Review Article
BibTex RIS Cite

Güney Kore'de Deepfake'e Yönelik İlgi: 2017'den 2024'e Google Trendlerinin Zamansal Analizi

Year 2025, Issue: 69, 220 - 238, 18.03.2025
https://doi.org/10.47998/ikad.1570974

Abstract

Hiper-gerçekçi manipüle edilmiş videolar, görüntüler, metinler ve sesler üretmek için yapay zekadan yararlanan deepfake teknolojisi hem toplum hem de akademik camia için ilgi çekici bir konu haline gelmiştir. Özellikle rıza dışı pornografi, dolandırıcılık ve siyasi yanlış bilgilendirmede deepfake'lerin yaygınlaşması, dünya çapında etik, ahlaki, hukuksal ve güvenlik bazında tartışmalara yol açmıştır. Mevcut araştırmalar ağırlıklı olarak deepfake tespiti, hukuki çerçeve ve deepfake içeriklerin demokratik süreçler üzerindeki potansiyel etkilerine odaklanırken, kamuoyunun deepfake'lere olan ilgisini ve arama davranışını etkileyen faktörleri inceleyen sınırlı sayıda çalışma bulunmaktadır. Bu doğrultuda bu çalışmada, Ocak 2017'den Ağustos 2024'e kadar olan Google Trendler verileri kullanılarak, Güney Kore vakasında deepfake'lere olan kamu ilgisi analiz edilmek suretiyle literatürdeki mevcut boşluk doldurulmaya çalışılmıştır. Bu zaman dilimi, deepfake teknolojisinin 2017 yılında ilk ortaya çıkışını ve Güney Kore'de dolandırıcılık ve rıza dışı içeriklerde artan kullanımını kapsadığı için özellikle önemlidir. Güney Kore, deepfake ile ilgili aramalarda küresel liderliği, rıza dışı cinsel deepfake'lerin yaygın tüketimi ve deepfake dolandırıcılığı gibi sorunlarla sıkça karşılaşılması nedeniyle benzersiz bir vakayı temsil etmektedir. Bu çalışmada, arama sorgularını üç ana temada kategorize etmek için sözlük tabanlı metin analizi kullanılmıştır. Bu sözlükler cinsel içerik, deepfake oluşturma teknikleri ve deepfake materyallerine erişim yöntemleridir. Bulgular, aramaların %77,81'inin rıza dışı cinsel içerikle ilgili olduğunu ve özellikle kadın ünlüleri hedef aldığını göstermektedir. Küresel eğilimlerin aksine, siyasi deepfake'ler Güney Kore'deki arama davranışlarını önemli ölçüde etkilememektedir. Bu bulgular, deepfake'lerle ilişkili zararları azaltmak için daha güçlü düzenleyici çerçevelere ve teknolojik müdahalelere duyulan acil ihtiyacı vurgulamaktadır.

