Research Article
BibTex RIS Cite

Characterization of Secondary Metabolites in Two Cousinia species

Year 2019, Volume: 6 Issue: 4, 333 - 341, 15.01.2020
https://doi.org/10.21448/ijsm.594839

Abstract

Cousinia is one of the widespread genera of Asteraceae family.
According to previous studies on some Cousinia
species it was found that these species are rich of triterpenes,
sesquiterpenes, flavonoids, acetylenes and steroids. According to our
knowledge, there are no published reports on the chemical composition of C. iconica Hub. - Mor. and C. aintabensis Boiss. & Hausskn.,
thus we aimed to investigate secondary metabolites of these species. In this
study, the phytochemical constituents of these
species were evaluated. Seven of identified compounds were quantified. The
quantitative and qualitative determination of compounds within the extracts was
carried out by LC-MS/MS.  Phytochemical
analyses revealed the presence of flavonoids, saponins, terpenes and steroids.
Preliminary examination of the mass spectrums revealed the presence of phenolic
acids and derivatives and flavonoid compounds in extracts. According to
quantitative analyses the main compound of C.
iconica
(CI) and C. aintabensis (CA) extracts was rutin
with the highest contents (169.779 µg/mgextract and 161.638 µg/mgextract).
Moreover, qualitative and quantitative study combined
with different biological activities will shed new lights to the advanced
studies.

Supporting Institution

Erciyes University Scientific Research Projects Coordinating Unit (BAP)

Project Number

THD-2018-7921

Thanks

The authors are grateful to the Erciyes University Scientific Research Projects Coordinating Unit (BAP, project number THD-2018-7921) for financial support and Erciyes University Ziya Eren Drug Application and Research Center (ERFARMA) for providing LC-MS/MS facility.

