Research Article
BibTex RIS Cite

Molecular identification and phytochemical profiling of selected medicinal plants in Bongabon, Nueva Ecija, Philippines

Year 2025, Volume: 12 Issue: 1, 166 - 180

Abstract

The study focuses on the five medicinal plants used by the local people residing in Calaanan, Bongabon Nueva Ecija Philippines. The study aimed to investigate using DNA-based identification, phytochemical screening, and antioxidant analysis of the plant’s ethanolic extract. The selected five plants were initially identified by a taxonomist and molecularly identified using the rbcL gene marker. These plants were identified as Scoparia dulcis, Vachellia fernasiana, Centella asiatica, Sapindus saponaria, and Ocimum tenuiflorum. The extracts of the plants underwent Fourier Transform Infrared spectroscopy (FTIR) analysis to determine the functional group present in each plant and further analysis led to Thin Layer Chromatography (TLC) to unveil the presence and absence of the plant’s secondary metabolites. The phytochemical profiles revealed the presence of essential oils, phenols, fatty acids, anthraquinones, anthrones, coumarins, flavonoids, and tannins. The results from the phytochemical analysis demonstrated the chemical diversity of the plant, prompting further investigations into its various bioactive properties. Further, the plants were subjected to 2,2'diphenyl-1-1picrylhydrazyl (DPPH) radical scavenging assay using a 1000ppm concentration of crude extracts, results revealed a range from 22.71% to 79.01% radical scavenging activity compared to the control which is at 83.56%. Collectively, this study reveals the accurate identity, phytochemical profile, and antioxidant activity of the medicinal plants.

