Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite

Evaluation of Fatty Acid Compositions of Some Important Wild and Domestic Turkish Mustard Genotypes (Brassica spp.)

Year 2018, Volume: 5 Issue: 4, 270 - 278, 29.12.2018
https://doi.org/10.21448/ijsm.474894

Abstract

The seed oil samples of 57 mustard genotypes belonging to six species of mustard (Brassica spp.) Brassica juncea (31 genotypes), B. rapa (6 genotypes), B. napus (2 genotypes), B. nigra (6 genotypes), B. arvensis (10 genotypes) and B. alba (2 genotypes) collected from USA gene bank and diverse ecologies of Turkey were used as research material and evaluated for their fatty acid composition by gas-liquid chromatography (GLC). The aim of this study was to evaluation of fatty acid compositions of some important wild and domestic Turkish mustard genotypes (Brassica spp.). The results showed significant variability among all genotypes for fatty acid composition. Erusic acid (C22:1; 20.63-47.87%), oleic acid (C18:1; 7.42-24.54%) and linoleic acid (C18:2; 9.61-25.11%) were determined to be the dominant fatty acids among all genotypes. It has been observed that the results in wild mustards have too many resemblances with the composition of fatty acid of mustard which is used by people in alternative medical science, paint, food industry and biodisel production. The great variability in seed oil contents in Brassica genotypes showed their potential for use in future breeding programs.