References

  • [1]. Davis, P.H., Huber, A.M. (1975). Cousinia in Flora of Turkey and the East Aegean Islands. Edinburgh University Press, Edinburgh.
  • [2]. Marco, J.A., Sanz, J.F., Albiach, R., Rustaiyan, A., Habibi, Z. (1993). Bisabolene derivatives and sesquiterpene lactones from Cousinia species. Phytochemistry, 32, 395-400.
  • [3]. Plekhanova, N., Turdumambetov, K., Sudnitsyna, I. (1983). Carbohydrates of Cousinia. Khim Prir Soedin, 19, 603-604.
  • [4]. Rustaiyan, A., Niknejad, A., Sigari, H., Ahmadi, A. (1981). Guaianolides from Cousinia onopordioides. Fitoterapia, 52, 31-32.
  • [5]. Rustaiyan, A., Sharif, Z., Sadjadi, A.S. (1987). Two farnesol derivatives from Cousinia adenostica. Phytochemistry, 26,2635-2636.
  • [6]. Turdumambetov, K., Plekhanova, N., Rakhimov, D., Yagudaev, M. (1989). Glucofructans of Cousinia polycephala. Khim Prir Soedin, 25, 371-372.
  • [7]. Turdumambetov, K., Rakhimov, D., Malikova, M.K. (2007). Oligo-and polysaccharides from Cousinia umbrosa. Khim Prir Soedin, 43,308-309.
  • [8]. Ulubelen, A., Tuzlaci, E., Mericli, A. (1986). Triterpenic and steroidal compounds from Cousinia canescens. Fitoterapia, 57, 269-270.
  • [9]. González, A.G., Bermejo, J., Amaro, J.M., Massanet, G.M., Galindo, A., Cabrera, I. (1978). Sesquiterpene lactones from Centaurea linifolia Vahl. Canadian Journal of Chemistry, 56, 491-494.
  • [10]. Iranshahy, M., Tayarani‐Najaran, Z., Kasaian, J., Ghandadi, M., Emami, S.A., Asili, J., Chandran, J.N., Schneider, B., Iranshahi, M. (2016). Highly Oxygenated Sesquiterpene Lactones from Cousinia aitchisonii and their Cytotoxic Properties: Rhaserolide Induces Apoptosis in Human T Lymphocyte (Jurkat) Cells via the Activation of c‐Jun n‐terminal Kinase Phosphorylation. Phytotherapy research, 30, 222-226.
  • [11]. Seaman, F.C. (1982). Sesquiterpene lactones as taxonomic characters in the Asteraceae. Bot Rev, 48, 121-594.
  • [12]. Suchý, M., Herout, V., Šorm, F. (1960). On terpenes. CVI. On hydrogenation products of cynaropicrin, the bitter principle of artichoke (Cynara scolymus L.). Collection of Czechoslovak Chemical Communications, 25, 507-514.
  • [13]. Ul'chenko, N., Gigienova, E., Umarov, A., Isamukhamedov, A.S. (1981). Hydroxy acids of the seed oils of five plants of the family Asteraceae. Khim Prir Soedin, 17, 26-30.
  • [14]. Ul'chenko, N., Mukhamedova, K.S., Glushenkova, A. (1999). Lipids from seeds of two species of Cousinia. Khim Prir Soedin, 35, 680-681.
  • [15]. Shahverdi, A.R., Khorramizadeh, M.R., Attar, F., Saadat, F., Vahid, S., Ghahraman, A. (2007). Concomitant chemopreventive and antibacterial effects of some Iranian plants from the genus Cousinia (Asteraceae). Revista Brasileira de Farmacognosia, 17, 325-330.
  • [16]. Shahverdi, A.R., Khoramizadeh, M.R., Ghahramani, M.H., Golyaee, A., Attar, F., Ghahraman, A. (2007). Chemopreventive Effect of Cousinia shulabadensis Attar & Ghahraman ethanol extract. Afr J Tradit Complem, 4, 12-16.
  • [17]. Evans, W.C. (2009). Trease and evans' pharmacognosy E-book. 16th ed.; Elsevier Health Sciences: 319-330; ISBN 978-0-7020-2934-9.
  • [18]. Harborne, J. (1984). Methods of plant analysis. Phytochemical methods, 2nd ed.; Academic Press: 1-36.
  • [19]. Yadav, R., Agarwala, M. (2011). Phytochemical analysis of some medicinal plants. Journal of phytology, 3(12), 10-14.