References

  • Abdel-Latif, A., & Osman, G. (2017). Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods, 13, 1-9.
  • Agatonovic-Kustrin, S., Ristivojevic, P., Gegechkori, V., Litvinova, T.M., & Morton, D.W. (2020). Essential oil quality and purity evaluation via ft-ir spectroscopy and pattern recognition techniques. Applied Sciences, 10(20), 7294.
  • Balangcod, T.D., Vallejo, V.L., Patacsil, M., Apostol, O., Laruan, L.M.V.A., Manuel, J., & Gutierrez, R.M. (2012). Phytochemical screening and antibacterial activity of selected medicinal plants of Bayabas, Sablan, Benguet Province, Cordillera administrative region, Luzon, Philippines. Indian Journal of Traditional Knowledge, 11(4), 580-585.
  • Balangcod, T., & Balangcod, K.D. (2015). Ethnomedicinal plants in Bayabas, Sablan, Benguet Province, Luzon, Philippines. Electronic Journal of Biology, 11(3), 63-73.
  • Boy, H.I.A., Rutilla, A.J.H., Santos, K.A., Ty, A.M.T., Alicia, I.Y., Mahboob, T. & Nissapatorn, V. (2018). Recommended medicinal plants as source of natural products: a review. Digital Chinese Medicine, 1(2), 131-142.
  • CBOL Plant Working Group 1, Hollingsworth, P.M., Forrest, L.L., Spouge, J.L., Hajibabaei, M., Ratnasingham, S. & Little, D.P. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106(31), 12794-12797.
  • China Plant, B.O.L.G., Li, D.Z., Gao, L.M., Li, H.T., Wang, H., Ge, X.J., & Duan, G.W. (2011). Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19641-19646.
  • Clemen-Pascual, L.M., Macahig, R.A.S., and Rojas, N.R.L. (2022). Comparative toxicity, phytochemistry, and use of 53 Philippine medicinal plants. Toxicology Reports, 9, 22-35.
  • da Silva, J.F.M., de Souza, M.C., Matta, S.R., de Andrade, M.R., & Vidal, F.V.N. (2006). Correlation analysis between phenolic levels of Brazilian propolis extracts and their antimicrobial and antioxidant activities. Food Chemistry, 99(3), 431-435.
  • De Leon, D.T.C., Aquino, J.D.C., Valentino, M.J.G., & Undan, J.R. (2018). Molecular identification and phytochemical profiling of kamiling (wild toxic plant) using thin layer chromatography. International Journal of Secondary Metabolite, 5(3), 217-223.
  • de Sousa, D.P., Damasceno, R.O.S., Amorati, R., Elshabrawy, H.A., de Castro, R.D., Bezerra, D.P., & Lima, T.C. (2023). Essential oils: Chemistry and pharmacological activities. Biomolecules, 13(7), 1144.
  • Dela Cruz, P., & Ramos, A.G. (2006). Indigenous health knowledge systems in the Philippines: a literature survey. In 13th CONSAL Conference, Manila, Philippines (Vol. 1).
  • Devi, D.R., & Battu, G.R. (2019). Qualitative phytochemical screening and FTIR spectroscopic analysis of Grewia tilifolia (vahl) leaf extracts. International Journal of Current Pharmaceutical Research, 11(4), 100-107.
  • Dytkiewitz, E., & Morlock, G.E. (2008). Analytical strategy for rapid identification and quantification of lubricant additives in mineral oil by high-performance thin-layer chromatography with UV absorption and fluorescence detection combined with mass spectrometry and infrared spectroscopy. Journal of AOAC International, 91(5), 1237-1244.
  • Ertl, P., Altmann, E., & McKenna, J.M. (2020). The most common functional groups in bioactive molecules and how their popularity has evolved over time. Journal of Medicinal Chemistry, 63(15), 8408-8418.
  • Fazekas, A.J., Burgess, K.S., Kesanakurti, P.R., Graham, S.W., Newmaster, S.G., Husband, B. C., & Barrett, S.C. (2008). Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PloS One, 3(7), e2802.
  • George, J., Dhavan, P., Jadhav, B., Meshram, G., Patil, V. (2023). FT-IR coupled secondary metabolites profiling and biological activities of Neolamarckia cadamba leaves. Natural Resources for Human Health, 3(1), 94-100.
  • Gu, R., Wang, Y., Long, B., Kennelly, E., Wu, S., Liu, B., & Long, C. (2014). Prospecting for bioactive constituents from traditional medicinal plants through ethnobotanical approaches. Biological and Pharmaceutical Bulletin, 37(6), 903-915.
  • Guevara, B.Q. (2005). A guidebook to plant screening: Phytochemical and Biological. University of Santo Tomas Publishing House.
  • Hussein, R.A., & El-Anssary, A.A. (2019). Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. In I.A.M. Saeed (Ed.), Herbal Medicine (pp. 11–30). IntechOpen. https://doi.org/10.5772/intechopen.76139
  • Ishtiaq, S., Hanif, U., Shaheen, S., Bahadur, S., Liaqat, I., Awan, U. F., & Meo, M. (2020). Antioxidant potential and chemical characterization of bioactive compounds from a medicinal plant Colebrokea oppositifolia Sm. Anais da Academia Brasileira de Ciências, 92.
  • Kaur, S., & Mondal, P. (2014). Study of total phenolic and flavonoid content, antioxidant activity and antimicrobial properties of medicinal plants. Journal of Microbiology & Experimentation, 1(1), 00005.
