsen, S.-E., Mujica, A. (2001). Avances en el conocimiento de resistencia a factores abio´ticos adversos en la quinua (Chenopodium quinoa Willd.). Memorias Primer Taller Internacional de la Quinua., Lima, Peru.
  • Repo-Carrasco, R., Espinoza, C., & Jacobsen, S. E. (2003). Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food reviews international, 19(1-2), 179-189.
  • James, J. J., Alder, N. N., Mühling, K. H., Läuchli, A. E., Shackel, K. A., Donovan, L. A., & Richards, J. H. (2005). High apoplastic solute concentrations in leaves alter water relations of the halophytic shrub, Sarcobatus vermiculatus. Journal of Experimental Botany, 57(1), 139-147.
  • Kozioł, M. J. (1992). Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis, 5(1), 35-68.
  • Small, E. (2013). Quinoa: is the United Nations’ featured crop of 2013 bad for biodiversity. Biodiversity, 14(3), 169-79.
  • Flagella, Z., Trono, D., Pompa, M., Di Fonzo, N., & Pastore, D. (2006). Seawater stress applied at germination affects mitochondrial function in durum wheat (Triticum durum) early seedlings. Functional Plant Biology, 33(4), 357-366.
  • Bohnert, H. J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to environmental stresses. The plant cell, 7(7), 1099.
  • Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S. E., & Shabala, S. (2010). Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of experimental botany, 62(1), 185-193.
  • Ungar, I. A. (1996). Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). American Journal of Botany, 604-607.
  • Debez, A., Saadaoui, D., Ramani, B., Ouerghi, Z., Koyro, H. W., Huchzermeyer, B., & Abdelly, C. (2006). Leaf H+-ATPase activity and photosynthetic capacity of Cakile maritima under increasing salinity. Environmental and Experimental Botany, 57(3), 285-295.
  • Picard, N., Saint-André, L., & Henry, M. (2012). Manual for building tree volume and biomass allometric equations: from field measurement to prediction. Food and Agriculture Organization of the United Nations, Rome. 215 p.
  • DeYoung, C. (2014). Biomass estimation using the component ratio method for white oak (Doctoral dissertation, Virginia Tech)., USA. P: 63.
  • Açıkgöz, N., İlker, E., & Gökçöl, A. (2004). Biyolojik araştırmaların bilgisayarda değerlendirilmeleri. Ege Üniversitesi Tohum Teknolojisi Uygulama ve Araştırma Merkezi, Yayın, (2)..
  • Jacobsen, S. E., Jensen, C. R., & Pedersen, H. (2005). Use of the relative vegetation index for growth estimation in quinoa (Chenopodium quinoa Willd). J Food Agric Environ, 3, 169-175.
  • Naz, N., Rafique, T., Hameed, M., Ashraf, M., Batool, R., & Fatima, S. (2014). Morpho-anatomical and physiological attributes for salt tolerance in sewan grass (Lasiurus scindicus Henr.) from Cholistan Desert, Pakistan. Acta physiologiae plantarum, 36(11), 2959-2974.
  • Loreto, F., Harley, P. C., Di Marco, G., & Sharkey, T. D. (1992). Estimation of mesophyll conductance to CO 2 flux by three different methods. Plant physiology, 98(4), 1437-1443.
  • Çavuşoğlu, K., Kılıç, S., & Kabar, K. (2007). Some morphological and anatomical observations during alleviation of salinity (NaCI) stress on seed germination and seedling growth of barley by polyamines. Acta Physiologiae Plantarum, 29(6), 551-557.
  • Farshidi, M., Abdolzadeh, A., & Sadeghipour, H. R. (2012). Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus L.) plants. Acta physiologiae plantarum, 34(5), 1779-1788.
  • Parida, A.K., Veerabathini, S.K., Kumari A., & Agarwal P.K. (2016). Physiological, Anatomical and Metabolic Implications of Salt Tolerance in the Halophyte Salvadora persica under Hydroponic Culture Condition. Frontiers in Plant Science, 7, 1-11.
  • Taneenah, A., Nulit, R., Yusof, U.K., & Janaydeh, M. (2015). Tolerance of Molokhia (Corchorus olitorius L.) Seed with Dead Sea Water, Sea Water, and NaCl: Germination and Anatomical Approach. Advances in Environmental Biology, 9(27), 106-116.
  • Chow, W.S., Ball, M.C., & Anderson, J.M. (1990). Growth and photosynthetic responses of spinach to salinity: implications of K+ nutrition for salt tolerance. Functional Plant Biology, 17(5), 563-578.
  • Werner, A., & Stelzer, R. (1990). Physiological responses of the mangrove Rhizophora mangle grown in the absence and presence of NaCl. Plant, Cell & Environment, 13(3), 243-255.
  • Hoogenboom, G., Peterson, C.M., & Huck, M.G. (1987). Shoot growth rate of soybean as affected by drought stress. Agron. J., 79, 598-607.
  • Murillo-Amador, B., Nieto-Garibay, A., Troyo-Diéguez, E., García-Hernández, J.L., Hernández-Montiel, L., & Valdez-Cepeda, R.D. (2015). Moderate Salt Stress on the Physiological and Morphometric Traits of Aloe Vera L. Botanical Sciences, 93(3), 639-648.
  • Moghbeli, E., Fathollahi, S., Salari, H., Ahmadi, G., Saliqehdar, F., Safari, A. & Grouh, M.S.H. (2012). Effects of salinity stress on growth and yield of Aloe vera L. Journal of Medicinal Plants Research, 6, 3272-3277.
  • Lawrence, P.R., Gérard, B., Moreau, C., Lhériteau, F., & Bürkert, A. (2000). Design and testing of a global positioning system-based radiometer for precision mapping of pearl millet total dry matter in the Sahel. Agronomy Journal, 92, 1086-1095.
  • Vargas, L.A., Andersen, M.N., Jensen, C.R., & Jørgensen, U. (2002). Estimation of leaf area index, light interception and biomass accumulation of Miscanthus sinensis “Goliath” from radiation measurements. Biomass and Bioenergy, 22, 1-14.
  • Gómez‐Pando, L. R., Álvarez‐Castro, R., & Eguiluz‐de la Barra, A. (2010). Effect of salt stress on Peruvian germplasm of Chenopodium quinoa Willd.: a promising crop. Journal of Agronomy and Crop Science, 196(5), 391-396.