  • [20]. Fernández-Fernández R., López-Martínez J.C., Romero-González R., Martínez-Vidal J.L., Flores M.I.A., Frenich A.G. (2010). Simple LC–MS determination of citric and malic acids in fruits and vegetables. Chromatographia, 72, 55-62.
  • [21]. Barros, L., Dueñas, M., Carvalho, A.M., Ferreira, I.C., Santos-Buelga, C. (2012). Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food and Chemical Toxicology, 50, 1576-1582.
  • [22]. Martucci, M.E.P., De Vos, R.C., Carollo, C.A., Gobbo-Neto, L. (2014). Metabolomics as a potential chemotaxonomical tool: application in the genus Vernonia Schreb. PLoS One 9:e93149
  • [23]. Prasain, J.K., Wang, C.-C., Barnes, S. (2004). Mass spectrometric methods for the determination of flavonoids in biological samples. Free Radical Biology and Medicine, 37, 1324-1350.
  • [24]. Ulubelen, A., Tuzlacı, E. (1988). Flavonoids and terpenoids from Cousinia eriosephala. Fitoterapia, 59, 350.
  • [25]. Thorne, S.E., Paterson, B.L. (2001). Health care professional support for self-care management in chronic illness: insights from diabetes research. Patient education and counseling, 42,81-90.
  • [26]. Ghasemzadeh, A., Ghasemzadeh, N. (2011). Flavonoids and phenolic acids: Role and biochemical activity in plants and human. Journal of medicinal plants research, 5, 6697-6703.
  • [27]. Araujo, C., Leon, L. (2001). Biological activities of Curcuma longa L. Memórias do Instituto Oswaldo Cruz, 96, 723-728.
  • [28]. Murakami, M., Yamaguchi, T., Takamura, H., Atoba, T. (2004). Effects of thermal treatment on radical‐scavenging activity of single and mixed polyphenolic compounds. Journal of food science, 69, FCT7-FCT10.
  • [29]. Ammon, H. P. T., Anazodo, M. I., Safayhi, H., Dhawan, B. N., & Srimal, R. C. (1992). Curcumin: a potent inhibitor of leukotriene B4 formation in rat peritoneal polymorphonuclear neutrophils (PMNL). Planta medica, 58(02), 226-226.
  • [30]. Yu, L., Haley, S., Perret, J., Harris, M., Wilson, J., Qian, M. (2002). Free radical scavenging properties of wheat extracts. Journal of Agricultural and Food Chemistry, 50, 1619-1624.
  • [31]. Grieman, M. M., Greaves, J., & Saltzman, E. S. (2015). A method for analysis of vanillic acid in polar ice cores.Climate of the Past, 11, 227-232.
  • [32]. Lin, L.-Z., He, X.-G., Lindenmaier, M., Nolan, G., Yang, J., Cleary, M., Qiu, S.-X., Cordell, G.A. (2000). Liquid chromatography–electrospray ionization mass spectrometry study of the flavonoids of the roots of Astragalus mongholicus and A. membranaceus. Journal of Chromatography A, 876, 87-95.
  • [33]. Clifford, M.N., Johnston, K.L., Knight, S., Kuhnert, N. (2003). Hierarchical scheme for LC-MS n identification of chlorogenic acids. Journal of agricultural and food chemistry, 51, 2900-2911.
  • [34]. Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. Journal of mass spectrometry, 45, 703-714.
  • [35]. González, R.R., Fernández, R.F., Vidal, J.L.M., Frenich, A.G., Pérez, M.L.G. (2011). Development and validation of an ultra-high performance liquid chromatography–tandem mass-spectrometry (UHPLC–MS/MS) method for the simultaneous determination of neurotransmitters in rat brain samples. Journal of neuroscience methods, 198, 187-194.
  • [36]. Karaçelik, A.A., Küçük, M., İskefiyeli, Z., Aydemir, S., De Smet, S., Miserez, B., Sandra, P. (2015). Antioxidant components of Viburnum opulus L. determined by on-line HPLC–UV–ABTS radical scavenging and LC–UV–ESI-MS methods. Food Chemistry, 175, 106-114.