References

  • [1] Rahman, M., Khatun, A., Liu, L. Barkla, B.J. (2018). Brassicaceae Mustards: Traditional and Agronomic Uses in Australia and New Zealand. Molecules, 23(1), 231.
  • [2] Davis, P.H. (1965-1985). Flora of Turkey and East Aegean Islands. Edinburgh University Press., Edinburgh.
  • [3] İlisulu, K. (1973). Yağ Bitkileri ve Islahı, Çağlayan Kitapevi, s.366, İstanbul.
  • [4] Güner, A., Aslan, S., Ekim, T., Vural, M., Babaç, M.T. (2012). Türkiye Bitkiler Listesi, Damarlı Bitkiler, Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayını, s.262, İstanbul.
  • [5] Başbağ, M., Demirel, R., Avcı, M. (2010). Some Quality Traits Of Different Wild Plants. Science Biol., 2(1), 36-39.
  • [6] Mao, S., Han, Y., Wu, X., An, T., Tang, J., Shen, J., Li, Z. (2012). Comparative genomicin situ hybridization analysis of the genomic relationship among Sinapis arvensis, Brassica rapa and Brassica nigra. Herditas (Lund), 149(3), 86-90.
  • [7] Wu, L.H., Luo, Y.M., Xing, X.R., Christie, P. (2004). EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agr. Ecosyst. Environ. 102, 307-318.
  • [8] Singh, S., Singh, R.P., Singh, H.K., Khan, N.A. Maurya, M.K. (2017). Chemical constituents in some promising genotypes of Indian Mustard (Brassica juncea L. Czern and Coss.). Jornal of Agri. Search, 4(4), 280-284.
  • [9] Warwick, S.I. (2011). Brassicaceae in agriculture. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Springer, New York, pp 33-67.
  • [10] Duke, J.A. (2002). Handbook of Medicinal Herbs. 2nd ed.; CRC Press: Melbourne. Australia.
  • [11] Spragg, J. (2016) Australian Feed Grain Supply and Demand Report 2016; JCS Solutions Pty Ltd.: North Victoria. Australia, pp. 1-42.
  • [12] Baydar, H., Turgut, İ. (1999). Yağlı tohumlu bitkilerde yağ asitleri kompozisyonunun bazı morfolojik ve fizyolojik özelliklere ve ekolojik bölgelere göre değişimi. Turkish Journal of Agriculture and Forestry, 23(1), 81-86.
  • [13] McCartney, C.A., Scarth, R., McVetty, P.B.E., Daun, J.K. (2004). Genotypic and environmental effects on saturated fatty acid concentration of canola grown in Manitoba. Canadian journal of plant science, 84(3), 749-756.
  • [14] Sharafi, Y., Majidi, M.M., Goli, S.A.H., Rashidi, F. (2015). Oil content and fatty acids composition in Brassica species. International Journal of Food Properties,18(10), 2145-2154.
  • [15] Rai, G.K., Bagati, S., Rai, P.K., Rai, S.K., Singh, M. (2018) Fatty Acid Profiling in Rapeseed Mustard (Brassica species). Int.J.Curr.Microbiol.App.Sci 7(5), 148-157.
  • [16] Li, C.M., Yao, Y.P., Zhao, G.Z., Cheng, W., Liu, H., Liu, C., Shi, Z., Chen, Y., Wang, S. (2011). Comparison and analysis of fatty acids. sterols and tocopherols in eight vegetable oils. J. Agric. Food. Chem. 59, 12493-12498.
  • [17] Qiao, Q., Ye, M.J., Si, F.F., Ren, H.J., An, K., Feng, Z., Zhang, L., Sun, Z.K. (2017). Variability of seed oil content and fatty acid composition in Shantung maple (Acer truncatum Bunge) germplasm for optimal biodiesel production. African Journal of Biotechnology, 16(48), 2232-2241.
  • [18] Zubr, J. Matthäus, B. (2002). Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Ind. Crop. Prod. 15, 155-162.
  • [19] Flagella, Z., Rotunno, T., Tarantino, E., DiCatarina, R., DeCaro, A. (2002). Changes in seed yield and oil fatty acid composition of high oleic sunflower (Helianthus annuus L.) hybrids in relation to the sowing date and the water regime. European Journal of Agronomy, 17(3), 221-230.
  • [20] Jones D. (1984). Der Kosmos Spinnenführer. Kosmos: Stuttgart.
  • [21] Anastasi, U., Cammarata, M., Abbate, V. (2000). Yield potential and oil quality of sunflower (oileic and standard) grown between autumn and summer. Ital. J. Agron, 4, 23- 36.
  • [22] Pritchard, J.K., Stephens, M., Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
  • [23] Johnston, A.M., Tanaka, D.L., Miller, P.R., Brandt, S.A., Nielsen, D.C., Lafond, G.P., Riveland, N.R. (2002). Oilseed crops for semiarid cropping systems in the northern Great Plains. Agron. J., 94, 231-240.
  • [24] Kayaçetin, F., Öğüt, H., Oğuz, H., Subaşı, İ., Deveci, H. (2016). Determination of the effect of row spacing, and fall and spring sowing on composition of fatty acid and biodiesel fuel characteristics of mustard (Sinapis arvensis L.). Ciência e Técnica Vitivinícola Journal, 21(11), 54-69.
  • [25] Getinet, A., Rakow, G., Raney, J.P., Downey, R.K. (1997). The inheritance of erucic acid content in Ethiopian mustard. Canadian Journal of Plant Science, 77, 33-41.
  • [26] Rabiee, M., Karimi, M.M., Safa, F. (2004). Effect of planting dates on grain yield and agronomical characters of rapeseed cultivars as a second crop after rice at Kouchesfahan. Iranian Journal of Agricultural Sciences, 35, 177-187.
  • [27] Ashraf, M.Y., Waheed, R.A., Bhatti, A.S., Sarwar, G., Aslam, Z. (1999). Salt tolerance potential in different Brassica species growth studies. In: Hamdy. H.. Lieth. H.. Todorovic.M..Moschenko. M. (Ed.). Halophytes Uses in Different Climates-II. Backhuys Publishers. Leiden. The Netherlands, p. 119-125.
  • [28] El-Beltagi, H.E.S., Mohamed, A.A. (2010). Variations in fatty acid composition, glucosinolate profile and some phytochemical contents in selected oil seed rape (Brassica napus L.) cultivars. Grasas Y Aceites, 61(2), 143-150.

Evaluation of Fatty Acid Compositions of Some Important Wild and Domestic Turkish Mustard Genotypes (Brassica spp.)