References

  • Bates, M. E. (2018). Say what? Deepfakes are deeply concerning. Online Searcher, 42(4), 64. https://doi.org/10.1007/s11229-021-03379-y
  • Bonikowski, B., & Gidron, N. (2016). The populist style in American politics: Presidential campaign discourse, 1952–1996. Social Forces, 94(4), 1593-1621. https://doi.org/10.1093/sf/sov120
  • Chesney, B., & Citron, D. (2019). Deep fakes: A looming challenge for privacy, democracy, and national security. Calif. L. Rev., 107(4), 1753. https://doi.org/10.1016/j.jbusres.2022.113368
  • Cho, B., Le, B. M., Kim, J., Woo, S., Tariq, S., Abuadbba, A., & Moore, K. (2023). Towards understanding of deepfake videos in the wild. Information and Knowledge Management, 32(4), 4530–4537. https://doi.org/10.1145/3583780.3614729
  • Conway, M. (2010). Mining a corpus of biographical texts using keywords. Literary and Linguistic Computing, 25(1), 23-35. https://doi.org/10.1093/llc/fqp035
  • Currie, M. E., Paris, B. S., & Donovan, J. M. (2019). What difference do data make? Data management and social change. Online Information Review, 43(6), 971-985. https://doi.org/10.1108/OIR-02-2018-0052
  • Di Domenico, G., & Visentin, M. (2020). Fake news or true lies? Reflections about problematic contents in marketing. International Journal of Market Research, 62(4), 409-417. https://doi.org/10.1177/1470785320934719
  • Eichenauer, V. Z., Indergand, R., Martínez, I. Z., & Sax, C. (2022). Obtaining consistent time series from Google trends. Economic Inquiry, 60(2), 694-705. https://doi.org/10.1111/ecin.13049
  • Gamage, D., Chen, J., Ghasiya, P., & Sasahara, K. (2022). Deepfakes and society: What lies ahead?. In M. Khosravy (Ed.), Frontiers in Fake Media Generation and Detection (pp. 3-43). Springer Nature Singapore.
  • Gieseke, A. P. (2020). The new weapon of choice: Law's current inability to properly address deepfake pornography. Vand. L. Rev., 73(2), 1479. https://doi.org/10.1093/ia/iix224
  • Godulla, A., Hoffmann, C. P., & Seibert, D. (2021). Dealing with deepfakes–an interdisciplinary examination of the state of research and implications for communication studies. SCM Studies in Communication and Media, 10(1), 72-96. https://doi.org/10.5771/2192-4007-2021-1-72
  • Google Trends. (2024, September 10). Deepfake. https://trends.google.com/trends/
  • Groh, M., Epstein, Z., Firestone, C., & Picard, R. (2022). Deepfake detection by human crowds, machines, and machine-informed crowds. The National Academy of Sciences, 119(1), e2110013119. https://doi.org/10.1073/pnas.2110013119
  • Guo, L., Vargo, C. J., Pan, Z., Ding, W., & Ishwar, P. (2016). Big social data analytics in journalism and mass communication: Comparing dictionary-based text analysis and unsupervised topic modeling. Journalism & Mass Communication Quarterly, 93(2), 332-359. https://doi.org/10.1177/1077699016639231
  • Jacobsen, B. N., & Simpson, J. (2023). The tensions of deepfakes. Information, Communication & Society, 10(2), 1-15. https://doi.org/10.1080/1369118X.2023.2234980
  • Kang, J. M. (2021). Rediscovering the idols: K-pop idols behind the mask. Celebrity Studies, 8(1), 136–141. https://doi.org/10.1080/19392397.2016.1272859
  • Kietzmann, J., Lee, L. W., McCarthy, I. P., & Kietzmann, T. C. (2020). Deepfakes: Trick or treat?. Business Horizons, 63(2), 135-146. https://doi.org/10.1016/j.bushor.2019.11.006
  • Kikerpill, K., Siibak, A., & Valli, S. (2021). Dealing with deepfakes: Reddit, online content moderation, and situational crime prevention. In B. Wiest (Ed.), Theorizing Criminality and Policing in the Digital Media Age (pp. 25-45). Emerald Insight.
  • Kim, G. (2018). K-pop female idols as cultural genre of patriarchal neoliberalism: A gendered nature of developmentalism and the structure of feeling/experience in contemporary Korea. Telos, 184(2), 185–207. https://doi.org/10.3817/0918184185
  • Kiousis, S. (2004). Explicating media salience: A factor analysis of New York Times issue coverage during the 2000 US presidential election. Journal of Communication, 54(1), 71-87. https://doi.org/10.1111/j.1460-2466.2004.tb02614.x
  • Kwok, A. O., & Koh, S. G. (2021). Deepfake: A social construction of technology perspective. Current Issues in Tourism, 24(13), 1798-1802. https://doi.org/10.1080/13683500.2020.1738357
  • Laffier, J., & Rehman, A. (2023). Deepfakes and harm to women. Journal of Digital Life and Learning, 3(1), 1-21. https://doi.org/10.51357/jdll.v3i1.218
  • Lee, G., & Kim, M. (2021). Deepfake detection using the rate of change between frames based on computer vision. Sensors, 21(21), 7367. https://doi.org/10.3390/s21217367
  • Lee, Y., Huang, K. T., Blom, R., Schriner, R., & Ciccarelli, C. A. (2021). To believe or not to believe: Framing analysis of content and audience response of top 10 deepfake videos on YouTube. Cyberpsychology, Behavior, and Social Networking, 24(3), 153-158. https://doi.org/10.1089/cyber.2020.0176
  • Lyons, E. (2024, September 27). South Korea set to criminalize possessing or watching sexually explicit deepfake videos. CBS News. https://www.cbsnews.com/news/south-korea-deepfake-porn-law-ban-sexually-explicit-video-images/
  • Maddocks, S. (2020). A deepfake porn plot intended to silence me: Exploring continuities between pornographic and ‘political’deep fakes. Porn Studies, 7(4), 415-423. https://doi.org/10.1080/23268743.2020.1757499
