Research Article
BibTex RIS Cite

SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS

Year 2019, Volume: 1 Issue: 1, 11 - 17, 18.01.2019

Abstract

The harmonic iindex of graph $G$ is defined as the sum
$H(G)=\sum\limits_{ij\in E(G)}\frac{2}{d_{G}(i)+d_{G}(j)}$, where $d_{G}(i)$ is the degree of a vertex $i$ in $G$. In this paper we examined eccentric version of harmonic index of graphs.

References

  • Referans1 Doslic, T. (2008) Vertex weighted Wiener polynomials for composite graphs. Ars Mathematica Contemporanea, 1; 66--80.
  • Referans2 Ediz, S., Farahani, M. R. and Imran, M. (2017) On novel harmonic indices of certain nanotubes. International Journal of Advanced Biotechnology and Research, 8(4); 277--282.
  • Referans3 Fajtlowicz, S. (1987) On conjectures of graffiti II. Congressus Numerantium, 60; 189-–197.
  • Referans4 Ghorbani, M. and Hosseinzade, M.A. (2012) A new version of Zagreb indices. Filomat, 26; 93–-100.
  • Referans5 Gross, J.L. and Yellen, J. (2004) Handbook of graph theory, Chapman Hall, CRC Press.
  • Referans6 Gupta, S., Singh, M. and Madan, A.K.(2000) Connective eccentricity index: a novel topological descriptor for predicting biological activity. Journal of Molecular Graphics and Modelling, 18; 18–-25.
  • Referans7 Gutman, I. and Trinajstic, N. (1972) Graph Theory and Molecular Orbitals. Total pi-Electron Energy of Alternant Hydrocarbons. Chemical Physics Letters, 17: 535--538.
  • Referans8 Gutman, I., Ruscic, B., Trinajsti\'{c}, N. and Wilkox, C.F. (1975) Graph Theory and Molecular Orbitals. XII. Acyclic Polyenes. The Journal of Chemical Physics, 62(9):3399--3405.
  • Referans9 Mitrinovic, D.S. (1970) Analytic Inequalities, Springer.
  • Referans10 Radon, J. (1913) Uber die absolut additiven Mengenfunktionen. Wiener Sitzungsber, 122; 1295--1438.
  • Referans11 Sharma, V., Goswami, R. and Madan, A.K. (1997) Eccentric connectivity index: A novel highly discriminating topological descriptor for structure property and structure-activity studies. Journal of Chemical Information and Modeling, 37(2); 273--282.
  • Referans12 Vukicevic, D. and Graovac, A. (2010) Note on the comparison of the first and second normalized Zagreb eccentricity indices. Acta Chimica Slovenica, 57; 524–-528.
  • Referans13 Zhou, B. and Du, Z. (2010) On Eccentric Connectivity Index. MATCH Communications in Mathematical and in Computer Chemistry, 63; 181--198.
Year 2019, Volume: 1 Issue: 1, 11 - 17, 18.01.2019

Abstract

References

  • Referans1 Doslic, T. (2008) Vertex weighted Wiener polynomials for composite graphs. Ars Mathematica Contemporanea, 1; 66--80.
  • Referans2 Ediz, S., Farahani, M. R. and Imran, M. (2017) On novel harmonic indices of certain nanotubes. International Journal of Advanced Biotechnology and Research, 8(4); 277--282.
  • Referans3 Fajtlowicz, S. (1987) On conjectures of graffiti II. Congressus Numerantium, 60; 189-–197.
  • Referans4 Ghorbani, M. and Hosseinzade, M.A. (2012) A new version of Zagreb indices. Filomat, 26; 93–-100.
  • Referans5 Gross, J.L. and Yellen, J. (2004) Handbook of graph theory, Chapman Hall, CRC Press.
  • Referans6 Gupta, S., Singh, M. and Madan, A.K.(2000) Connective eccentricity index: a novel topological descriptor for predicting biological activity. Journal of Molecular Graphics and Modelling, 18; 18–-25.
  • Referans7 Gutman, I. and Trinajstic, N. (1972) Graph Theory and Molecular Orbitals. Total pi-Electron Energy of Alternant Hydrocarbons. Chemical Physics Letters, 17: 535--538.
  • Referans8 Gutman, I., Ruscic, B., Trinajsti\'{c}, N. and Wilkox, C.F. (1975) Graph Theory and Molecular Orbitals. XII. Acyclic Polyenes. The Journal of Chemical Physics, 62(9):3399--3405.
  • Referans9 Mitrinovic, D.S. (1970) Analytic Inequalities, Springer.
  • Referans10 Radon, J. (1913) Uber die absolut additiven Mengenfunktionen. Wiener Sitzungsber, 122; 1295--1438.
  • Referans11 Sharma, V., Goswami, R. and Madan, A.K. (1997) Eccentric connectivity index: A novel highly discriminating topological descriptor for structure property and structure-activity studies. Journal of Chemical Information and Modeling, 37(2); 273--282.
  • Referans12 Vukicevic, D. and Graovac, A. (2010) Note on the comparison of the first and second normalized Zagreb eccentricity indices. Acta Chimica Slovenica, 57; 524–-528.
  • Referans13 Zhou, B. and Du, Z. (2010) On Eccentric Connectivity Index. MATCH Communications in Mathematical and in Computer Chemistry, 63; 181--198.
There are 13 citations in total.

Details

Primary Language English
Journal Section Kabul edilmiş makaleler
Authors

Yaşar Nacaroğlu

Publication Date January 18, 2019
Acceptance Date January 21, 2019
Published in Issue Year 2019 Volume: 1 Issue: 1

Cite

APA Nacaroğlu, Y. (2019). SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS. Ikonion Journal of Mathematics, 1(1), 11-17.
AMA Nacaroğlu Y. SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS. ikjm. January 2019;1(1):11-17.
Chicago Nacaroğlu, Yaşar. “SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS”. Ikonion Journal of Mathematics 1, no. 1 (January 2019): 11-17.
EndNote Nacaroğlu Y (January 1, 2019) SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS. Ikonion Journal of Mathematics 1 1 11–17.
IEEE Y. Nacaroğlu, “SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS”, ikjm, vol. 1, no. 1, pp. 11–17, 2019.
ISNAD Nacaroğlu, Yaşar. “SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS”. Ikonion Journal of Mathematics 1/1 (January 2019), 11-17.
JAMA Nacaroğlu Y. SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS. ikjm. 2019;1:11–17.
MLA Nacaroğlu, Yaşar. “SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS”. Ikonion Journal of Mathematics, vol. 1, no. 1, 2019, pp. 11-17.
Vancouver Nacaroğlu Y. SOME BOUNDS FOR ECCENTRIC VERSION OF HARMONIC INDEX OF GRAPHS. ikjm. 2019;1(1):11-7.