Research Article
BibTex RIS Cite

Inhibition of carbonic anhydrase and cholinesterase enzymes by acetone extract of Bryoria capillaris (Ach.) Brodo & D.Hawksw.

Year 2024, Volume: 11 Issue: 1, 105 - 112, 05.02.2024
https://doi.org/10.21448/ijsm.1368533

Abstract

In traditional medicine, people commonly consume Bryoria capillaris (BC) as flour and tea, particularly in Northeast Anatolia, where it is one of the most prevalent lichen species. This study aimed to obtain an acetone extract of BC and investigate its inhibitory effects on carbonic anhydrase (CA) I, CA II, acetylcholine esterase (AChE), and butyrylcholine esterase (BChE) enzymes. We determined IC50 values of BC for each enzyme to measure the level of inhibition. The IC50 values for CA I and CA II were 8.77 μg/mL and 7.56 μg/mL, respectively. Acetazolamide, a specific CA I and II inhibitor, had IC50 values of 1.65 and 0.016 μg/mL, respectively. The IC50 values of BC for AChE and BChE were 7.96 and 8.58 μg/mL, respectively. Galantamine had IC50 values of 4.68 and 16.07 μg/mL for AChE and BChE, respectively. These results indicate that BC extract has a high potential to provide new drug candidates for all the tested enzymes, particularly for BChE.

