Enhancement of Plant Regeneration in Lemon Balm (Melissa officinalis L.) with Different Magnetic Field Applications
Year 2020,
Volume: 7 Issue: 2, 99 - 108, 13.06.2020
Canan Ulgen
,
Arzu Yıldırım
,
Arzu Turker
Abstract
Melissa officinalis L. (lemon balm) is a valuable medicinal and aromatic plant in the Lamiaceae family. Two independent experiments were performed to improve the productivity of the plant regeneration. Firstly, the most efficient in vitro culture system of M. officinalis was determined using 7 different explant types (leaf, petiole, stem, root, axillary buds, shoot buds and cotyledon buds) on medium containing Murashige and Skoog minimal organics (MSMO) medium with different concentrations and combinations of plant growth regulators (PGRs). Micropropagation was obtained only with explants containing meristematic cells (axillary buds, shoot tip buds and cotyledon buds). Lemon balm had a very low regeneration capacity and in the second part of the experiment, enhancement of regeneration was aimed with the applications of different magnetic fields (MFs). Two different MFs (50 and 100 mT) were generated using neodymium block magnets. There was no MF exposure with control treatment. Three different explants (axillary, shoot tip and cotyledon buds) were cultured on media including BA in combination with indole-3-acetic acid (IAA) or naphthalene acetic acid (NAA) with the application of two different MFs at 1 hour duration. As a result, it was determined that MF applications enhanced the regeneration capacity of M. officinalis and the best shoot formation was observed with axillary bud explant cultured in 1.5 mg/L BA at 100 mT MF application for 1 hour duration.
Supporting Institution
Bolu Abant Izzet Baysal University Research Foundation
Project Number
BAP 2016.03.01.1027
Thanks
We are grateful to Dr. Asaf Tolga Ülgen for his technical supports.
References
- Chevallier, A. (1996). The encyclopedia of medicinal plants; Dorling Kindersley, London.
- Moradkhani, H., Sargsyan E., Bibak H., Naseri B., Sadat-Hosseini M., Fayazi-Barjin A., Meftahizade H. (2010). Melissa officinalis L., a valuable medicine plant: A review. J. Med. Plants Res., 4, 2753-2759.
- Petersen, M., Simmonds, M.S. (2003). Rosmarinic acid. Phytochem., 62, 121-125.
- Barros, L., Dueñas, M., Dias, M.I., Sousa, M.J., Santos-Buelga, C., Ferreira, I.C. (2013). Phenolic profiles of cultivated, in vitro cultured and commercial samples of Melissa officinalis L. infusions. Food Chem., 136, 1-8.
- Racuciu, M., Creanga, D., Horga, I. (2008). Plant growth under static magnetic field influence. Rom. J. Phys., 53, 353-359.
- Hirota, N., Nakagawa J., Kitazawa, K. (1999). Effects of a magnetic field on the germination of plants. J. App. Phys., 85, 5717-5719.
- Reina, F.G., Pascual, L.A. (2001). Influence of a stationary magnetic field on water relations in lettuce seeds. Part I: theoretical considerations. Bioelectromagnetics, 22, 589-595.
- Ruzic, R., Jerman, I. (2002). Weak magnetic field decreases heat stress in cress seedlings. Electromagn. Biol. Med., 21, 69-80.
- Ghanati, F., Abdolmaleki, P., Vaezzadeh, M., Rajabbeigi, E., Yazdani, M. (2007). Application of magnetic field and iron in order to change medicinal products of Ocimum basilicum. The Environmentalist, 27, 429-434.
- Racuciu, M. (2012). Influence of extremely low frequency magnetic field on assimilatory pigments and nucleic acids in Zea mays and Curcubita pepo seedlings. Rom. Biotech. Lett., 17, 7663.
- Aladjadjiyan, A. (2010). Influence of stationary magnetic field on lentil seeds. Int. Agrophys., 24, 321-324.
- Yalçın, S., Tayyar, Ş. (2011). Oğulotu tohumlarının çimlenmesi ve fide gelişimi üzerine manyetik alanın etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi., 21, 190-197.
