We derive strong laws of large numbers for combinatorial sums iXniπn(i), where Xnij are n × n matrices of random variables with finite fourth moments and (πn(1), . . . , πn(n)) are uniformly distributed random permutations of 1, . . . , n independent with X’s. We do not assume the independence of X’s, but this case is included as well. Examples are discussed.
von Bahr B. (1976). Remainder term estimate in a combinatorial central limit theorem, Z. Wahrsch. verw. Geb., 35, 131-139.
Ho S.T., Chen L.H.Y. (1978). An Lp bounds for the remainder in a combinatorial central limit theorem, Ann. Probab., 6, 231-249.
Bolthausen E. (1984). An estimate of the remainder in a combinatorial central limit theorem, Z. Wahrsch. verw. Geb., 66, 379-386.
Goldstein L. (2005). Berry-Esseen bounds for combinatorial central limit theorems and pattern occurrences, using zero and size biasing, J. Appl. Probab., 42, 661-683.
Neammanee K., Suntornchost J. (2005). A uniform bound on a combinatorial central limit theorem, Stoch. Anal. Appl., 3, 559-578.
Neammanee K., Rattanawong P. (2009). A constant on a uniform bound of a combinatorial central limit theorem, J. Math. Research, 1, 91-103.
Chen L.H.Y., Fang X. (2015). 0n the error bound in a combinatorial central limit theorem, Bernoulli, 21 (1), 335-359.
Frolov A.N. (2014). Esseen type bounds of the remainder in a combinatorial CLT, J. Statist. Planning and Inference, 149, 90-97.
Frolov A.N. (2015a) Bounds of the remainder in a combinatorial central limit theorem, Statist. Probab. Letters, 105, 37-46.
Frolov A.N. (2015b). On the probabilities of moderate deviations for combinatorial sums. Vestnik St. Petersburg University. Mathematics, 48(1), 23-28. Allerton Press, Inc., 2015.
Frolov A.N. (2017). On Esseen type inequalities for combinatorial random sums. Communications in Statistics -Theory and Methods, 46(12), 5932-5940.
Year 2018,
Volume: 11 Issue: 3, 46 - 52, 31.12.2018
von Bahr B. (1976). Remainder term estimate in a combinatorial central limit theorem, Z. Wahrsch. verw. Geb., 35, 131-139.
Ho S.T., Chen L.H.Y. (1978). An Lp bounds for the remainder in a combinatorial central limit theorem, Ann. Probab., 6, 231-249.
Bolthausen E. (1984). An estimate of the remainder in a combinatorial central limit theorem, Z. Wahrsch. verw. Geb., 66, 379-386.
Goldstein L. (2005). Berry-Esseen bounds for combinatorial central limit theorems and pattern occurrences, using zero and size biasing, J. Appl. Probab., 42, 661-683.
Neammanee K., Suntornchost J. (2005). A uniform bound on a combinatorial central limit theorem, Stoch. Anal. Appl., 3, 559-578.
Neammanee K., Rattanawong P. (2009). A constant on a uniform bound of a combinatorial central limit theorem, J. Math. Research, 1, 91-103.
Chen L.H.Y., Fang X. (2015). 0n the error bound in a combinatorial central limit theorem, Bernoulli, 21 (1), 335-359.
Frolov A.N. (2014). Esseen type bounds of the remainder in a combinatorial CLT, J. Statist. Planning and Inference, 149, 90-97.
Frolov A.N. (2015a) Bounds of the remainder in a combinatorial central limit theorem, Statist. Probab. Letters, 105, 37-46.
Frolov A.N. (2015b). On the probabilities of moderate deviations for combinatorial sums. Vestnik St. Petersburg University. Mathematics, 48(1), 23-28. Allerton Press, Inc., 2015.
Frolov A.N. (2017). On Esseen type inequalities for combinatorial random sums. Communications in Statistics -Theory and Methods, 46(12), 5932-5940.
Frolov, A. N. (2018). ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS. Istatistik Journal of The Turkish Statistical Association, 11(3), 46-52.
AMA
Frolov AN. ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS. IJTSA. December 2018;11(3):46-52.
Chicago
Frolov, Andrei N. “ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS”. Istatistik Journal of The Turkish Statistical Association 11, no. 3 (December 2018): 46-52.
EndNote
Frolov AN (December 1, 2018) ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS. Istatistik Journal of The Turkish Statistical Association 11 3 46–52.
IEEE
A. N. Frolov, “ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS”, IJTSA, vol. 11, no. 3, pp. 46–52, 2018.
ISNAD
Frolov, Andrei N. “ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS”. Istatistik Journal of The Turkish Statistical Association 11/3 (December 2018), 46-52.
JAMA
Frolov AN. ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS. IJTSA. 2018;11:46–52.
MLA
Frolov, Andrei N. “ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS”. Istatistik Journal of The Turkish Statistical Association, vol. 11, no. 3, 2018, pp. 46-52.
Vancouver
Frolov AN. ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS. IJTSA. 2018;11(3):46-52.