  • Mania, K. (2024). Legal protection of revenge and deepfake porn victims in the European Union: Findings from a comparative legal study. Trauma, Violence, & Abuse, 25(1), 117-129. https://doi.org/10.1177/15248380221143772
  • Maras, M. H., & Alexandrou, A. (2019). Determining authenticity of video evidence in the age of artificial intelligence and in the wake of deepfake videos. The International Journal of Evidence & Proof, 23(3), 255-262. https://doi.org/10.1177/136571271880
  • Masood, M., Nawaz, M., Malik, K. M., Javed, A., Irtaza, A., & Malik, H. (2023). Deepfakes generation and detection: State-of-the-art, open challenges, countermeasures, and way forward. Applied Intelligence, 53(4), 3974-4026. https://doi.org/10.1007/s10489-022-03766-z
  • Mavragani, A., & Ochoa, G. (2019). Google Trends in infodemiology and infoveillance: Methodology framework. JMIR Public Health and Surveillance, 5(2), e13439. https://doi.org/10.2196/13439
  • Monique, C., Wulandari, S., & Slamet, A. B. (2024). Legal protection for victims of artificial intelligence-based pornography in the form of deepfakes according to Indonesian law. KnE Social Sciences, 4(1), 265-275. https://doi.org/10.18502/kss.v8i21.14724
  • Murphy, G., & Flynn, E. (2022). Deepfake false memories. Memory, 30(4), 480-492. https://doi.org/10.1177/0956797619864887
  • Murphy, G., Ching, D., Twomey, J., & Linehan, C. (2023). Face/Off: Changing the face of movies with deepfakes. Plos One, 18(7), e0287503. https://doi.org/10.1371/journal.pone.0287503
  • Neuendorf, K.A. (2016). Content analysis: A methodological primer for gender research. Sex Roles, 64(4), 276–289. https://doi.org/10.1007/s11199-010-9893-0
  • Oaten, J., & Lee, S. (2024, September 8). Deepfake pornography ring linked to South Korean university uncovered after years-long sting. ABC. https://www.abc.net.au/news/2024-09-08/south-korea-deepfake-pornography-telegram-app-sex-crimes/104314174
  • Öhman, C. (2020). Introducing the pervert’s dilemma: A contribution to the critique of deepfake pornography. Ethics and Information Technology, 22(2), 133-140. https://doi.org/10.1007/s10676-019-09522-1
  • Quinn, K. M., Monroe, B. L., Colaresi, M., Crespin, M. H., & Radev, D. R. (2010). How to analyze political attention with minimal assumptions and costs. American Journal of Political Science, 54(1), 209-228. https://doi.org/10.1111/j.1540-5907.2009.00427.x
  • Rovetta, A. (2021). Reliability of Google Trends: Analysis of the limits and potential of web infoveillance during COVID-19 pandemic and for future research. Frontiers in Research Metrics and Analytics, 6(3), 670226. https://doi.org/10.3389/frma.2021.670226
  • Scharkow, M., & Vogelgesang, J. (2011). Measuring the public agenda using search engine queries. International Journal of Public Opinion Research, 23(1), 104-113. https://doi.org/10.1093/ijpor/edq048
  • Schiff, K. J., Schiff, D. S., & Bueno, N. (2022). The liar’s dividend: Can politicians use deepfakes and fake news to evade accountability?. American Political Science Review, 100(1), 1–20. https://doi.org/10.1017/S0003055423001454
  • Shin, S. Y., & Lee, J. (2022). The effect of deepfake video on news credibility and corrective influence of cost-based knowledge about deepfakes. Digital Journalism, 10(3), 412-432. https://doi.org/10.1080/21670811.2022.2026797
  • Short, J. C., & Palmer, T. B. (2008). The application of DICTION to content analysis research in strategic management. Organizational Research Methods, 11(4), 727-752. https://doi.org/10.1177/1094428107304534
  • Tulga, A. Y. (2023). The effects of Islamic State of Iraq and Syria (ISIS) soft-terrorism strategies on Turkish public opinion using Google data. Journal of Global and Area Studies (JGA), 7(4), 193-212. https://doi.org/10.31720/JGA.7.4.10
  • Tulga, A. Y. (2024). A comprehensive analysis of public discourse and content trends in Turkish Reddit posts related to deepfake. Journal of Global and Area Studies (JGA), 8(2), 257-276. https://doi.org/10.31720/JGA.8.2.13
  • Twomey, J., Ching, D., Aylett, M. P., Quayle, M., Linehan, C., & Murphy, G. (2023). Do deepfake videos undermine our epistemic trust? A thematic analysis of tweets that discuss deepfakes in the Russian invasion of Ukraine. Plos One, 18(10), e0291668. https://doi.org/10.1371/journal.pone.0291668
  • Uyan, G. (2024, April 26). Bir kadın, yapay zekâ ile yüzünü değiştirip kendini Elon Musk olarak tanıtan kişi tarafından dolandırıldı. WebTekno. https://www.webtekno.com/bir-kadin-kendini-elon-musk-tanitan-kisiye-50-bin-dolar-kaptirdi-h143288.html.
  • Vargo, C. J., Guo, L., McCombs, M., & Shaw, D. L. (2014). Network issue agendas on Twitter during the 2012 US presidential election. Journal of Communication, 64(2), 296-316. https://doi.org/10.1111/jcom.12089
  • Vosen, S., & Schmidt, T. (2011). Forecasting private consumption: Survey‐based indicators vs. Google trends. Journal of Forecasting, 30(6), 565-578. https://doi.org/10.1002/for.1213
  • Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146-1151. https://doi.org/10.1126/science.aap9559
  • Wagner, T. L., & Blewer, A. (2019). The word real is no longer real: Deepfakes, gender, and the challenges of ai-altered video. Open Information Science, 3(1), 32-46. https://doi.org/10.1515/opis-2019-0003
  • Wang, S., & Kim, S. (2022). How do people feel about deepfake videos of K-pop idols?. 한국통신학회논문지, 47(2), 375-386. https://doi.org/10.7840/kics.2022.47.2.375

