Research Article
BibTex RIS Cite

Salvia cadmica as a potential agent in biofilm-related infection prevention

Year 2025, Volume: 12 Issue: 4, 743 - 754

Abstract

This study investigates the antibiofilm activity of Salvia cadmica (S. cadmica) aqueous-ethanol extract against Staphylococcus aureus (S. aureus) ATCC 25923, a well-known biofilm-forming bacterium. The antibiofilm efficacy of the extract on both planktonic and biofilm forms of S. aureus ATCC 25923 was assessed using the MTT reduction assay, while morphological alterations were examined by scanning electron microscopy. A dose-dependent increase in biofilm inhibition was observed, with biofilm inhibition and eradication rates reaching 34.07±0.44% and 35.71±0.4%, respectively, at 2× MIC concentration of plant extract. Microbiological analyses confirmed the antibiofilm potential of S. cadmica extract against S. aureus ATCC 25923. These findings highlight the promising antibiofilm properties of Salvia cadmica extract, suggesting its potential application in the treatment of infections associated with biofilm-forming S. aureus ATCC 25923. Future research should aim to isolate and characterize individual bioactive compounds from S. cadmica to better understand their mechanisms of action and potential synergistic effects.

Ethical Statement

No ethical objection to conducting the research (19/04/2024 - 2024/2 Afyonkarahisar Health Sciences University Non-Intervention Scientific Research Ethics Committee).

Supporting Institution

Afyonkarahisar Health Sciences University

Project Number

24.GENEL.003

Thanks

This study was supported by Afyonkarahisar Health Sciences University Scientific Research Projects Coordination, Project number 24. GENEL. 003.