References

  • Adenubi, O.T., Famuyide, I.M., McGaw, L.J., & Eloff, J.N. (2022). Lichens: An update on their ethnopharmacological uses and potential as sources of drug leads. Journal of Ethnopharmacology, 298, 115657. https://doi.org/10.1016/j.jep.2022.115657
  • Akocak, S., & Supuran, C.T. (2019). Activation of α-, β-, γ- δ-, ζ- and η- class of carbonic anhydrases with amines and amino acids: a review. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 1652-1659. https://doi.org/10.1080/14756366.2019.1664501
  • Areche, C., Parra, J., Sepulveda, B., García-Beltrán, O., & Simirgiotis, M. J. (2022). UHPLC-MS Metabolomic Fingerprinting, Antioxidant, and Enzyme Inhibition Activities of Himantormia lugubris from Antarctica. Metabolites, 12(6), 560. https://doi.org/10.3390/metabo12060560
  • Arslan, T., Buğrahan Ceylan, M., Baş, H., Biyiklioglu, Z., & Senturk, M. (2020). Design, synthesis, characterization of peripherally tetra-pyridine-triazole-substituted phthalocyanines and their inhibitory effects on cholinesterases (AChE/BChE) and carbonic anhydrases (hCA I, II and IX). Dalton Transactions, 49(1), 203 209. https://doi.org/10.1039/C9DT03897C
  • Başaran, E., Çakmak, R., Şentürk, M., & Taskin-Tok, T. (2022). Biological activity and molecular docking studies of some N-phenylsulfonamides against cholinesterases and carbonic anhydrase isoenzymes. J Mol Recognit, 35(10), e2982. https://doi.org/10.1002/jmr.2982
  • Cavdar, H., Senturk, M., Guney, M., Durdagi, S., Kayik, G., Supuran, C.T., & Ekinci, D. (2019). Inhibition of acetylcholinesterase and butyrylcholinesterase with uracil derivatives: kinetic and computational studies. J Enzyme Inhib Med Chem, 34(1), 429-437. https://doi.org/10.1080/14756366.2018.1543288
  • Comert Onder, F., Sahin, K., Senturk, M., Durdagi, S., & Ay, M. (2022). Identifying highly effective coumarin-based novel cholinesterase inhibitors by in silico and in vitro studies. Journal of Molecular Graphics and Modelling, 115, 108210. https://doi.org/10.1016/j.jmgm.2022.108210
  • Culberson, C.F. (1969). Chemical and Botanical Guide to Lichen Products. University of North Carolina Press.
  • Culberson, C.F. (1970). Supplement to "Chemical and Botanical Guide to Lichen Products". The Bryologist, 73(2), 177-377.
  • Culberson, C.F., Culberson, W.L., Johnson, A., Bryological, A., & Society, L. (1977). Second Supplement to "Chemical and Botanical Guide to Lichen Products". American Bryological and Lichenological Society.
  • Elix, J.A. (2014). A catalogue of standardized chromatographic data and biosynthetic relationships for lichen substances. Published by the author.
  • Ellman, G.L., Courtney, K.D., Andres, V., & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Faraone, I., Rai, D.K., Russo, D., Chiummiento, L., Fernandez, E., Choudhary, A., & Milella, L. (2019). Antioxidant, Antidiabetic, and Anticholinesterase Activities and Phytochemical Profile of Azorella glabra Wedd. Plants (Basel), 8(8), Article 265. https://doi.org/10.3390/plants8080265
  • Furmanek, Ł., Czarnota, P., & Seaward, M.R.D. (2022a). The effect of lichen secondary metabolites on Aspergillus fungi. Archives of Microbiology, 204(1), Article 100. https://doi.org/10.1007/s00203-021-02649-0
  • Furmanek, Ł., Czarnota, P., & Seaward, M.R.D. (2022b). Effects of lichen homogenates, mixtures of extracted substances and secondary metabolites on macromycetes – a critical review. South African Journal of Botany, 149, 559 571. https://doi.org/10.1016/j.sajb.2022.06.048
  • Furmanek, Ł., Czarnota, P., & Seaward, M.R.D. (2022c). A review of the potential of lichen substances as antifungal agents: the effects of extracts and lichen secondary metabolites on Fusarium fungi. Archives of Microbiology, 204(8), 523, Article 523. https://doi.org/10.1007/s00203-022-03104-4
  • Giacobini, E. (2001). Selective Inhibitors of Butyrylcholinesterase. Drugs & Aging, 18(12), 891-898. https://doi.org/10.2165/00002512-200118120-00001
  • Goncu, B., Sevgi, E., Kizilarslan Hancer, C., Gokay, G., & Ozten, N. (2020). Differential anti-proliferative and apoptotic effects of lichen species on human prostate carcinoma cells. PLOS ONE, 15(9), e0238303. https://doi.org/10.1371/journal.pone.0238303
  • Hampel, H., Mesulam, M.M., Cuello, A.C., Farlow, M.R., Giacobini, E., Grossberg, G.T., Khachaturian, A.S., Vergallo, A., Cavedo, E., Snyder, P.J., & Khachaturian, Z.S. (2018). The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain, 141(7), 1917-1933. https://doi.org/10.1093/brain/awy132
  • Karagoz, Y., Karagoz, K., Dadasoglu, F., & Ozturk-Karagoz, B. (2018). Bryoria capillaris (Ach.) Brodo & D. Hawksw. Extract fractions have potent antimicrobial activity in liquid-But not in solid media. Fresenius Environmental Bulletin, 27(6), 4293-4297.
  • Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., & Abete, P. (2018). Oxidative stress, aging, and diseases. Clin Interv Aging, 13, 757-772. https://doi.org/10.2147/CIA.S158513
  • Lockridge, O., Duysen, E.G., & Masson, P. (2011). Butyrylcholinesterase: Overview, Structure, and Function. In T. Satoh & R. C. Gupta (Eds.), Anticholinesterase Pesticides (pp. 25-41). https://doi.org/10.1002/9780470640500.ch3
  • Ozturk, S., Erkisa, M., Oran, S., Ulukaya, E., Celikler, S., & Ari, F. (2021). Lichens exerts an anti-proliferative effect on human breast and lung cancer cells through induction of apoptosis. Drug and Chemical Toxicology, 44(3), 259 267. https://doi.org/10.1080/01480545.2019.1573825
  • Özil, M., Balaydın, H.T., & Şentürk, M. (2019). Synthesis of 5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-one’s aryl Schiff base derivatives and investigation of carbonic anhydrase and cholinesterase (AChE, BuChE) inhibitory properties. Bioorganic Chemistry, 86, 705-713. https://doi.org/10.1016/j.bioorg.2019.02.045
  • Sahin, H., Can, Z., Yildiz, O., Kolayli, S., Innocenti, A., Scozzafava, G., & Supuran, C.T. (2012). Inhibition of carbonic anhydrase isozymes I and II with natural products extracted from plants, mushrooms and honey. J Enzyme Inhib Med Chem, 27(3), 395-402. https://doi.org/10.3109/14756366.2011.593176
  • Smith, C.W. (Ed.). (2009). The Lichens of Great Britain and Ireland. British Lichen Society.
  • Supuran, C.T. (2023). A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorganic & Medicinal Chemistry Letters, 93, 129411. https://doi.org/10.1016/j.bmcl.2023.129411
  • Şentürk, M. (2017). Enzyme Inhibitors and Activators. IntechOpen. https://doi.org/10.5772/63325
  • Tas, I., Yildirim, A., Ozyigitoglu, G., Turker, H., & Turker, A.U. (2019). Lichens as a promising natural antibacterial agent against fish pathogens. Bulletin of the European Association of Fish Pathologists, 39(1), 40-48.
  • Tas, I., Yildirim, A.B., Ozyigitoglu, G.C., Yavuz, M.Z., & Turker, A.U. (2017). Determination of biological activities (antibacterial, antioxidant and antiproliferative) and metabolite analysis of some lichen species from Turkey. European Journal of Biomedical And Pharmaceutical sciences, 4(04), 13-20.
  • Tripathi, A.H., Negi, N., Gahtori, R., Kumari, A., Joshi, P., Tewari, L.M., Joshi, Y., Bajpai, R., Upreti, D.K., & Upadhyay, S.K. (2022). A Review of Anti-Cancer and Related Properties of Lichen-Extracts and Metabolites. Anti-Cancer Agents in Medicinal Chemistry- Anti-Cancer Agents), 22(1), 115-142. https://doi.org/10.2174/1871520621666210322094647
  • Tufan-Cetin, O., & Cetin, H. (2021). Liken Ekstraktları ve Sekonder Metabolitlerinin Bazı Biyolojik Aktiviteleri [Some Biological Activities of Lichens and Their Secondary Metabolites]. Türk Bilimsel Derlemeler Dergisi, 14(1), 47-56.
  • Turkez, H., Aydin, E., & Aslan, A. (2014). Role of aqueous Bryoria capillaris (Ach.) extract as a genoprotective agent on imazalil-induced genotoxicity in vitro. Toxicology and Industrial Health, 30(1), 33-39. https://doi.org/10.1177/0748233712448119
  • Varol, M. (2018). Anti-breast cancer and anti-angiogenic potential of a lichen-derived small-molecule: barbatolic acid. Cytotechnology, 70(6), 1565 1573. https://doi.org/10.1007/s10616-018-0249-x
  • Verpoorte, J.A., Mehta, S., & Edsall, J.T. (1967). Esterase Activities of Human Carbonic Anhydrases B and C. Journal of Biological Chemistry, 242(18), 4221 4229. https://doi.org/10.1016/S0021-9258(18)95800-X
  • Yañez, O., Osorio, M.I., Osorio, E., Tiznado, W., Ruíz, L., García, C., Nagles, O., Simirgiotis, M. J., Castañeta, G., Areche, C., & García-Beltrán, O. (2023). Antioxidant activity and enzymatic of lichen substances: A study based on cyclic voltammetry and theoretical. Chemico Biological Interactions, 372, 110357. https://doi.org/https://doi.org/10.1016/j.cbi.2023.110357
  • Yaseen, R., Ekinci, D., Senturk, M., Hameed, A.D., Ovais, S., Rathore, P., Samim, M., Javed, K., & Supuran, C.T. (2016). Pyridazinone substituted benzenesulfonamides as potent carbonic anhydrase inhibitors. Bioorganic & Medicinal Chemistry Letters, 26(4), 1337-1341. https://doi.org/https://doi.org/10.1016/j.bmcl.2015.12.016
  • Yılmaz Sarıözlü, N., Yılmaz Cankılıç, M., Candan, M., & Tay, T. (2016). Antimicrobial activity of lichen Bryoria capillaris and its compound barbatolic acid. Biomedical Research-India, 27, S419-S423.
  • Zhou, S., & Huang, G. (2022). The biological activities of butyrylcholinesterase inhibitors. Biomedicine & Pharmacotherapy, 146, 112556. https://doi.org/10.1016/j.biopha.2021.112556