Deepfake Interest in South Korea: A Temporal Analysis of Google Trends from 2017 to 2024

Year 2025, Issue: 69, 220 - 238, 18.03.2025
https://doi.org/10.47998/ikad.1570974

Abstract

Deepfake technology, which utilizes artificial intelligence to generate hyper-realistically manipulated videos, images, texts, and audio, has garnered significant public and academic interest. The proliferation of deepfakes, especially in non-consensual pornography, financial fraud and political misinformation, has sparked ethical, moral, legal, and security debates worldwide. While existing research predominantly focuses on deepfake detection, legal frameworks, and their potential impact on the democratic process, few studies have examined public interest in deepfakes and the factors influencing search behavior. This study addresses this gap by analyzing public interest in deepfakes in South Korea, using Google Trends data from January 2017 to August 2024. This timeframe is particularly significant as it encompasses the initial emergence of deepfake technology in 2017 and its increasing use in fraudulent and non-consensual content in South Korea. The country represents a unique case due to its global leadership in deepfake-related searches, widespread consumption of non-consensual sexual deepfakes, and frequent occurrence of deepfake fraud. This study employs dictionary-based text analysis to categorize search queries into three main themes: sexual content, techniques for creating deepfakes, and methods for accessing deepfake materials. The findings indicate that 77.81% of searches are related to non-consensual sexual content, primarily targeting female celebrities. Contrary to global trends, political deepfakes did not significantly influence search patterns in South Korea. These insights highlight the urgent need for stronger regulatory frameworks and technological interventions to mitigate the harms associated with deepfakes.