- Florez, M., Martínez, E., Carbonell, M.V. (2012). Effect of magnetic field treatment on germination of medicinal plants Salvia officinalis L. and Calendula officinalis L. Pol. J. Environ. Stu., 21, 57-63.
- Kuzugüdenli, E., Canpolat, K. (2012). Karaçamın (Pinus nigra Arnold.) Çimlenmesi Ve Gelişimi Üzerine Manyetik Alanın Etkisi. Biyoloji Bilimleri Araştırma Dergisi, 2, 31-34.
- Subber, A.R., Hail, R.C.A., Jabail, W.A., Hussein, H.F. (2012). Effects of magnetic field on the growth development of Zea mays seeds. J. Nat. Prod. Plant Resour., 2, 456-459.
- Sen, A., Alikamanoglu, S. (2014). Effects of static magnetic field pretreatment with and without PEG 6000 or NaCl exposure on wheat biochemical parameters. Russ. J. of Plant Physiol., 61, 646-655.
- Ulgen, C., Yıldırım, A.B., Turker, A.U. (2017). Effect of magnetic field treatments on seed germination of Melissa officinalis L. Int. J. Second. Metab., 4, 43-49.
- Alikamanoglu, S., Sen, A. (2011). Stimulation of growth and some biochemical parameters by magnetic field in wheat (Triticum aestivum L.) tissue cultures. Afr. J. Biotechnol., 10, 10957-10963.
- Tavares, A.C., Pimento, M.C., Goncalves, M.T. (1996). Micropropagation of Melissa officinalis L. through proliferation of axillary shoots. Plant Cell Rep., 15, 441-444.
- Meszaros, A., Bellon Pinter, E., Horvath, G. (1999). Micropropagation of lemon balm, Plant Cell Tiss. Org., 57, 149–152
- Tantos, A., Mészáros, A., Kissimon, J., Horváth, G., Farkas, T. (1999). The effect of triacontanol on micropropagation of balm, Melissa officinalis L. Plant Cell Rep., 19, 88–91.
- Silva, S.D., Sato, A., Lage, C.L.S., Gil, S., da Silva, R.A., Azevedo, D.D.A., Esquibel, M.A. (2005). Essential oil composition of Melissa officinalis L. in vitro produced under the influence of growth regulators. J. Braz. Chem. Soc., 16, 1387-1390.
- Meftahizade, H., Lotfi, M., Moradkhani, H. (2010). Optimization of micropropagation and establishment of cell suspension culture in Melissa officinalis L. Afr. J. Biotechnol., 9, 4314-4321.
- Mohebalipour, N., Aharizad, S., Mohammadi, S., Motallebiazar, A., Arefi, H. (2012). Effect of plant growth regulators BAP and IAA on micropropagation of Iranian lemon balm (Melissa officinalis L.) landraces. J. Food Agr. Environ., 10, 280-286.
- Davis, P.H. (1982). Flora of Turkey and the East Aegean Islands; Edinburgh University Press, Edinburgh.
- Murashige T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plantarum., 15, 473-497.
- Yaycili, O., Alikamanoglu, S. (2005). The effect of magnetic field on Paulownia tissue cultures. Plant Cell Tiss Org., 83, 109-114.
- Lucchesini, M., Sabatini, A.M., Vitagliano, C., Dario, P. (1992). The pulsed electro-magnetic field stimulation effect on development of Prunus cerasifera in vitro-derived plantlets. Int. Symp. on Transplant Produc. Sys., 319, 131-136.
- Atak, Ç., Emiroǧlu, Ö., Alikamanoǧlu, S., Rzakoulieva, A. (2003). Stimulation of regeneration by magnetic field in soybean (Glycine max L. Merrill) tissue cultures. J. Cell Mol. Biol., 2, 113-119.
- Saktheeswari, N., Subrahmanyam, S. (1989). Effects of pulsed magnetic field on histology, biochemistry and magnetotropism of paddy (Oryza sativa). Bioelectromagn. Biomed., 2, 37-44.