Inhibition of carbonic anhydrase and cholinesterase enzymes by acetone extract of Bryoria capillaris (Ach.) Brodo & D.Hawksw.

Year 2024, Volume: 11 Issue: 1, 105 - 112, 05.02.2024
https://doi.org/10.21448/ijsm.1368533

Abstract

In traditional medicine, people commonly consume Bryoria capillaris (BC) as flour and tea, particularly in Northeast Anatolia, where it is one of the most prevalent lichen species. This study aimed to obtain an acetone extract of BC and investigate its inhibitory effects on carbonic anhydrase (CA) I, CA II, acetylcholine esterase (AChE), and butyrylcholine esterase (BChE) enzymes. We determined IC50 values of BC for each enzyme to measure the level of inhibition. The IC50 values for CA I and CA II were 8.77 μg/mL and 7.56 μg/mL, respectively. Acetazolamide, a specific CA I and II inhibitor, had IC50 values of 1.65 and 0.016 μg/mL, respectively. The IC50 values of BC for AChE and BChE were 7.96 and 8.58 μg/mL, respectively. Galantamine had IC50 values of 4.68 and 16.07 μg/mL for AChE and BChE, respectively. These results indicate that BC extract has a high potential to provide new drug candidates for all the tested enzymes, particularly for BChE.