Effects of Different Salt Concentrations on Quinoa Seedling Quality

Year 2017, , 20 - 26, 25.11.2017
https://doi.org/10.21448/ijsm.356248

Abstract

The
experiment designed a completely randomized experimental design was carried out
Adnan Menderes University, Agriculture Faculties greenhouse. Quinoa variety candidate
named “Saponinsiz” is used experimental material. The seeds were sowed in plastic
pots filled with soil and perlite (%50+%50) at the greenhouse with six replicates.
Five different salt concentrations were determined as 0 (control), 4 ds m-1,
8 ds m-1, 16 ds m-1 and 30 ds m-1 and were applied
with NaCl solution which was prepared before sowing. Leaf number, leaf length, leaf
width, leaf thickness, stem thickness and green biomass weight values ​​were measured when the quinoa
plant reached 6 leaf stage. As a result of the study, it was observed that the differences
between the salt concentrations in leaf number, leaf length, leaf width and green
biomass weight were significant. The maximum leaf length (11.53 mm) was measured
with 8 ds m-1 salt concentration applied plants, whereas the maximum
leaf width (4.99 mm) and green biomass (1019.5 mg) were measured with 4 ds m-1. The control plot only showed the highest
values ​​for the leaf
number value. These results confirmed that the quinoa plant was facultative halophytic
species (salt-resistant). It was determined that 16 ds m-1 dose gave
the lowest values in all measurements. And any plant wasn’t growing at the 30 ds
m-1 applied pots. The values of the experiment measured of 4 ds m-1
pots and 8 ds m-1 pots, which is considered the limit values for the
field crops, were approximately equal or greater than control pots. Moreover, there
was a rapid decline of plant on the 16 ds m-1 values.