Year 2018, Volume: 5 Issue: 4, 270 - 278, 29.12.2018
https://doi.org/10.21448/ijsm.474894

Abstract

The seed
oil samples of 57 mustard genotypes belonging to six species of mustard (Brassica spp.) Brassica juncea (31 genotypes),
B. rapa
(6 genotypes), B. napus (2
genotypes), B. nigra (6 genotypes), B. arvensis (10 genotypes) and B. alba 
(2 genotypes) collected from USA gene bank and diverse ecologies of Turkey
were used as research material and evaluated for their fatty acid composition by
gas-liquid chromatography (GLC).
The aim of this study was to evaluation of fatty acid compositions of some
important wild and domestic Turkish mustard genotypes (Brassica spp.).

The results showed significant variability among all genotypes
for fatty acid composition. Erusic acid (C22:1; 20.63-47.87%), oleic acid (C18:1;
7.42-24.54%) and linoleic acid (C18:2; 9.61-25.11%) were determined to be the dominant
fatty acids among all genotypes. It has been observed that the results in wild mustards
have too many resemblances with the composition of fatty acid of mustard which is
used by people in alternative medical science, paint, food industry and biodisel
production. The great variability in seed oil contents in Brassica genotypes showed their potential for use in future breeding
programs.

References

  • [1] Rahman, M., Khatun, A., Liu, L. Barkla, B.J. (2018). Brassicaceae Mustards: Traditional and Agronomic Uses in Australia and New Zealand. Molecules, 23(1), 231.
  • [2] Davis, P.H. (1965-1985). Flora of Turkey and East Aegean Islands. Edinburgh University Press., Edinburgh.
  • [3] İlisulu, K. (1973). Yağ Bitkileri ve Islahı, Çağlayan Kitapevi, s.366, İstanbul.
  • [4] Güner, A., Aslan, S., Ekim, T., Vural, M., Babaç, M.T. (2012). Türkiye Bitkiler Listesi, Damarlı Bitkiler, Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayını, s.262, İstanbul.
  • [5] Başbağ, M., Demirel, R., Avcı, M. (2010). Some Quality Traits Of Different Wild Plants. Science Biol., 2(1), 36-39.
  • [6] Mao, S., Han, Y., Wu, X., An, T., Tang, J., Shen, J., Li, Z. (2012). Comparative genomicin situ hybridization analysis of the genomic relationship among Sinapis arvensis, Brassica rapa and Brassica nigra. Herditas (Lund), 149(3), 86-90.
  • [7] Wu, L.H., Luo, Y.M., Xing, X.R., Christie, P. (2004). EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agr. Ecosyst. Environ. 102, 307-318.
  • [8] Singh, S., Singh, R.P., Singh, H.K., Khan, N.A. Maurya, M.K. (2017). Chemical constituents in some promising genotypes of Indian Mustard (Brassica juncea L. Czern and Coss.). Jornal of Agri. Search, 4(4), 280-284.
  • [9] Warwick, S.I. (2011). Brassicaceae in agriculture. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae. Springer, New York, pp 33-67.
  • [10] Duke, J.A. (2002). Handbook of Medicinal Herbs. 2nd ed.; CRC Press: Melbourne. Australia.
  • [11] Spragg, J. (2016) Australian Feed Grain Supply and Demand Report 2016; JCS Solutions Pty Ltd.: North Victoria. Australia, pp. 1-42.
  • [12] Baydar, H., Turgut, İ. (1999). Yağlı tohumlu bitkilerde yağ asitleri kompozisyonunun bazı morfolojik ve fizyolojik özelliklere ve ekolojik bölgelere göre değişimi. Turkish Journal of Agriculture and Forestry, 23(1), 81-86.
  • [13] McCartney, C.A., Scarth, R., McVetty, P.B.E., Daun, J.K. (2004). Genotypic and environmental effects on saturated fatty acid concentration of canola grown in Manitoba. Canadian journal of plant science, 84(3), 749-756.
  • [14] Sharafi, Y., Majidi, M.M., Goli, S.A.H., Rashidi, F. (2015). Oil content and fatty acids composition in Brassica species. International Journal of Food Properties,18(10), 2145-2154.