Characterization of Secondary Metabolites in Two Cousinia species

Year 2019, Volume: 6 Issue: 4, 333 - 341, 15.01.2020
https://doi.org/10.21448/ijsm.594839

Abstract

Cousinia is one of the widespread genera of Asteraceae family. According to previous studies on some Cousinia species it was found that these species are rich of triterpenes, sesquiterpenes, flavonoids, acetylenes and steroids. According to our knowledge, there are no published reports on the chemical composition of C. iconica Hub. - Mor. and C. aintabensis Boiss. & Hausskn., thus we aimed to investigate secondary metabolites of these species. In this study, the phytochemical constituents of these species were evaluated. Seven of identified compounds were quantified. The quantitative and qualitative determination of compounds within the extracts was carried out by LC-MS/MS. Phytochemical analyses revealed the presence of flavonoids, saponins, terpenes and steroids. Preliminary examination of the mass spectrums revealed the presence of phenolic acids and derivatives and flavonoid compounds in extracts. According to quantitative analyses the main compound of C. iconica (CI) and C. aintabensis (CA) extracts was rutin with the highest contents (169.779 µg/mgextract and 161.638 µg/mgextract). Moreover, qualitative and quantitative study combined with different biological activities will shed new lights to the advanced studies.

Project Number

THD-2018-7921

References

  • [1]. Davis, P.H., Huber, A.M. (1975). Cousinia in Flora of Turkey and the East Aegean Islands. Edinburgh University Press, Edinburgh.
  • [2]. Marco, J.A., Sanz, J.F., Albiach, R., Rustaiyan, A., Habibi, Z. (1993). Bisabolene derivatives and sesquiterpene lactones from Cousinia species. Phytochemistry, 32, 395-400.
  • [3]. Plekhanova, N., Turdumambetov, K., Sudnitsyna, I. (1983). Carbohydrates of Cousinia. Khim Prir Soedin, 19, 603-604.
  • [4]. Rustaiyan, A., Niknejad, A., Sigari, H., Ahmadi, A. (1981). Guaianolides from Cousinia onopordioides. Fitoterapia, 52, 31-32.
  • [5]. Rustaiyan, A., Sharif, Z., Sadjadi, A.S. (1987). Two farnesol derivatives from Cousinia adenostica. Phytochemistry, 26,2635-2636.
  • [6]. Turdumambetov, K., Plekhanova, N., Rakhimov, D., Yagudaev, M. (1989). Glucofructans of Cousinia polycephala. Khim Prir Soedin, 25, 371-372.
  • [7]. Turdumambetov, K., Rakhimov, D., Malikova, M.K. (2007). Oligo-and polysaccharides from Cousinia umbrosa. Khim Prir Soedin, 43,308-309.
  • [8]. Ulubelen, A., Tuzlaci, E., Mericli, A. (1986). Triterpenic and steroidal compounds from Cousinia canescens. Fitoterapia, 57, 269-270.
  • [9]. González, A.G., Bermejo, J., Amaro, J.M., Massanet, G.M., Galindo, A., Cabrera, I. (1978). Sesquiterpene lactones from Centaurea linifolia Vahl. Canadian Journal of Chemistry, 56, 491-494.
  • [10]. Iranshahy, M., Tayarani‐Najaran, Z., Kasaian, J., Ghandadi, M., Emami, S.A., Asili, J., Chandran, J.N., Schneider, B., Iranshahi, M. (2016). Highly Oxygenated Sesquiterpene Lactones from Cousinia aitchisonii and their Cytotoxic Properties: Rhaserolide Induces Apoptosis in Human T Lymphocyte (Jurkat) Cells via the Activation of c‐Jun n‐terminal Kinase Phosphorylation. Phytotherapy research, 30, 222-226.
  • [11]. Seaman, F.C. (1982). Sesquiterpene lactones as taxonomic characters in the Asteraceae. Bot Rev, 48, 121-594.
  • [12]. Suchý, M., Herout, V., Šorm, F. (1960). On terpenes. CVI. On hydrogenation products of cynaropicrin, the bitter principle of artichoke (Cynara scolymus L.). Collection of Czechoslovak Chemical Communications, 25, 507-514.
  • [13]. Ul'chenko, N., Gigienova, E., Umarov, A., Isamukhamedov, A.S. (1981). Hydroxy acids of the seed oils of five plants of the family Asteraceae. Khim Prir Soedin, 17, 26-30.
  • [14]. Ul'chenko, N., Mukhamedova, K.S., Glushenkova, A. (1999). Lipids from seeds of two species of Cousinia. Khim Prir Soedin, 35, 680-681.
  • [15]. Shahverdi, A.R., Khorramizadeh, M.R., Attar, F., Saadat, F., Vahid, S., Ghahraman, A. (2007). Concomitant chemopreventive and antibacterial effects of some Iranian plants from the genus Cousinia (Asteraceae). Revista Brasileira de Farmacognosia, 17, 325-330.
  • [16]. Shahverdi, A.R., Khoramizadeh, M.R., Ghahramani, M.H., Golyaee, A., Attar, F., Ghahraman, A. (2007). Chemopreventive Effect of Cousinia shulabadensis Attar & Ghahraman ethanol extract. Afr J Tradit Complem, 4, 12-16.
  • [17]. Evans, W.C. (2009). Trease and evans' pharmacognosy E-book. 16th ed.; Elsevier Health Sciences: 319-330; ISBN 978-0-7020-2934-9.