  • Kolak, U., Osturk, M., Ozgokce, F., & Ulubelen, A.(2006). Norditerpene alkaloids from Delphenium linearilobolum and antioxidant activity. Phytochemistry, 67, 2170-2175.
  • Latayada, F.S., & Uy, M.M. (2016). Screening of the antioxidant properties of the leaf extracts of Philippine medicinal plants Ficus nota (Blanco) Merr., Metroxylon sagu Rottb., Mussaenda philippica A.Rich., Inocarpus fagifer, and Cinnamomum mercadoi Vidal. Bull Environ. Pharmacology and Life Sciences, 5(3), 18-24.
  • Lazarte, C. (2020). Benefits of mainstreaming herbal medicine in the philippine healthcare system. Acta Medica Philippina, The National Science Health Journal, 54(1), 3-4.
  • Mamari, H., & Hamad, H. (2021). Phenolic compounds - chemistry, synthesis, diversity, non-conventional industrial, pharmaceutical and therapeutic applications. (2022). In F.A. Badria (Ed.), Biochemistry. IntechOpen. https://doi.org/10.5772/intechopen.94825
  • Md Salim, R., Asik, J., & Sarjadi, M.S. (2021). Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Science and Technology, 55, 295-313.
  • Megawati, E.R., Bangun, H., Putra, I.B., Rusda, M., Syahrizal, D., Jusuf, N.K., & Amin, M.M. (2023). Phytochemical analysis by FTIR of zanthoxylum acanthopodium, DC fruit ethanol extract, N-hexan, ethyl acetate and water fraction. Medical Archives, 77(3), 183.
  • Mohanapriya, C., Uma, S., Nithyalakshmi, V., Rajmohan, K.S., Vijay, P., Pulla, R.H., & Gopinath, M. (2019). In vitro evaluation of secondary metabolites: characterization and antimicrobial activity of Manilkara zapota L. seed extract. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89, 729-738.
  • Mundhe, K.S., Kale, A.A., Gaikwad, S.A., Deshpande, N.R., & Kashalkar, R.V. (2011). Evaluation of phenol, flavonoid contents and antioxidant activity of Polyalthia longifolia. Journal of Chemical and Pharmaceutical Research, 3(1), 764-769.
  • Mwangi, W.C., Waudo, W., Shigwenya, M.E., & Gichuki, J. (2024). Phytochemical characterization, antimicrobial and antioxidant activities of Terminalia catappa methanol and aqueous extracts. BMC Complementary Medicine and Therapies, 24(1), 137.
  • Nortjie, E., Basitere, M., Moyo, D., & Nyamukamba, P.(2024). Assessing the efficiency of antimicrobial plant extracts from Artemisia afra and Eucalyptus globulus as coatings for textiles. Plants, 13(4), 514.
  • Olivar, J.E.C., Brillantes, R.Y., Rubite, R.R., & Alejandro, G.J.D. (2014). Evaluation of three candidate DNA barcoding loci in selected Ficus L. (Moraceae). International Journal of Scientific and Technology Research, 3(9), 43-48.
  • Oliveira, R.N., Mancini, M.C., Oliveira, F.C.S.D., Passos, T.M., Quilty, B., Thiré, R.M.D.S. M., & McGuinness, G.B. (2016). FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio de Janeiro), 21, 767-779.
  • Oluwapelumi, A.E., Iweala, E.J., Otike, J.O., Dike, E.D., Uche, M.E., Owanta, J.I., & Ugbogu, E.A. (2023). Ethnomedicinal uses, phytochemistry, pharmacological activities and toxicological effects of Mimosa pudica-A review. Pharmacological Research-Modern Chinese Medicine, 100241.
  • Pearson, W.R. (2013). An introduction to sequence similarity (“homology”) searching. Current Protocols in Bioinformatics, 42(1), 3-1.
  • Sahayaraj, P.A., Gowri, J., Dharmalingam, V., Shobana, R., & Prema, A.A. (2015). Phytochemical screening by FTIR spectroscopic analysis of leaf and stem extracts of Wedelia biflora. International Journal of Nano Corrosion Science and Engineering, 2(5), 322-334.
  • Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of Functional Foods, 18, 820-897.
  • Sharma, P., Jha, A.B., Dubey, R.S., & Pessarakli, M.(2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 1, Article ID 217037, 1-26. https://doi.org/10.1155/2012/217037
  • Tantengco, O.A.G., Condes, M.L.C., Estadilla, H.H.T., & Ragragio, E.M.(2018). Ethnobotanical survey of medicinal plants used by Ayta communities in Dinalupihan, Bataan, Philippines. Pharmacognosy Journal, 10(5), 859-870.
  • Teclegeorgish, Z. W., Aphane, Y. M., Mokgalaka, N. S., Steenkamp, P., & Tembu, V. J. (2021). Nutrients, secondary metabolites and anti-oxidant activity of Moringa oleifera leaves and Moringa-based commercial products. South African Journal of Botany, 142, 409-420.
  • Topala, L., & Ducu, T. (2017). ATR-FTIR spectra fingerprinting of medicinal herbs extracts prepared using microwave extraction. Arabian Journal of Medicinal and Aromatic Plants, 3(1), 1-9.
  • Uy, M.M., & Villazorda, M.G. (2015). The antioxidant properties of the Philippine medicinal plants Cassia sophera Linn., Derris elliptica Benth, Ficus minahassea Tesym. and De Vr., Leea aculeata Blume and Leucosyke capitellata Wedd. Advances in Agriculture and Botanics, 7(3), 150-156.
  • Veeresham, C. (2012). Natural products derived from plants as a source of drugs. Journal of Advanced Pharmaceutical Technology & Research, 3(4), 200-201.