  • [15] Rai, G.K., Bagati, S., Rai, P.K., Rai, S.K., Singh, M. (2018) Fatty Acid Profiling in Rapeseed Mustard (Brassica species). Int.J.Curr.Microbiol.App.Sci 7(5), 148-157.
  • [16] Li, C.M., Yao, Y.P., Zhao, G.Z., Cheng, W., Liu, H., Liu, C., Shi, Z., Chen, Y., Wang, S. (2011). Comparison and analysis of fatty acids. sterols and tocopherols in eight vegetable oils. J. Agric. Food. Chem. 59, 12493-12498.
  • [17] Qiao, Q., Ye, M.J., Si, F.F., Ren, H.J., An, K., Feng, Z., Zhang, L., Sun, Z.K. (2017). Variability of seed oil content and fatty acid composition in Shantung maple (Acer truncatum Bunge) germplasm for optimal biodiesel production. African Journal of Biotechnology, 16(48), 2232-2241.
  • [18] Zubr, J. Matthäus, B. (2002). Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Ind. Crop. Prod. 15, 155-162.
  • [19] Flagella, Z., Rotunno, T., Tarantino, E., DiCatarina, R., DeCaro, A. (2002). Changes in seed yield and oil fatty acid composition of high oleic sunflower (Helianthus annuus L.) hybrids in relation to the sowing date and the water regime. European Journal of Agronomy, 17(3), 221-230.
  • [20] Jones D. (1984). Der Kosmos Spinnenführer. Kosmos: Stuttgart.
  • [21] Anastasi, U., Cammarata, M., Abbate, V. (2000). Yield potential and oil quality of sunflower (oileic and standard) grown between autumn and summer. Ital. J. Agron, 4, 23- 36.
  • [22] Pritchard, J.K., Stephens, M., Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
  • [23] Johnston, A.M., Tanaka, D.L., Miller, P.R., Brandt, S.A., Nielsen, D.C., Lafond, G.P., Riveland, N.R. (2002). Oilseed crops for semiarid cropping systems in the northern Great Plains. Agron. J., 94, 231-240.
  • [24] Kayaçetin, F., Öğüt, H., Oğuz, H., Subaşı, İ., Deveci, H. (2016). Determination of the effect of row spacing, and fall and spring sowing on composition of fatty acid and biodiesel fuel characteristics of mustard (Sinapis arvensis L.). Ciência e Técnica Vitivinícola Journal, 21(11), 54-69.
  • [25] Getinet, A., Rakow, G., Raney, J.P., Downey, R.K. (1997). The inheritance of erucic acid content in Ethiopian mustard. Canadian Journal of Plant Science, 77, 33-41.
  • [26] Rabiee, M., Karimi, M.M., Safa, F. (2004). Effect of planting dates on grain yield and agronomical characters of rapeseed cultivars as a second crop after rice at Kouchesfahan. Iranian Journal of Agricultural Sciences, 35, 177-187.
  • [27] Ashraf, M.Y., Waheed, R.A., Bhatti, A.S., Sarwar, G., Aslam, Z. (1999). Salt tolerance potential in different Brassica species growth studies. In: Hamdy. H.. Lieth. H.. Todorovic.M..Moschenko. M. (Ed.). Halophytes Uses in Different Climates-II. Backhuys Publishers. Leiden. The Netherlands, p. 119-125.
  • [28] El-Beltagi, H.E.S., Mohamed, A.A. (2010). Variations in fatty acid composition, glucosinolate profile and some phytochemical contents in selected oil seed rape (Brassica napus L.) cultivars. Grasas Y Aceites, 61(2), 143-150.
There are 28 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Fatma Kayaçetin 0000-0003-3428-8121

Banu Efeoğlu This is me 0000-0002-4053-5806

Gül Sarıoğlu This is me

Publication Date December 29, 2018
Submission Date May 29, 2018
Published in Issue Year 2018 Volume: 5 Issue: 4

Cite

APA Kayaçetin, F., Efeoğlu, B., & Sarıoğlu, G. (2018). Evaluation of Fatty Acid Compositions of Some Important Wild and Domestic Turkish Mustard Genotypes (Brassica spp.). International Journal of Secondary Metabolite, 5(4), 270-278. https://doi.org/10.21448/ijsm.474894
International Journal of Secondary Metabolite

e-ISSN: 2148-6905