  • [18]. Harborne, J. (1984). Methods of plant analysis. Phytochemical methods, 2nd ed.; Academic Press: 1-36.
  • [19]. Yadav, R., Agarwala, M. (2011). Phytochemical analysis of some medicinal plants. Journal of phytology, 3(12), 10-14.
  • [20]. Fernández-Fernández R., López-Martínez J.C., Romero-González R., Martínez-Vidal J.L., Flores M.I.A., Frenich A.G. (2010). Simple LC–MS determination of citric and malic acids in fruits and vegetables. Chromatographia, 72, 55-62.
  • [21]. Barros, L., Dueñas, M., Carvalho, A.M., Ferreira, I.C., Santos-Buelga, C. (2012). Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food and Chemical Toxicology, 50, 1576-1582.
  • [22]. Martucci, M.E.P., De Vos, R.C., Carollo, C.A., Gobbo-Neto, L. (2014). Metabolomics as a potential chemotaxonomical tool: application in the genus Vernonia Schreb. PLoS One 9:e93149
  • [23]. Prasain, J.K., Wang, C.-C., Barnes, S. (2004). Mass spectrometric methods for the determination of flavonoids in biological samples. Free Radical Biology and Medicine, 37, 1324-1350.
  • [24]. Ulubelen, A., Tuzlacı, E. (1988). Flavonoids and terpenoids from Cousinia eriosephala. Fitoterapia, 59, 350.
  • [25]. Thorne, S.E., Paterson, B.L. (2001). Health care professional support for self-care management in chronic illness: insights from diabetes research. Patient education and counseling, 42,81-90.
  • [26]. Ghasemzadeh, A., Ghasemzadeh, N. (2011). Flavonoids and phenolic acids: Role and biochemical activity in plants and human. Journal of medicinal plants research, 5, 6697-6703.
  • [27]. Araujo, C., Leon, L. (2001). Biological activities of Curcuma longa L. Memórias do Instituto Oswaldo Cruz, 96, 723-728.
  • [28]. Murakami, M., Yamaguchi, T., Takamura, H., Atoba, T. (2004). Effects of thermal treatment on radical‐scavenging activity of single and mixed polyphenolic compounds. Journal of food science, 69, FCT7-FCT10.
  • [29]. Ammon, H. P. T., Anazodo, M. I., Safayhi, H., Dhawan, B. N., & Srimal, R. C. (1992). Curcumin: a potent inhibitor of leukotriene B4 formation in rat peritoneal polymorphonuclear neutrophils (PMNL). Planta medica, 58(02), 226-226.
  • [30]. Yu, L., Haley, S., Perret, J., Harris, M., Wilson, J., Qian, M. (2002). Free radical scavenging properties of wheat extracts. Journal of Agricultural and Food Chemistry, 50, 1619-1624.
  • [31]. Grieman, M. M., Greaves, J., & Saltzman, E. S. (2015). A method for analysis of vanillic acid in polar ice cores.Climate of the Past, 11, 227-232.
  • [32]. Lin, L.-Z., He, X.-G., Lindenmaier, M., Nolan, G., Yang, J., Cleary, M., Qiu, S.-X., Cordell, G.A. (2000). Liquid chromatography–electrospray ionization mass spectrometry study of the flavonoids of the roots of Astragalus mongholicus and A. membranaceus. Journal of Chromatography A, 876, 87-95.
  • [33]. Clifford, M.N., Johnston, K.L., Knight, S., Kuhnert, N. (2003). Hierarchical scheme for LC-MS n identification of chlorogenic acids. Journal of agricultural and food chemistry, 51, 2900-2911.
  • [34]. Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. Journal of mass spectrometry, 45, 703-714.
  • [35]. González, R.R., Fernández, R.F., Vidal, J.L.M., Frenich, A.G., Pérez, M.L.G. (2011). Development and validation of an ultra-high performance liquid chromatography–tandem mass-spectrometry (UHPLC–MS/MS) method for the simultaneous determination of neurotransmitters in rat brain samples. Journal of neuroscience methods, 198, 187-194.
  • [36]. Karaçelik, A.A., Küçük, M., İskefiyeli, Z., Aydemir, S., De Smet, S., Miserez, B., Sandra, P. (2015). Antioxidant components of Viburnum opulus L. determined by on-line HPLC–UV–ABTS radical scavenging and LC–UV–ESI-MS methods. Food Chemistry, 175, 106-114.
There are 36 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Leyla Paşayeva 0000-0003-3860-7222

Hanifa Fatullayev This is me 0000-0002-7123-8396

İrem Nur Karakuş This is me

Serap Soylu This is me

Osman Tugay 0000-0003-3980-7648

Project Number THD-2018-7921
Publication Date January 15, 2020
Submission Date July 21, 2019
Published in Issue Year 2019 Volume: 6 Issue: 4

Cite

APA Paşayeva, L., Fatullayev, H., Karakuş, İ. N., Soylu, S., et al. (2020). Characterization of Secondary Metabolites in Two Cousinia species. International Journal of Secondary Metabolite, 6(4), 333-341. https://doi.org/10.21448/ijsm.594839
International Journal of Secondary Metabolite

e-ISSN: 2148-6905