Molecular identification and phytochemical profiling of selected medicinal plants in Bongabon, Nueva Ecija, Philippines

Year 2025, Volume: 12 Issue: 1, 166 - 180

Abstract

The study focuses on the five medicinal plants used by the local people residing in Calaanan, Bongabon Nueva Ecija Philippines. The study aimed to investigate using DNA-based identification, phytochemical screening, and antioxidant analysis of the plant’s ethanolic extract. The selected five plants were initially identified by a taxonomist and molecularly identified using the rbcL gene marker. These plants were identified as Scoparia dulcis, Vachellia fernasiana, Centella asiatica, Sapindus saponaria, and Ocimum tenuiflorum. The extracts of the plants underwent Fourier Transform Infrared spectroscopy (FTIR) analysis to determine the functional group present in each plant and further analysis led to Thin Layer Chromatography (TLC) to unveil the presence and absence of the plant’s secondary metabolites. The phytochemical profiles revealed the presence of essential oils, phenols, fatty acids, anthraquinones, anthrones, coumarins, flavonoids, and tannins. The results from the phytochemical analysis demonstrated the chemical diversity of the plant, prompting further investigations into its various bioactive properties. Further, the plants were subjected to 2,2'diphenyl-1-1picrylhydrazyl (DPPH) radical scavenging assay using a 1000ppm concentration of crude extracts, results revealed a range from 22.71% to 79.01% radical scavenging activity compared to the control which is at 83.56%. Collectively, this study reveals the accurate identity, phytochemical profile, and antioxidant activity of the medicinal plants.