Enhancement of Plant Regeneration in Lemon Balm (Melissa officinalis L.) with Different Magnetic Field Applications
Year 2020,
Volume: 7 Issue: 2, 99 - 108, 13.06.2020
Canan Ulgen
,
Arzu Yıldırım
,
Arzu Turker
Abstract
Melissa officinalis L. (lemon balm) is a valuable medicinal and aromatic plant in the Lamiaceae family. Two independent experiments were performed to improve the productivity of the plant regeneration. Firstly, the most efficient in vitro culture system of M. officinalis was determined using 7 different explant types (leaf, petiole, stem, root, axillary buds, shoot buds and cotyledon buds) on medium containing Murashige and Skoog minimal organics (MSMO) medium with different concentrations and combinations of plant growth regulators (PGRs). Micropropagation was obtained only with explants containing meristematic cells (axillary buds, shoot tip buds and cotyledon buds). Lemon balm had a very low regeneration capacity and in the second part of the experiment, enhancement of regeneration was aimed with the applications of different magnetic fields (MFs). Two different MFs (50 and 100 mT) were generated using neodymium block magnets. There was no MF exposure with control treatment. Three different explants (axillary, shoot tip and cotyledon buds) were cultured on media including BA in combination with indole-3-acetic acid (IAA) or naphthalene acetic acid (NAA) with the application of two different MFs at 1 hour duration. As a result, it was determined that MF applications enhanced the regeneration capacity of M. officinalis and the best shoot formation was observed with axillary bud explant cultured in 1.5 mg/L BA at 100 mT MF application for 1 hour duration.
Project Number
BAP 2016.03.01.1027
References
- Chevallier, A. (1996). The encyclopedia of medicinal plants; Dorling Kindersley, London.
- Moradkhani, H., Sargsyan E., Bibak H., Naseri B., Sadat-Hosseini M., Fayazi-Barjin A., Meftahizade H. (2010). Melissa officinalis L., a valuable medicine plant: A review. J. Med. Plants Res., 4, 2753-2759.
- Petersen, M., Simmonds, M.S. (2003). Rosmarinic acid. Phytochem., 62, 121-125.
- Barros, L., Dueñas, M., Dias, M.I., Sousa, M.J., Santos-Buelga, C., Ferreira, I.C. (2013). Phenolic profiles of cultivated, in vitro cultured and commercial samples of Melissa officinalis L. infusions. Food Chem., 136, 1-8.
- Racuciu, M., Creanga, D., Horga, I. (2008). Plant growth under static magnetic field influence. Rom. J. Phys., 53, 353-359.
- Hirota, N., Nakagawa J., Kitazawa, K. (1999). Effects of a magnetic field on the germination of plants. J. App. Phys., 85, 5717-5719.
- Reina, F.G., Pascual, L.A. (2001). Influence of a stationary magnetic field on water relations in lettuce seeds. Part I: theoretical considerations. Bioelectromagnetics, 22, 589-595.
- Ruzic, R., Jerman, I. (2002). Weak magnetic field decreases heat stress in cress seedlings. Electromagn. Biol. Med., 21, 69-80.
- Ghanati, F., Abdolmaleki, P., Vaezzadeh, M., Rajabbeigi, E., Yazdani, M. (2007). Application of magnetic field and iron in order to change medicinal products of Ocimum basilicum. The Environmentalist, 27, 429-434.
- Racuciu, M. (2012). Influence of extremely low frequency magnetic field on assimilatory pigments and nucleic acids in Zea mays and Curcubita pepo seedlings. Rom. Biotech. Lett., 17, 7663.
- Aladjadjiyan, A. (2010). Influence of stationary magnetic field on lentil seeds. Int. Agrophys., 24, 321-324.
- Yalçın, S., Tayyar, Ş. (2011). Oğulotu tohumlarının çimlenmesi ve fide gelişimi üzerine manyetik alanın etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi., 21, 190-197.