References

  • Bates, M. E. (2018). Say what? Deepfakes are deeply concerning. Online Searcher, 42(4), 64. https://doi.org/10.1007/s11229-021-03379-y
  • Bonikowski, B., & Gidron, N. (2016). The populist style in American politics: Presidential campaign discourse, 1952–1996. Social Forces, 94(4), 1593-1621. https://doi.org/10.1093/sf/sov120
  • Chesney, B., & Citron, D. (2019). Deep fakes: A looming challenge for privacy, democracy, and national security. Calif. L. Rev., 107(4), 1753. https://doi.org/10.1016/j.jbusres.2022.113368
  • Cho, B., Le, B. M., Kim, J., Woo, S., Tariq, S., Abuadbba, A., & Moore, K. (2023). Towards understanding of deepfake videos in the wild. Information and Knowledge Management, 32(4), 4530–4537. https://doi.org/10.1145/3583780.3614729
  • Conway, M. (2010). Mining a corpus of biographical texts using keywords. Literary and Linguistic Computing, 25(1), 23-35. https://doi.org/10.1093/llc/fqp035
  • Currie, M. E., Paris, B. S., & Donovan, J. M. (2019). What difference do data make? Data management and social change. Online Information Review, 43(6), 971-985. https://doi.org/10.1108/OIR-02-2018-0052
  • Di Domenico, G., & Visentin, M. (2020). Fake news or true lies? Reflections about problematic contents in marketing. International Journal of Market Research, 62(4), 409-417. https://doi.org/10.1177/1470785320934719
  • Eichenauer, V. Z., Indergand, R., Martínez, I. Z., & Sax, C. (2022). Obtaining consistent time series from Google trends. Economic Inquiry, 60(2), 694-705. https://doi.org/10.1111/ecin.13049
  • Gamage, D., Chen, J., Ghasiya, P., & Sasahara, K. (2022). Deepfakes and society: What lies ahead?. In M. Khosravy (Ed.), Frontiers in Fake Media Generation and Detection (pp. 3-43). Springer Nature Singapore.
  • Gieseke, A. P. (2020). The new weapon of choice: Law's current inability to properly address deepfake pornography. Vand. L. Rev., 73(2), 1479. https://doi.org/10.1093/ia/iix224
  • Godulla, A., Hoffmann, C. P., & Seibert, D. (2021). Dealing with deepfakes–an interdisciplinary examination of the state of research and implications for communication studies. SCM Studies in Communication and Media, 10(1), 72-96. https://doi.org/10.5771/2192-4007-2021-1-72
  • Google Trends. (2024, September 10). Deepfake. https://trends.google.com/trends/
  • Groh, M., Epstein, Z., Firestone, C., & Picard, R. (2022). Deepfake detection by human crowds, machines, and machine-informed crowds. The National Academy of Sciences, 119(1), e2110013119. https://doi.org/10.1073/pnas.2110013119
  • Guo, L., Vargo, C. J., Pan, Z., Ding, W., & Ishwar, P. (2016). Big social data analytics in journalism and mass communication: Comparing dictionary-based text analysis and unsupervised topic modeling. Journalism & Mass Communication Quarterly, 93(2), 332-359. https://doi.org/10.1177/1077699016639231
  • Jacobsen, B. N., & Simpson, J. (2023). The tensions of deepfakes. Information, Communication & Society, 10(2), 1-15. https://doi.org/10.1080/1369118X.2023.2234980
  • Kang, J. M. (2021). Rediscovering the idols: K-pop idols behind the mask. Celebrity Studies, 8(1), 136–141. https://doi.org/10.1080/19392397.2016.1272859
  • Kietzmann, J., Lee, L. W., McCarthy, I. P., & Kietzmann, T. C. (2020). Deepfakes: Trick or treat?. Business Horizons, 63(2), 135-146. https://doi.org/10.1016/j.bushor.2019.11.006
  • Kikerpill, K., Siibak, A., & Valli, S. (2021). Dealing with deepfakes: Reddit, online content moderation, and situational crime prevention. In B. Wiest (Ed.), Theorizing Criminality and Policing in the Digital Media Age (pp. 25-45). Emerald Insight.
  • Kim, G. (2018). K-pop female idols as cultural genre of patriarchal neoliberalism: A gendered nature of developmentalism and the structure of feeling/experience in contemporary Korea. Telos, 184(2), 185–207. https://doi.org/10.3817/0918184185