References

  • Abdel-Latif, A., & Osman, G. (2017). Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods, 13, 1-9.
  • Agatonovic-Kustrin, S., Ristivojevic, P., Gegechkori, V., Litvinova, T.M., & Morton, D.W. (2020). Essential oil quality and purity evaluation via ft-ir spectroscopy and pattern recognition techniques. Applied Sciences, 10(20), 7294.
  • Balangcod, T.D., Vallejo, V.L., Patacsil, M., Apostol, O., Laruan, L.M.V.A., Manuel, J., & Gutierrez, R.M. (2012). Phytochemical screening and antibacterial activity of selected medicinal plants of Bayabas, Sablan, Benguet Province, Cordillera administrative region, Luzon, Philippines. Indian Journal of Traditional Knowledge, 11(4), 580-585.
  • Balangcod, T., & Balangcod, K.D. (2015). Ethnomedicinal plants in Bayabas, Sablan, Benguet Province, Luzon, Philippines. Electronic Journal of Biology, 11(3), 63-73.
  • Boy, H.I.A., Rutilla, A.J.H., Santos, K.A., Ty, A.M.T., Alicia, I.Y., Mahboob, T. & Nissapatorn, V. (2018). Recommended medicinal plants as source of natural products: a review. Digital Chinese Medicine, 1(2), 131-142.
  • CBOL Plant Working Group 1, Hollingsworth, P.M., Forrest, L.L., Spouge, J.L., Hajibabaei, M., Ratnasingham, S. & Little, D.P. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106(31), 12794-12797.
  • China Plant, B.O.L.G., Li, D.Z., Gao, L.M., Li, H.T., Wang, H., Ge, X.J., & Duan, G.W. (2011). Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19641-19646.
  • Clemen-Pascual, L.M., Macahig, R.A.S., and Rojas, N.R.L. (2022). Comparative toxicity, phytochemistry, and use of 53 Philippine medicinal plants. Toxicology Reports, 9, 22-35.
  • da Silva, J.F.M., de Souza, M.C., Matta, S.R., de Andrade, M.R., & Vidal, F.V.N. (2006). Correlation analysis between phenolic levels of Brazilian propolis extracts and their antimicrobial and antioxidant activities. Food Chemistry, 99(3), 431-435.
  • De Leon, D.T.C., Aquino, J.D.C., Valentino, M.J.G., & Undan, J.R. (2018). Molecular identification and phytochemical profiling of kamiling (wild toxic plant) using thin layer chromatography. International Journal of Secondary Metabolite, 5(3), 217-223.
  • de Sousa, D.P., Damasceno, R.O.S., Amorati, R., Elshabrawy, H.A., de Castro, R.D., Bezerra, D.P., & Lima, T.C. (2023). Essential oils: Chemistry and pharmacological activities. Biomolecules, 13(7), 1144.
  • Dela Cruz, P., & Ramos, A.G. (2006). Indigenous health knowledge systems in the Philippines: a literature survey. In 13th CONSAL Conference, Manila, Philippines (Vol. 1).
  • Devi, D.R., & Battu, G.R. (2019). Qualitative phytochemical screening and FTIR spectroscopic analysis of Grewia tilifolia (vahl) leaf extracts. International Journal of Current Pharmaceutical Research, 11(4), 100-107.
  • Dytkiewitz, E., & Morlock, G.E. (2008). Analytical strategy for rapid identification and quantification of lubricant additives in mineral oil by high-performance thin-layer chromatography with UV absorption and fluorescence detection combined with mass spectrometry and infrared spectroscopy. Journal of AOAC International, 91(5), 1237-1244.
  • Ertl, P., Altmann, E., & McKenna, J.M. (2020). The most common functional groups in bioactive molecules and how their popularity has evolved over time. Journal of Medicinal Chemistry, 63(15), 8408-8418.
  • Fazekas, A.J., Burgess, K.S., Kesanakurti, P.R., Graham, S.W., Newmaster, S.G., Husband, B. C., & Barrett, S.C. (2008). Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PloS One, 3(7), e2802.
  • George, J., Dhavan, P., Jadhav, B., Meshram, G., Patil, V. (2023). FT-IR coupled secondary metabolites profiling and biological activities of Neolamarckia cadamba leaves. Natural Resources for Human Health, 3(1), 94-100.
  • Gu, R., Wang, Y., Long, B., Kennelly, E., Wu, S., Liu, B., & Long, C. (2014). Prospecting for bioactive constituents from traditional medicinal plants through ethnobotanical approaches. Biological and Pharmaceutical Bulletin, 37(6), 903-915.
  • Guevara, B.Q. (2005). A guidebook to plant screening: Phytochemical and Biological. University of Santo Tomas Publishing House.
  • Hussein, R.A., & El-Anssary, A.A. (2019). Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. In I.A.M. Saeed (Ed.), Herbal Medicine (pp. 11–30). IntechOpen. https://doi.org/10.5772/intechopen.76139
  • Ishtiaq, S., Hanif, U., Shaheen, S., Bahadur, S., Liaqat, I., Awan, U. F., & Meo, M. (2020). Antioxidant potential and chemical characterization of bioactive compounds from a medicinal plant Colebrokea oppositifolia Sm. Anais da Academia Brasileira de Ciências, 92.
  • Kaur, S., & Mondal, P. (2014). Study of total phenolic and flavonoid content, antioxidant activity and antimicrobial properties of medicinal plants. Journal of Microbiology & Experimentation, 1(1), 00005.
  • Kolak, U., Osturk, M., Ozgokce, F., & Ulubelen, A.(2006). Norditerpene alkaloids from Delphenium linearilobolum and antioxidant activity. Phytochemistry, 67, 2170-2175.
  • Latayada, F.S., & Uy, M.M. (2016). Screening of the antioxidant properties of the leaf extracts of Philippine medicinal plants Ficus nota (Blanco) Merr., Metroxylon sagu Rottb., Mussaenda philippica A.Rich., Inocarpus fagifer, and Cinnamomum mercadoi Vidal. Bull Environ. Pharmacology and Life Sciences, 5(3), 18-24.