References

  • Adenubi, O.T., Famuyide, I.M., McGaw, L.J., & Eloff, J.N. (2022). Lichens: An update on their ethnopharmacological uses and potential as sources of drug leads. Journal of Ethnopharmacology, 298, 115657. https://doi.org/10.1016/j.jep.2022.115657
  • Akocak, S., & Supuran, C.T. (2019). Activation of α-, β-, γ- δ-, ζ- and η- class of carbonic anhydrases with amines and amino acids: a review. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 1652-1659. https://doi.org/10.1080/14756366.2019.1664501
  • Areche, C., Parra, J., Sepulveda, B., García-Beltrán, O., & Simirgiotis, M. J. (2022). UHPLC-MS Metabolomic Fingerprinting, Antioxidant, and Enzyme Inhibition Activities of Himantormia lugubris from Antarctica. Metabolites, 12(6), 560. https://doi.org/10.3390/metabo12060560
  • Arslan, T., Buğrahan Ceylan, M., Baş, H., Biyiklioglu, Z., & Senturk, M. (2020). Design, synthesis, characterization of peripherally tetra-pyridine-triazole-substituted phthalocyanines and their inhibitory effects on cholinesterases (AChE/BChE) and carbonic anhydrases (hCA I, II and IX). Dalton Transactions, 49(1), 203 209. https://doi.org/10.1039/C9DT03897C
  • Başaran, E., Çakmak, R., Şentürk, M., & Taskin-Tok, T. (2022). Biological activity and molecular docking studies of some N-phenylsulfonamides against cholinesterases and carbonic anhydrase isoenzymes. J Mol Recognit, 35(10), e2982. https://doi.org/10.1002/jmr.2982
  • Cavdar, H., Senturk, M., Guney, M., Durdagi, S., Kayik, G., Supuran, C.T., & Ekinci, D. (2019). Inhibition of acetylcholinesterase and butyrylcholinesterase with uracil derivatives: kinetic and computational studies. J Enzyme Inhib Med Chem, 34(1), 429-437. https://doi.org/10.1080/14756366.2018.1543288
  • Comert Onder, F., Sahin, K., Senturk, M., Durdagi, S., & Ay, M. (2022). Identifying highly effective coumarin-based novel cholinesterase inhibitors by in silico and in vitro studies. Journal of Molecular Graphics and Modelling, 115, 108210. https://doi.org/10.1016/j.jmgm.2022.108210
  • Culberson, C.F. (1969). Chemical and Botanical Guide to Lichen Products. University of North Carolina Press.
  • Culberson, C.F. (1970). Supplement to "Chemical and Botanical Guide to Lichen Products". The Bryologist, 73(2), 177-377.
  • Culberson, C.F., Culberson, W.L., Johnson, A., Bryological, A., & Society, L. (1977). Second Supplement to "Chemical and Botanical Guide to Lichen Products". American Bryological and Lichenological Society.
  • Elix, J.A. (2014). A catalogue of standardized chromatographic data and biosynthetic relationships for lichen substances. Published by the author.
  • Ellman, G.L., Courtney, K.D., Andres, V., & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Faraone, I., Rai, D.K., Russo, D., Chiummiento, L., Fernandez, E., Choudhary, A., & Milella, L. (2019). Antioxidant, Antidiabetic, and Anticholinesterase Activities and Phytochemical Profile of Azorella glabra Wedd. Plants (Basel), 8(8), Article 265. https://doi.org/10.3390/plants8080265
  • Furmanek, Ł., Czarnota, P., & Seaward, M.R.D. (2022a). The effect of lichen secondary metabolites on Aspergillus fungi. Archives of Microbiology, 204(1), Article 100. https://doi.org/10.1007/s00203-021-02649-0
  • Furmanek, Ł., Czarnota, P., & Seaward, M.R.D. (2022b). Effects of lichen homogenates, mixtures of extracted substances and secondary metabolites on macromycetes – a critical review. South African Journal of Botany, 149, 559 571. https://doi.org/10.1016/j.sajb.2022.06.048
  • Furmanek, Ł., Czarnota, P., & Seaward, M.R.D. (2022c). A review of the potential of lichen substances as antifungal agents: the effects of extracts and lichen secondary metabolites on Fusarium fungi. Archives of Microbiology, 204(8), 523, Article 523. https://doi.org/10.1007/s00203-022-03104-4
  • Giacobini, E. (2001). Selective Inhibitors of Butyrylcholinesterase. Drugs & Aging, 18(12), 891-898. https://doi.org/10.2165/00002512-200118120-00001
  • Goncu, B., Sevgi, E., Kizilarslan Hancer, C., Gokay, G., & Ozten, N. (2020). Differential anti-proliferative and apoptotic effects of lichen species on human prostate carcinoma cells. PLOS ONE, 15(9), e0238303. https://doi.org/10.1371/journal.pone.0238303
  • Hampel, H., Mesulam, M.M., Cuello, A.C., Farlow, M.R., Giacobini, E., Grossberg, G.T., Khachaturian, A.S., Vergallo, A., Cavedo, E., Snyder, P.J., & Khachaturian, Z.S. (2018). The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. Brain, 141(7), 1917-1933. https://doi.org/10.1093/brain/awy132
  • Karagoz, Y., Karagoz, K., Dadasoglu, F., & Ozturk-Karagoz, B. (2018). Bryoria capillaris (Ach.) Brodo & D. Hawksw. Extract fractions have potent antimicrobial activity in liquid-But not in solid media. Fresenius Environmental Bulletin, 27(6), 4293-4297.
  • Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., & Abete, P. (2018). Oxidative stress, aging, and diseases. Clin Interv Aging, 13, 757-772. https://doi.org/10.2147/CIA.S158513
  • Lockridge, O., Duysen, E.G., & Masson, P. (2011). Butyrylcholinesterase: Overview, Structure, and Function. In T. Satoh & R. C. Gupta (Eds.), Anticholinesterase Pesticides (pp. 25-41). https://doi.org/10.1002/9780470640500.ch3