  • Kiousis, S. (2004). Explicating media salience: A factor analysis of New York Times issue coverage during the 2000 US presidential election. Journal of Communication, 54(1), 71-87. https://doi.org/10.1111/j.1460-2466.2004.tb02614.x
  • Kwok, A. O., & Koh, S. G. (2021). Deepfake: A social construction of technology perspective. Current Issues in Tourism, 24(13), 1798-1802. https://doi.org/10.1080/13683500.2020.1738357
  • Laffier, J., & Rehman, A. (2023). Deepfakes and harm to women. Journal of Digital Life and Learning, 3(1), 1-21. https://doi.org/10.51357/jdll.v3i1.218
  • Lee, G., & Kim, M. (2021). Deepfake detection using the rate of change between frames based on computer vision. Sensors, 21(21), 7367. https://doi.org/10.3390/s21217367
  • Lee, Y., Huang, K. T., Blom, R., Schriner, R., & Ciccarelli, C. A. (2021). To believe or not to believe: Framing analysis of content and audience response of top 10 deepfake videos on YouTube. Cyberpsychology, Behavior, and Social Networking, 24(3), 153-158. https://doi.org/10.1089/cyber.2020.0176
  • Lyons, E. (2024, September 27). South Korea set to criminalize possessing or watching sexually explicit deepfake videos. CBS News. https://www.cbsnews.com/news/south-korea-deepfake-porn-law-ban-sexually-explicit-video-images/
  • Maddocks, S. (2020). A deepfake porn plot intended to silence me: Exploring continuities between pornographic and ‘political’deep fakes. Porn Studies, 7(4), 415-423. https://doi.org/10.1080/23268743.2020.1757499
  • Mania, K. (2024). Legal protection of revenge and deepfake porn victims in the European Union: Findings from a comparative legal study. Trauma, Violence, & Abuse, 25(1), 117-129. https://doi.org/10.1177/15248380221143772
  • Maras, M. H., & Alexandrou, A. (2019). Determining authenticity of video evidence in the age of artificial intelligence and in the wake of deepfake videos. The International Journal of Evidence & Proof, 23(3), 255-262. https://doi.org/10.1177/136571271880
  • Masood, M., Nawaz, M., Malik, K. M., Javed, A., Irtaza, A., & Malik, H. (2023). Deepfakes generation and detection: State-of-the-art, open challenges, countermeasures, and way forward. Applied Intelligence, 53(4), 3974-4026. https://doi.org/10.1007/s10489-022-03766-z
  • Mavragani, A., & Ochoa, G. (2019). Google Trends in infodemiology and infoveillance: Methodology framework. JMIR Public Health and Surveillance, 5(2), e13439. https://doi.org/10.2196/13439
  • Monique, C., Wulandari, S., & Slamet, A. B. (2024). Legal protection for victims of artificial intelligence-based pornography in the form of deepfakes according to Indonesian law. KnE Social Sciences, 4(1), 265-275. https://doi.org/10.18502/kss.v8i21.14724
  • Murphy, G., & Flynn, E. (2022). Deepfake false memories. Memory, 30(4), 480-492. https://doi.org/10.1177/0956797619864887
  • Murphy, G., Ching, D., Twomey, J., & Linehan, C. (2023). Face/Off: Changing the face of movies with deepfakes. Plos One, 18(7), e0287503. https://doi.org/10.1371/journal.pone.0287503
  • Neuendorf, K.A. (2016). Content analysis: A methodological primer for gender research. Sex Roles, 64(4), 276–289. https://doi.org/10.1007/s11199-010-9893-0
  • Oaten, J., & Lee, S. (2024, September 8). Deepfake pornography ring linked to South Korean university uncovered after years-long sting. ABC. https://www.abc.net.au/news/2024-09-08/south-korea-deepfake-pornography-telegram-app-sex-crimes/104314174
  • Öhman, C. (2020). Introducing the pervert’s dilemma: A contribution to the critique of deepfake pornography. Ethics and Information Technology, 22(2), 133-140. https://doi.org/10.1007/s10676-019-09522-1