- Florez, M., Martínez, E., Carbonell, M.V. (2012). Effect of magnetic field treatment on germination of medicinal plants Salvia officinalis L. and Calendula officinalis L. Pol. J. Environ. Stu., 21, 57-63.
- Kuzugüdenli, E., Canpolat, K. (2012). Karaçamın (Pinus nigra Arnold.) Çimlenmesi Ve Gelişimi Üzerine Manyetik Alanın Etkisi. Biyoloji Bilimleri Araştırma Dergisi, 2, 31-34.
- Subber, A.R., Hail, R.C.A., Jabail, W.A., Hussein, H.F. (2012). Effects of magnetic field on the growth development of Zea mays seeds. J. Nat. Prod. Plant Resour., 2, 456-459.
- Sen, A., Alikamanoglu, S. (2014). Effects of static magnetic field pretreatment with and without PEG 6000 or NaCl exposure on wheat biochemical parameters. Russ. J. of Plant Physiol., 61, 646-655.
- Ulgen, C., Yıldırım, A.B., Turker, A.U. (2017). Effect of magnetic field treatments on seed germination of Melissa officinalis L. Int. J. Second. Metab., 4, 43-49.
- Alikamanoglu, S., Sen, A. (2011). Stimulation of growth and some biochemical parameters by magnetic field in wheat (Triticum aestivum L.) tissue cultures. Afr. J. Biotechnol., 10, 10957-10963.
- Tavares, A.C., Pimento, M.C., Goncalves, M.T. (1996). Micropropagation of Melissa officinalis L. through proliferation of axillary shoots. Plant Cell Rep., 15, 441-444.
- Meszaros, A., Bellon Pinter, E., Horvath, G. (1999). Micropropagation of lemon balm, Plant Cell Tiss. Org., 57, 149–152
- Tantos, A., Mészáros, A., Kissimon, J., Horváth, G., Farkas, T. (1999). The effect of triacontanol on micropropagation of balm, Melissa officinalis L. Plant Cell Rep., 19, 88–91.
- Silva, S.D., Sato, A., Lage, C.L.S., Gil, S., da Silva, R.A., Azevedo, D.D.A., Esquibel, M.A. (2005). Essential oil composition of Melissa officinalis L. in vitro produced under the influence of growth regulators. J. Braz. Chem. Soc., 16, 1387-1390.
- Meftahizade, H., Lotfi, M., Moradkhani, H. (2010). Optimization of micropropagation and establishment of cell suspension culture in Melissa officinalis L. Afr. J. Biotechnol., 9, 4314-4321.
- Mohebalipour, N., Aharizad, S., Mohammadi, S., Motallebiazar, A., Arefi, H. (2012). Effect of plant growth regulators BAP and IAA on micropropagation of Iranian lemon balm (Melissa officinalis L.) landraces. J. Food Agr. Environ., 10, 280-286.
- Davis, P.H. (1982). Flora of Turkey and the East Aegean Islands; Edinburgh University Press, Edinburgh.
- Murashige T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plantarum., 15, 473-497.
- Yaycili, O., Alikamanoglu, S. (2005). The effect of magnetic field on Paulownia tissue cultures. Plant Cell Tiss Org., 83, 109-114.
- Lucchesini, M., Sabatini, A.M., Vitagliano, C., Dario, P. (1992). The pulsed electro-magnetic field stimulation effect on development of Prunus cerasifera in vitro-derived plantlets. Int. Symp. on Transplant Produc. Sys., 319, 131-136.
- Atak, Ç., Emiroǧlu, Ö., Alikamanoǧlu, S., Rzakoulieva, A. (2003). Stimulation of regeneration by magnetic field in soybean (Glycine max L. Merrill) tissue cultures. J. Cell Mol. Biol., 2, 113-119.
- Saktheeswari, N., Subrahmanyam, S. (1989). Effects of pulsed magnetic field on histology, biochemistry and magnetotropism of paddy (Oryza sativa). Bioelectromagn. Biomed., 2, 37-44.