  • Ozturk, S., Erkisa, M., Oran, S., Ulukaya, E., Celikler, S., & Ari, F. (2021). Lichens exerts an anti-proliferative effect on human breast and lung cancer cells through induction of apoptosis. Drug and Chemical Toxicology, 44(3), 259 267. https://doi.org/10.1080/01480545.2019.1573825
  • Özil, M., Balaydın, H.T., & Şentürk, M. (2019). Synthesis of 5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-one’s aryl Schiff base derivatives and investigation of carbonic anhydrase and cholinesterase (AChE, BuChE) inhibitory properties. Bioorganic Chemistry, 86, 705-713. https://doi.org/10.1016/j.bioorg.2019.02.045
  • Sahin, H., Can, Z., Yildiz, O., Kolayli, S., Innocenti, A., Scozzafava, G., & Supuran, C.T. (2012). Inhibition of carbonic anhydrase isozymes I and II with natural products extracted from plants, mushrooms and honey. J Enzyme Inhib Med Chem, 27(3), 395-402. https://doi.org/10.3109/14756366.2011.593176
  • Smith, C.W. (Ed.). (2009). The Lichens of Great Britain and Ireland. British Lichen Society.
  • Supuran, C.T. (2023). A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorganic & Medicinal Chemistry Letters, 93, 129411. https://doi.org/10.1016/j.bmcl.2023.129411
  • Şentürk, M. (2017). Enzyme Inhibitors and Activators. IntechOpen. https://doi.org/10.5772/63325
  • Tas, I., Yildirim, A., Ozyigitoglu, G., Turker, H., & Turker, A.U. (2019). Lichens as a promising natural antibacterial agent against fish pathogens. Bulletin of the European Association of Fish Pathologists, 39(1), 40-48.
  • Tas, I., Yildirim, A.B., Ozyigitoglu, G.C., Yavuz, M.Z., & Turker, A.U. (2017). Determination of biological activities (antibacterial, antioxidant and antiproliferative) and metabolite analysis of some lichen species from Turkey. European Journal of Biomedical And Pharmaceutical sciences, 4(04), 13-20.
  • Tripathi, A.H., Negi, N., Gahtori, R., Kumari, A., Joshi, P., Tewari, L.M., Joshi, Y., Bajpai, R., Upreti, D.K., & Upadhyay, S.K. (2022). A Review of Anti-Cancer and Related Properties of Lichen-Extracts and Metabolites. Anti-Cancer Agents in Medicinal Chemistry- Anti-Cancer Agents), 22(1), 115-142. https://doi.org/10.2174/1871520621666210322094647
  • Tufan-Cetin, O., & Cetin, H. (2021). Liken Ekstraktları ve Sekonder Metabolitlerinin Bazı Biyolojik Aktiviteleri [Some Biological Activities of Lichens and Their Secondary Metabolites]. Türk Bilimsel Derlemeler Dergisi, 14(1), 47-56.
  • Turkez, H., Aydin, E., & Aslan, A. (2014). Role of aqueous Bryoria capillaris (Ach.) extract as a genoprotective agent on imazalil-induced genotoxicity in vitro. Toxicology and Industrial Health, 30(1), 33-39. https://doi.org/10.1177/0748233712448119
  • Varol, M. (2018). Anti-breast cancer and anti-angiogenic potential of a lichen-derived small-molecule: barbatolic acid. Cytotechnology, 70(6), 1565 1573. https://doi.org/10.1007/s10616-018-0249-x
  • Verpoorte, J.A., Mehta, S., & Edsall, J.T. (1967). Esterase Activities of Human Carbonic Anhydrases B and C. Journal of Biological Chemistry, 242(18), 4221 4229. https://doi.org/10.1016/S0021-9258(18)95800-X
  • Yañez, O., Osorio, M.I., Osorio, E., Tiznado, W., Ruíz, L., García, C., Nagles, O., Simirgiotis, M. J., Castañeta, G., Areche, C., & García-Beltrán, O. (2023). Antioxidant activity and enzymatic of lichen substances: A study based on cyclic voltammetry and theoretical. Chemico Biological Interactions, 372, 110357. https://doi.org/https://doi.org/10.1016/j.cbi.2023.110357
  • Yaseen, R., Ekinci, D., Senturk, M., Hameed, A.D., Ovais, S., Rathore, P., Samim, M., Javed, K., & Supuran, C.T. (2016). Pyridazinone substituted benzenesulfonamides as potent carbonic anhydrase inhibitors. Bioorganic & Medicinal Chemistry Letters, 26(4), 1337-1341. https://doi.org/https://doi.org/10.1016/j.bmcl.2015.12.016
  • Yılmaz Sarıözlü, N., Yılmaz Cankılıç, M., Candan, M., & Tay, T. (2016). Antimicrobial activity of lichen Bryoria capillaris and its compound barbatolic acid. Biomedical Research-India, 27, S419-S423.
  • Zhou, S., & Huang, G. (2022). The biological activities of butyrylcholinesterase inhibitors. Biomedicine & Pharmacotherapy, 146, 112556. https://doi.org/10.1016/j.biopha.2021.112556
There are 39 citations in total.

Details

Primary Language English
Subjects Botany (Other), Natural Products and Bioactive Compounds
Journal Section Articles
Authors

Yalçın Karagöz 0000-0002-4835-4508

Naim Uzun 0000-0002-9763-7643

Bayram Alparslan 0000-0001-6973-7455

Murat Şentürk 0000-0002-9638-2896

Publication Date February 5, 2024
Submission Date September 29, 2023
Published in Issue Year 2024 Volume: 11 Issue: 1

Cite

APA Karagöz, Y., Uzun, N., Alparslan, B., Şentürk, M. (2024). Inhibition of carbonic anhydrase and cholinesterase enzymes by acetone extract of Bryoria capillaris (Ach.) Brodo & D.Hawksw. International Journal of Secondary Metabolite, 11(1), 105-112. https://doi.org/10.21448/ijsm.1368533
International Journal of Secondary Metabolite

e-ISSN: 2148-6905