References

  • Pitman, M. G., & Läuchli, A. (2002). Global impact of salinity and agricultural ecosystems. Salinity: environment-plants-molecules, 3, 20.
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681.
  • Wilson, C., Read, J. J., & Abo-Kassem, E. (2002). Effect of mixed-salt salinity on growth and ion relations of a quinoa and a wheat variety. Journal of Plant Nutrition, 25(12), 2689-2704.
  • Ruiz-Carrasco, K., Antognoni, F., Coulibaly, A. K., Lizardi, S., Covarrubias, A., Martínez, E. A., & Zurita-Silva, A. (2011). Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiology and Biochemistry, 49(11), 1333-1341.
  • Rindos, D. (1992). The Origins of Agriculture. An International Perspective, Smithsonian Institution Press, Washington, London, pp. 173-205.
  • Jacobsen, S. E., Mujica, A., & Jensen, C. R. (2003). The resistance of quinoa (Chenopodium quinoa Willd) to adverse abiotic factors. Food Reviews International, 19(1-2), 99-109.
  • Jacobsen, S.-E., Mujica, A. (2001). Avances en el conocimiento de resistencia a factores abio´ticos adversos en la quinua (Chenopodium quinoa Willd.). Memorias Primer Taller Internacional de la Quinua., Lima, Peru.
  • Repo-Carrasco, R., Espinoza, C., & Jacobsen, S. E. (2003). Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food reviews international, 19(1-2), 179-189.
  • James, J. J., Alder, N. N., Mühling, K. H., Läuchli, A. E., Shackel, K. A., Donovan, L. A., & Richards, J. H. (2005). High apoplastic solute concentrations in leaves alter water relations of the halophytic shrub, Sarcobatus vermiculatus. Journal of Experimental Botany, 57(1), 139-147.
  • Kozioł, M. J. (1992). Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis, 5(1), 35-68.
  • Small, E. (2013). Quinoa: is the United Nations’ featured crop of 2013 bad for biodiversity. Biodiversity, 14(3), 169-79.
  • Flagella, Z., Trono, D., Pompa, M., Di Fonzo, N., & Pastore, D. (2006). Seawater stress applied at germination affects mitochondrial function in durum wheat (Triticum durum) early seedlings. Functional Plant Biology, 33(4), 357-366.
  • Bohnert, H. J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to environmental stresses. The plant cell, 7(7), 1099.
  • Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S. E., & Shabala, S. (2010). Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of experimental botany, 62(1), 185-193.
  • Ungar, I. A. (1996). Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). American Journal of Botany, 604-607.
  • Debez, A., Saadaoui, D., Ramani, B., Ouerghi, Z., Koyro, H. W., Huchzermeyer, B., & Abdelly, C. (2006). Leaf H+-ATPase activity and photosynthetic capacity of Cakile maritima under increasing salinity. Environmental and Experimental Botany, 57(3), 285-295.
  • Picard, N., Saint-André, L., & Henry, M. (2012). Manual for building tree volume and biomass allometric equations: from field measurement to prediction. Food and Agriculture Organization of the United Nations, Rome. 215 p.
  • DeYoung, C. (2014). Biomass estimation using the component ratio method for white oak (Doctoral dissertation, Virginia Tech)., USA. P: 63.
  • Açıkgöz, N., İlker, E., & Gökçöl, A. (2004). Biyolojik araştırmaların bilgisayarda değerlendirilmeleri. Ege Üniversitesi Tohum Teknolojisi Uygulama ve Araştırma Merkezi, Yayın, (2)..
  • Jacobsen, S. E., Jensen, C. R., & Pedersen, H. (2005). Use of the relative vegetation index for growth estimation in quinoa (Chenopodium quinoa Willd). J Food Agric Environ, 3, 169-175.