  • Quinn, K. M., Monroe, B. L., Colaresi, M., Crespin, M. H., & Radev, D. R. (2010). How to analyze political attention with minimal assumptions and costs. American Journal of Political Science, 54(1), 209-228. https://doi.org/10.1111/j.1540-5907.2009.00427.x
  • Rovetta, A. (2021). Reliability of Google Trends: Analysis of the limits and potential of web infoveillance during COVID-19 pandemic and for future research. Frontiers in Research Metrics and Analytics, 6(3), 670226. https://doi.org/10.3389/frma.2021.670226
  • Scharkow, M., & Vogelgesang, J. (2011). Measuring the public agenda using search engine queries. International Journal of Public Opinion Research, 23(1), 104-113. https://doi.org/10.1093/ijpor/edq048
  • Schiff, K. J., Schiff, D. S., & Bueno, N. (2022). The liar’s dividend: Can politicians use deepfakes and fake news to evade accountability?. American Political Science Review, 100(1), 1–20. https://doi.org/10.1017/S0003055423001454
  • Shin, S. Y., & Lee, J. (2022). The effect of deepfake video on news credibility and corrective influence of cost-based knowledge about deepfakes. Digital Journalism, 10(3), 412-432. https://doi.org/10.1080/21670811.2022.2026797
  • Short, J. C., & Palmer, T. B. (2008). The application of DICTION to content analysis research in strategic management. Organizational Research Methods, 11(4), 727-752. https://doi.org/10.1177/1094428107304534
  • Tulga, A. Y. (2023). The effects of Islamic State of Iraq and Syria (ISIS) soft-terrorism strategies on Turkish public opinion using Google data. Journal of Global and Area Studies (JGA), 7(4), 193-212. https://doi.org/10.31720/JGA.7.4.10
  • Tulga, A. Y. (2024). A comprehensive analysis of public discourse and content trends in Turkish Reddit posts related to deepfake. Journal of Global and Area Studies (JGA), 8(2), 257-276. https://doi.org/10.31720/JGA.8.2.13
  • Twomey, J., Ching, D., Aylett, M. P., Quayle, M., Linehan, C., & Murphy, G. (2023). Do deepfake videos undermine our epistemic trust? A thematic analysis of tweets that discuss deepfakes in the Russian invasion of Ukraine. Plos One, 18(10), e0291668. https://doi.org/10.1371/journal.pone.0291668
  • Uyan, G. (2024, April 26). Bir kadın, yapay zekâ ile yüzünü değiştirip kendini Elon Musk olarak tanıtan kişi tarafından dolandırıldı. WebTekno. https://www.webtekno.com/bir-kadin-kendini-elon-musk-tanitan-kisiye-50-bin-dolar-kaptirdi-h143288.html.
  • Vargo, C. J., Guo, L., McCombs, M., & Shaw, D. L. (2014). Network issue agendas on Twitter during the 2012 US presidential election. Journal of Communication, 64(2), 296-316. https://doi.org/10.1111/jcom.12089
  • Vosen, S., & Schmidt, T. (2011). Forecasting private consumption: Survey‐based indicators vs. Google trends. Journal of Forecasting, 30(6), 565-578. https://doi.org/10.1002/for.1213
  • Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146-1151. https://doi.org/10.1126/science.aap9559
  • Wagner, T. L., & Blewer, A. (2019). The word real is no longer real: Deepfakes, gender, and the challenges of ai-altered video. Open Information Science, 3(1), 32-46. https://doi.org/10.1515/opis-2019-0003
  • Wang, S., & Kim, S. (2022). How do people feel about deepfake videos of K-pop idols?. 한국통신학회논문지, 47(2), 375-386. https://doi.org/10.7840/kics.2022.47.2.375
There are 51 citations in total.

Details

Primary Language English
Subjects Internet, Mass Media, Media Technologies, Communication and Media Studies (Other)
Journal Section Review Articles
Authors

Ahmet Yiğitalp Tulga 0000-0001-7596-1269

Publication Date March 18, 2025
Submission Date October 21, 2024
Acceptance Date March 4, 2025
Published in Issue Year 2025 Issue: 69

Cite

APA Tulga, A. Y. (2025). Deepfake Interest in South Korea: A Temporal Analysis of Google Trends from 2017 to 2024. İletişim Kuram Ve Araştırma Dergisi(69), 220-238. https://doi.org/10.47998/ikad.1570974