  • Lazarte, C. (2020). Benefits of mainstreaming herbal medicine in the philippine healthcare system. Acta Medica Philippina, The National Science Health Journal, 54(1), 3-4.
  • Mamari, H., & Hamad, H. (2021). Phenolic compounds - chemistry, synthesis, diversity, non-conventional industrial, pharmaceutical and therapeutic applications. (2022). In F.A. Badria (Ed.), Biochemistry. IntechOpen. https://doi.org/10.5772/intechopen.94825
  • Md Salim, R., Asik, J., & Sarjadi, M.S. (2021). Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Science and Technology, 55, 295-313.
  • Megawati, E.R., Bangun, H., Putra, I.B., Rusda, M., Syahrizal, D., Jusuf, N.K., & Amin, M.M. (2023). Phytochemical analysis by FTIR of zanthoxylum acanthopodium, DC fruit ethanol extract, N-hexan, ethyl acetate and water fraction. Medical Archives, 77(3), 183.
  • Mohanapriya, C., Uma, S., Nithyalakshmi, V., Rajmohan, K.S., Vijay, P., Pulla, R.H., & Gopinath, M. (2019). In vitro evaluation of secondary metabolites: characterization and antimicrobial activity of Manilkara zapota L. seed extract. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89, 729-738.
  • Mundhe, K.S., Kale, A.A., Gaikwad, S.A., Deshpande, N.R., & Kashalkar, R.V. (2011). Evaluation of phenol, flavonoid contents and antioxidant activity of Polyalthia longifolia. Journal of Chemical and Pharmaceutical Research, 3(1), 764-769.
  • Mwangi, W.C., Waudo, W., Shigwenya, M.E., & Gichuki, J. (2024). Phytochemical characterization, antimicrobial and antioxidant activities of Terminalia catappa methanol and aqueous extracts. BMC Complementary Medicine and Therapies, 24(1), 137.
  • Nortjie, E., Basitere, M., Moyo, D., & Nyamukamba, P.(2024). Assessing the efficiency of antimicrobial plant extracts from Artemisia afra and Eucalyptus globulus as coatings for textiles. Plants, 13(4), 514.
  • Olivar, J.E.C., Brillantes, R.Y., Rubite, R.R., & Alejandro, G.J.D. (2014). Evaluation of three candidate DNA barcoding loci in selected Ficus L. (Moraceae). International Journal of Scientific and Technology Research, 3(9), 43-48.
  • Oliveira, R.N., Mancini, M.C., Oliveira, F.C.S.D., Passos, T.M., Quilty, B., Thiré, R.M.D.S. M., & McGuinness, G.B. (2016). FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio de Janeiro), 21, 767-779.
  • Oluwapelumi, A.E., Iweala, E.J., Otike, J.O., Dike, E.D., Uche, M.E., Owanta, J.I., & Ugbogu, E.A. (2023). Ethnomedicinal uses, phytochemistry, pharmacological activities and toxicological effects of Mimosa pudica-A review. Pharmacological Research-Modern Chinese Medicine, 100241.
  • Pearson, W.R. (2013). An introduction to sequence similarity (“homology”) searching. Current Protocols in Bioinformatics, 42(1), 3-1.
  • Sahayaraj, P.A., Gowri, J., Dharmalingam, V., Shobana, R., & Prema, A.A. (2015). Phytochemical screening by FTIR spectroscopic analysis of leaf and stem extracts of Wedelia biflora. International Journal of Nano Corrosion Science and Engineering, 2(5), 322-334.
  • Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of Functional Foods, 18, 820-897.
  • Sharma, P., Jha, A.B., Dubey, R.S., & Pessarakli, M.(2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 1, Article ID 217037, 1-26. https://doi.org/10.1155/2012/217037
  • Tantengco, O.A.G., Condes, M.L.C., Estadilla, H.H.T., & Ragragio, E.M.(2018). Ethnobotanical survey of medicinal plants used by Ayta communities in Dinalupihan, Bataan, Philippines. Pharmacognosy Journal, 10(5), 859-870.
  • Teclegeorgish, Z. W., Aphane, Y. M., Mokgalaka, N. S., Steenkamp, P., & Tembu, V. J. (2021). Nutrients, secondary metabolites and anti-oxidant activity of Moringa oleifera leaves and Moringa-based commercial products. South African Journal of Botany, 142, 409-420.
  • Topala, L., & Ducu, T. (2017). ATR-FTIR spectra fingerprinting of medicinal herbs extracts prepared using microwave extraction. Arabian Journal of Medicinal and Aromatic Plants, 3(1), 1-9.
  • Uy, M.M., & Villazorda, M.G. (2015). The antioxidant properties of the Philippine medicinal plants Cassia sophera Linn., Derris elliptica Benth, Ficus minahassea Tesym. and De Vr., Leea aculeata Blume and Leucosyke capitellata Wedd. Advances in Agriculture and Botanics, 7(3), 150-156.
  • Veeresham, C. (2012). Natural products derived from plants as a source of drugs. Journal of Advanced Pharmaceutical Technology & Research, 3(4), 200-201.
There are 44 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry, Plant Biotechnology
Journal Section Articles
Authors

Dana Theresa De Leon This is me 0000-0001-6109-1530

Arwil Nathaniel Alfonso This is me 0009-0006-9741-8551

Angeles De Leon 0000-0002-4954-8427

Jerwin Undan 0000-0002-3657-1732

Early Pub Date January 19, 2025
Publication Date
Submission Date April 19, 2024
Acceptance Date September 19, 2024
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA De Leon, D. T., Alfonso, A. N., De Leon, A., Undan, J. (2025). Molecular identification and phytochemical profiling of selected medicinal plants in Bongabon, Nueva Ecija, Philippines. International Journal of Secondary Metabolite, 12(1), 166-180.
International Journal of Secondary Metabolite

e-ISSN: 2148-6905