  • Naz, N., Rafique, T., Hameed, M., Ashraf, M., Batool, R., & Fatima, S. (2014). Morpho-anatomical and physiological attributes for salt tolerance in sewan grass (Lasiurus scindicus Henr.) from Cholistan Desert, Pakistan. Acta physiologiae plantarum, 36(11), 2959-2974.
  • Loreto, F., Harley, P. C., Di Marco, G., & Sharkey, T. D. (1992). Estimation of mesophyll conductance to CO 2 flux by three different methods. Plant physiology, 98(4), 1437-1443.
  • Çavuşoğlu, K., Kılıç, S., & Kabar, K. (2007). Some morphological and anatomical observations during alleviation of salinity (NaCI) stress on seed germination and seedling growth of barley by polyamines. Acta Physiologiae Plantarum, 29(6), 551-557.
  • Farshidi, M., Abdolzadeh, A., & Sadeghipour, H. R. (2012). Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus L.) plants. Acta physiologiae plantarum, 34(5), 1779-1788.
  • Parida, A.K., Veerabathini, S.K., Kumari A., & Agarwal P.K. (2016). Physiological, Anatomical and Metabolic Implications of Salt Tolerance in the Halophyte Salvadora persica under Hydroponic Culture Condition. Frontiers in Plant Science, 7, 1-11.
  • Taneenah, A., Nulit, R., Yusof, U.K., & Janaydeh, M. (2015). Tolerance of Molokhia (Corchorus olitorius L.) Seed with Dead Sea Water, Sea Water, and NaCl: Germination and Anatomical Approach. Advances in Environmental Biology, 9(27), 106-116.
  • Chow, W.S., Ball, M.C., & Anderson, J.M. (1990). Growth and photosynthetic responses of spinach to salinity: implications of K+ nutrition for salt tolerance. Functional Plant Biology, 17(5), 563-578.
  • Werner, A., & Stelzer, R. (1990). Physiological responses of the mangrove Rhizophora mangle grown in the absence and presence of NaCl. Plant, Cell & Environment, 13(3), 243-255.
  • Hoogenboom, G., Peterson, C.M., & Huck, M.G. (1987). Shoot growth rate of soybean as affected by drought stress. Agron. J., 79, 598-607.
  • Murillo-Amador, B., Nieto-Garibay, A., Troyo-Diéguez, E., García-Hernández, J.L., Hernández-Montiel, L., & Valdez-Cepeda, R.D. (2015). Moderate Salt Stress on the Physiological and Morphometric Traits of Aloe Vera L. Botanical Sciences, 93(3), 639-648.
  • Moghbeli, E., Fathollahi, S., Salari, H., Ahmadi, G., Saliqehdar, F., Safari, A. & Grouh, M.S.H. (2012). Effects of salinity stress on growth and yield of Aloe vera L. Journal of Medicinal Plants Research, 6, 3272-3277.
  • Lawrence, P.R., Gérard, B., Moreau, C., Lhériteau, F., & Bürkert, A. (2000). Design and testing of a global positioning system-based radiometer for precision mapping of pearl millet total dry matter in the Sahel. Agronomy Journal, 92, 1086-1095.
  • Vargas, L.A., Andersen, M.N., Jensen, C.R., & Jørgensen, U. (2002). Estimation of leaf area index, light interception and biomass accumulation of Miscanthus sinensis “Goliath” from radiation measurements. Biomass and Bioenergy, 22, 1-14.
  • Gómez‐Pando, L. R., Álvarez‐Castro, R., & Eguiluz‐de la Barra, A. (2010). Effect of salt stress on Peruvian germplasm of Chenopodium quinoa Willd.: a promising crop. Journal of Agronomy and Crop Science, 196(5), 391-396.
There are 34 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Yakup Onur Koca

Publication Date November 25, 2017
Submission Date May 1, 2017
Published in Issue Year 2017

Cite

APA Koca, Y. O. (2017). Effects of Different Salt Concentrations on Quinoa Seedling Quality. International Journal of Secondary Metabolite, 4(3, Special Issue 1), 20-26. https://doi.org/10.21448/ijsm.356248
International Journal of Secondary Metabolite

e-ISSN: 2148-6905