References

  • Bahadori, M.B., Salehi, P., & Sonboli, A. (2017). Comparative study of the essential oil composition of Salvia urmiensis and its enzyme inhibitory activities linked to diabetes mellitus and Alzheimer’s disease. International Journal of Food Properties, 20, 2974 - 2981. https://doi.org/10.1080/10942912.2016.1263862
  • Bahadori, M.B., Valizadeh, H., Asghari, B., Dinparast, L., Moridi Farimani, M., & Bahadori, S. (2015). Chemical composition and antimicrobial, cytotoxicity, antioxidant and enzyme inhibitory activities of Salvia spinosa L. Journal of Functional Foods, 18, 727-736. https://doi.org/10.1016/j.jff.2015.09.011
  • Bahadori, S., Giglou, M.T., Esmaielpour, B., Dehdar, B., Estaji, A., Hano, C., Gohari, G., Vergine, M., & Vita, F. (2023). Antioxidant compounds of potato breeding genotypes and commercial cultivars with yellow, light yellow, and white flesh in Iran. Plants (Basel), 12(8), 1707. https://doi.org/10.3390/plants12081707
  • Baser, K.H.C., Demirci, B., Kurkcuoglu, M., Satil, F., & Tümen, G. (2009). Comparative morphological and phytochemical characterization of Salvia cadmica Boiss. and S. smyrnaea Boiss. Pakistan Journal of Botany, 41, 1545-1555.
  • Bazargani, M.M., & Rohloff, J. (2016). Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control, 61, 156-164. https://doi.org/10.1016/j.foodcont.2015.09.036
  • Behçet, L., & Avlamaz, D. (2009). A new record for Turkey: Salvia aristata aucher ex benth. (Lamiaceae). [Article]. Turkish Journal of Botany, 33(1), 61-63. https://doi.org/10.3906/bot-0808-14
  • Boles, B.R., & Horswill, A.R. (2011). Staphylococcal biofilm disassembly. Trends Microbiol, 19(9), 449-455. https://doi.org/10.1016/j.tim.2011.06.004
  • Ciftci, A., & Aksoy, A. (2015). Antibiyotiklere karşı oluşan direnç mekanizmaları [Acquired resistance mechanisms against antibiotics]. Turkiye Klinikleri J Vet Sci Pharmacol Toxicol-Special Topics, 1, 1-10.
  • CLSI. (2009). Clinical and laboratory standards institute. methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 8th ed. Wayne PA: CLSI. Approved standard M7-A8.
  • Del Pozo, J.L. (2018). Biofilm-related disease. Expert Rev Anti Infect Ther, 16(1), 51-65. https://doi.org/10.1080/14787210.2018.1417036
  • Doğan, M., Akıcı, N., Diken, M., Doğan, S., Kardas, B., & Dirmenci, T. (2021). Biological activities of some Salvia species. Zeitschrift für Naturforschung C, 77. https://doi.org/10.1515/znc-2021-0136
  • Donlan, R.M., & Costerton, J.W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev, 15(2), 167 193. https://doi.org/10.1128/CMR.15.2.167-193.2002
  • Ebbensgaard, A., Kouskoumvekaki, I., Vejborg, R., & Klemm, P. (2010). Chemoinformatics-assisted development of new anti-biofilm compounds. Applied microbiology and biotechnology, 87, 309-317. https://doi.org/10.1007/s00253-010-2471-0
  • Erdoğmuş, S.F., Bilecen, C., Erdal Altıntaş, Ö., Ulukütük, S., & Kargıoğlu, M. (2022). The antibiofilm effects of some Cistus spp. against pathogenic microorganisms. International Journal of Plant Based Pharmaceuticals, 2(2), 252-260. https://doi.org/10.29228/ijpbp.7
  • Gebreyohannes, G., Nyerere, A., Bii, C., & Sbhatu, D.B. (2019). Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon, 5(8), e02192. https://doi.org/10.1016/j.heliyon.2019.e02192
  • Gonciarz, W., Piątczak, E., Płoszaj, P., Gościniak, G., & Chmiela, M. (2022). Salvia cadmica extracts rich in polyphenols neutralize a deleterious effects of oxidative stress driven by Helicobacter pylori lipopolysaccharide in cell cultures of gastric epithelial cells or fibroblasts. Industrial Crops and Products, 178, 114633. https://doi.org/10.1016/j.indcrop.2022.114633
  • Hall-Stoodley, L., Costerton, J.W., & Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol, 2(2), 95 108. https://doi.org/10.1038/nrmicro821
  • Herbert-Doctor, L.A., Uc-Cachón, A.H., Dzul-Beh, A., González-Sánchez, A.A., Araujo-León, J.A., Molina-Salinas, G.M., Pilotzi-Xahuentitla, H., Martín-Quintal, Z.D.R., & Ortiz-Andrade, R. (2025). Chemometric and dereplication analyses of the anti-staphylococcus aureus strains activity of Salvia hispanica L. seeds. J Med Food, 28(6), 615-624. https://doi.org/10.1089/jmf.2024.0241
  • Kiedrowski, M.R., & Horswill, A.R. (2011). New approaches for treating staphylococcal biofilm infections. Ann N Y Acad Sci, 1241, 104-121. https://doi.org/10.1111/j.1749-6632.2011.06281.x
  • Kocak, M.S., Sarikurkcu, C., Cengiz, M., Kocak, S., Uren, M.C., & Tepe, B. (2016). Salvia cadmica: Phenolic composition and biological activity. Industrial Crops and Products, 85, 204-212. https://doi.org/10.1016/j.indcrop.2016.03.015
  • Kuźma, Ł., Rózalski, M., Walencka, E., Rózalska, B., & Wysokińska, H. (2007). Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine, 14(1), 31-35. https://doi.org/10.1016/j.phymed.2005.10.008
  • Latiff, N.A., Ong, P.Y., Abd Rashid, S.N.A., Abdullah, L.C., Mohd Amin, N.A., & Fauzi, N.A.M. (2021). Enhancing recovery of bioactive compounds from Cosmos caudatus leaves via ultrasonic extraction. Sci Rep, 11(1), 17297. https://doi.org/10.1038/s41598-021-96623-x
