Research Article
BibTex RIS Cite

ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS

Year 2018, Volume: 11 Issue: 3, 46 - 52, 31.12.2018

Abstract

We derive strong laws of large numbers for combinatorial sums iXniπn(i), where Xnij are n × n matrices of random variables with finite fourth moments and (πn(1), . . . , πn(n)) are uniformly distributed random permutations of 1, . . . , n independent with X’s. We do not assume the independence of X’s, but this case is included as well. Examples are discussed.

References

  • von Bahr B. (1976). Remainder term estimate in a combinatorial central limit theorem, Z. Wahrsch. verw. Geb., 35, 131-139.
  • Ho S.T., Chen L.H.Y. (1978). An Lp bounds for the remainder in a combinatorial central limit theorem, Ann. Probab., 6, 231-249.
  • Bolthausen E. (1984). An estimate of the remainder in a combinatorial central limit theorem, Z. Wahrsch. verw. Geb., 66, 379-386.
  • Goldstein L. (2005). Berry-Esseen bounds for combinatorial central limit theorems and pattern occurrences, using zero and size biasing, J. Appl. Probab., 42, 661-683.
  • Neammanee K., Suntornchost J. (2005). A uniform bound on a combinatorial central limit theorem, Stoch. Anal. Appl., 3, 559-578.
  • Neammanee K., Rattanawong P. (2009). A constant on a uniform bound of a combinatorial central limit theorem, J. Math. Research, 1, 91-103.
  • Chen L.H.Y., Fang X. (2015). 0n the error bound in a combinatorial central limit theorem, Bernoulli, 21 (1), 335-359.
  • Frolov A.N. (2014). Esseen type bounds of the remainder in a combinatorial CLT, J. Statist. Planning and Inference, 149, 90-97.
  • Frolov A.N. (2015a) Bounds of the remainder in a combinatorial central limit theorem, Statist. Probab. Letters, 105, 37-46.
  • Frolov A.N. (2015b). On the probabilities of moderate deviations for combinatorial sums. Vestnik St. Petersburg University. Mathematics, 48(1), 23-28. Allerton Press, Inc., 2015.
  • Frolov A.N. (2017). On Esseen type inequalities for combinatorial random sums. Communications in Statistics -Theory and Methods, 46(12), 5932-5940.
Year 2018, Volume: 11 Issue: 3, 46 - 52, 31.12.2018

Abstract

References

  • von Bahr B. (1976). Remainder term estimate in a combinatorial central limit theorem, Z. Wahrsch. verw. Geb., 35, 131-139.
  • Ho S.T., Chen L.H.Y. (1978). An Lp bounds for the remainder in a combinatorial central limit theorem, Ann. Probab., 6, 231-249.
  • Bolthausen E. (1984). An estimate of the remainder in a combinatorial central limit theorem, Z. Wahrsch. verw. Geb., 66, 379-386.
  • Goldstein L. (2005). Berry-Esseen bounds for combinatorial central limit theorems and pattern occurrences, using zero and size biasing, J. Appl. Probab., 42, 661-683.
  • Neammanee K., Suntornchost J. (2005). A uniform bound on a combinatorial central limit theorem, Stoch. Anal. Appl., 3, 559-578.
  • Neammanee K., Rattanawong P. (2009). A constant on a uniform bound of a combinatorial central limit theorem, J. Math. Research, 1, 91-103.
  • Chen L.H.Y., Fang X. (2015). 0n the error bound in a combinatorial central limit theorem, Bernoulli, 21 (1), 335-359.
  • Frolov A.N. (2014). Esseen type bounds of the remainder in a combinatorial CLT, J. Statist. Planning and Inference, 149, 90-97.
  • Frolov A.N. (2015a) Bounds of the remainder in a combinatorial central limit theorem, Statist. Probab. Letters, 105, 37-46.
  • Frolov A.N. (2015b). On the probabilities of moderate deviations for combinatorial sums. Vestnik St. Petersburg University. Mathematics, 48(1), 23-28. Allerton Press, Inc., 2015.
  • Frolov A.N. (2017). On Esseen type inequalities for combinatorial random sums. Communications in Statistics -Theory and Methods, 46(12), 5932-5940.
There are 11 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Andrei N. Frolov This is me

Publication Date December 31, 2018
Acceptance Date November 15, 2018
Published in Issue Year 2018 Volume: 11 Issue: 3

Cite

APA Frolov, A. N. (2018). ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS. Istatistik Journal of The Turkish Statistical Association, 11(3), 46-52.
AMA Frolov AN. ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS. IJTSA. December 2018;11(3):46-52.
Chicago Frolov, Andrei N. “ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS”. Istatistik Journal of The Turkish Statistical Association 11, no. 3 (December 2018): 46-52.
EndNote Frolov AN (December 1, 2018) ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS. Istatistik Journal of The Turkish Statistical Association 11 3 46–52.
IEEE A. N. Frolov, “ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS”, IJTSA, vol. 11, no. 3, pp. 46–52, 2018.
ISNAD Frolov, Andrei N. “ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS”. Istatistik Journal of The Turkish Statistical Association 11/3 (December 2018), 46-52.
JAMA Frolov AN. ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS. IJTSA. 2018;11:46–52.
MLA Frolov, Andrei N. “ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS”. Istatistik Journal of The Turkish Statistical Association, vol. 11, no. 3, 2018, pp. 46-52.
Vancouver Frolov AN. ON A COMBINATORIAL STRONG LAW OF LARGE NUMBERS. IJTSA. 2018;11(3):46-52.