  • Li, X., Wang, X., Chen, D., & Chen, S. (2011). Antioxidant activity and mechanism of protocatechuic acid in vitro. Functional Foods in Health and Disease, 1(7), 232-244. https://doi.org/10.31989/ffhd.v1i7.127
  • Lin, M.H., Chang, F.R., Hua, M.Y., Wu, Y.C., & Liu, S.T. (2011). Inhibitory effects of 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose on biofilm formation by Staphylococcus aureus. Antimicrob Agents Chemother, 55(3), 1021 1027. https://doi.org/10.1128/AAC.00843-10
  • Ma, J., Zheng, Y., Tang, W., Yan, W., Nie, H., Fang, J., & Liu, G. (2020). Dietary polyphenols in lipid metabolism: A role of gut microbiome. Anim Nutr, 6(4), 404 409. https://doi.org/10.1016/j.aninu.2020.08.002
  • Naveed, M., Hejazi, V., Abbas, M., Kamboh, A.A., Khan, G.J., Shumzaid, M., Ahmad, F., Babazadeh, D., FangFang, X., Modarresi-Ghazani, F., WenHua, L., & XiaoHui, Z. (2018). Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed Pharmacother, 97, 67-74. https://doi.org/10.1016/j.biopha.2017.10.064
  • Ożarowski, M., Piasecka, A., Gryszczyńska, A., Sawikowska, A., Pietrowiak, A., Opala, B., Mikołajczak, P.Ł., Kujawski, R., Kachlicki, P., Buchwald, W., & Seremak-Mrozikiewicz, A. (2017). Determination of phenolic compounds and diterpenes in roots of Salvia miltiorrhiza and Salvia przewalskii by two LC–MS tools: Multi-stage and high resolution tandem mass spectrometry with assessment of antioxidant capacity. Phytochemistry Letters, 20, 331-338. https://doi.org/10.1016/j.phytol.2016.12.001
  • Payne, D.E., Martin, N.R., Parzych, K.R., Rickard, A.H., Underwood, A., & Boles, B.R. (2013). Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner. Infect Immun, 81(2), 496-504. https://doi.org/10.1128/IAI.00877-12
  • Piątczak, E., Owczarek, A., Lisiecki, P., Gonciarz, W., Kozłowska, W., Szemraj, M., Chmiela, M., Kiss, A.K., Olszewska, M.A., & Grzegorczyk-Karolak, I. (2021). Identification and quantification of phenolic compounds in Salvia cadmica Boiss. and their biological potential. Industrial Crops and Products, 160, 113113.
  • Quave, C.L., Estévez-Carmona, M., Compadre, C.M., Hobby, G., Hendrickson, H., Beenken, K.E., & Smeltzer, M.S. (2012). Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PLoS One, 7(1), e28737. https://doi.org/10.1371/journal.pone.0028737
  • Sandasi, M., Leonard, C.M., & Viljoen, A.M. (2010). The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett Appl Microbiol, 50(1), 30-35. https://doi.org/10.1111/j.1472-765X.2009.02747.x
  • Savage, V.J., Chopra, I., & O'Neill, A.J. (2013). Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob Agents Chemother, 57(4), 1968-1970. https://doi.org/10.1128/aac.02008-12
  • Stenz, L., François, P., Fischer, A., Huyghe, A., Tangomo, M., Hernandez, D., Cassat, J., Linder, P., & Schrenzel, J. (2008). Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS Microbiol Lett, 287(2), 149-155. https://doi.org/10.1111/j.1574-6968.2008.01316.x
  • Stewart, P.S., & Costerton, J.W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet, 358(9276), 135-138. https://doi.org/10.1016/s0140-6736(01)05321-1
  • Swamy, M.K., Sinniah, U.R., & Ghasemzadeh, A. (2018). Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics. Appl Microbiol Biotechnol, 102(18), 7775-7793. https://doi.org/10.1007/s00253-018-9223-y
  • Szczuka, E., & Kaznowski, A. (2014). Antimicrobial activity of tigecycline alone or in combination with rifampin against Staphylococcus epidermidis in biofilm. Folia Microbiol (Praha), 59(4), 283-288. https://doi.org/10.1007/s12223-013-0296-9
  • Teanpaisan, R., Senapong, S., & Puripattanavong, J. (2014a). In vitro Antimicrobial and Antibiofilm Activity of Artocarpus Lakoocha (Moraceae) Extract against Some Oral Pathogens. Tropical Journal of Pharmaceutical Research, 13, 1149. https://doi.org/10.4314/tjpr.v13i7.20
  • Teanpaisan, R., Senapong, S., & Puripattanavong, J. (2014b). In vitro antimicrobial and antibiofilm activity of Artocarpus lakoocha (Moraceae) extract against some oral pathogens. Tropical Journal of Pharmaceutical Research, 13(7), 1149-1155.
  • Yılmaz Öztürk, B., Yenice, B., & Dag, I. (2022). In vitro effect of farnesol on planktonic cells and dual biofilm formed by Candida albicans and Escherichia coli. Biofouling, 38, 1-12. https://doi.org/10.1080/08927014.2022.2066530
  • Zhao, J., Davis, L.C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv, 23(4), 283 333. https://doi.org/10.1016/j.biotechadv.2005.01.003
There are 40 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Microbiology
Journal Section Articles
Authors

Nilay İşitez 0000-0002-1928-7158

Sevim Feyza Erdoğmuş 0000-0002-4319-7558

Cengiz Sarıkürkcü 0000-0001-5094-2520

Project Number 24.GENEL.003
Early Pub Date September 1, 2025
Publication Date October 12, 2025
Submission Date March 13, 2025
Acceptance Date July 17, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

APA İşitez, N., Erdoğmuş, S. F., & Sarıkürkcü, C. (2025). Salvia cadmica as a potential agent in biofilm-related infection prevention. International Journal of Secondary Metabolite, 12(4), 743-754.
International Journal of Secondary Metabolite

e-ISSN: 2148-6905