Research Article
BibTex RIS Cite
Year 2019, Volume: 1 Issue: 2, 1 - 26, 16.10.2019

Abstract

References

  • Referans1 Adams, R.A. (1998) A Complete Course Calculus 4th ed., Addison-Wesley, Canada,834-835.
  • Referans2 Angell, T.S., Colton, D., Kirsch, A. (1982) The three dimensional inverse scattering problem for acoustic waves, J.Diff. Equations, 46: 46-58.
  • Referans3 Cakoni, F., Colton, D., Monk, P., (2001) The direct and inverse scattering problems for partially coated obstacles, Inverse Problems, 17: 1997-2015.
  • Referans4 Cakoni, F., Colton, D., Haddar, H. (2002) The linear sampling method for anisopratic media”, J. Comput. Appl. Math., 146: 285-299.
  • Referans5 Cakoni, F., Colton,D. (2003) The linear sampling method for craks, Inverse Problems, 19: 279-295.
  • Referans6 Cakoni, F., Colton,D. (2007) Inequalities in inverse scattering theory, J.Inv. III-Posed Problems, 15: 483-491 (2007).
  • Referans7 Colton, D., Kress, R. (1983) Integral Equations Methods in Scattering Theory. John Wiley, New York, 2-106.
  • Referans8 Colton, D., Kress, R., Monk, P. (1997) Inverse scattering from an orthotropic medium, J. Comput. Apply Math., 81: 269-298.
  • Referans9 Colton, D., Piana, M. (1998) The simple method for solving the electromagnetic inverse scattering problem : the case of TE polarized waves, Inverse Problems, 14: 597-614. Referans10 Colton, D., Kirsch, A. (1996) A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12: 383-393 Referans11 Colton, D., Piana, M., Potthast, R. (1997) A simple method using Morozov’s discrepancy principle for solving inverse scattering problems, Inverse Problems, 13: 1477-1493.
  • Referans12 Colton, D., Giebermann, K., Monk, P. (2000) A regularized sampling method for solving three – dimensional inverse scattering problems, SIAM J.Sci. Comput., 21 (6): 2316 – 2330.
  • Referans13 Colton, D., Coyle, J., Monk, P. (2000) Recent developments in inverse acoustic scattering theory, SIAM Review, 42 (3): 369-414.
  • Referans14 Colton, D. (2003) Inverse acoustic and electromagnetic scattering theory, Inverse Problems, 47: 67-110.
  • Referans15 Colton, D., Kress, R. (2006) Using fundamental solutions in inverse scattering theory, Inverse Problems, 22(3): 49-66.
  • Referans16 Colton, D., Kress, R., (1992) Inverse Acoustic and Electromagnetic Scattering Theory, Springer – Verlag , Berlin, 2-86,147-148,207-240.
  • Referans17 Gerlach, T., Kress, R. (1996) Uniqueness in inverse obstacle scattering with conductive boundary condition, Inverse Problems 12: 619-625.
  • Referans18 Kress, R. (1989) Linear Integral Equations, Springer-Verlag, Berlin, 14-45.
  • Referans19 Kirsch, A., Kress, R. (1993) Uniqueness in inverse obstacle scattering, Inverse Problems, 9: 285-299
  • Referans20 Lebedev, N.N. (1972) Special Functions and Their Applications, Silverman, R.A., Dover Publications, Newyork, (107,134-135).
  • Referans21 Qin, H.H., Colton, D. (2011) The inverse scattering problem for cavities with impedance boundary condition, Adv. Comp. Math., 36:157-174
  • Referans22 Seydou, F. (2001) Profile inversion in scattering theory: the TE case, J. Comput. Appl. Math., 137: 49-60.
  • Referans23 Tobocman, W. (1989) Inverse acoustic wave scattering in two dimensions from impenetrable targets, Inverse Problems, 5: 1131-1144.
  • Referans24Torun, G., Anar, İ.E. (2005) The electromagnetic scattering problem: the case of TE polarized waves, ELSEVIER Appl. Math. And Comput.,169: 339-354.

The linear method for solving the scattering problem in an inhomegeneous medium: the case of TE polarized

Year 2019, Volume: 1 Issue: 2, 1 - 26, 16.10.2019

Abstract

 In this article,
the electromagnetic waves scattered from an inhomogeneous medium are considered
when the electromagnetic waves are polarized in the case of transverse
electric. Using the Rellich lemma, the uniqueness of the solution of the direct
scattering problem is proved. In order to show the existence of the solution of
this problem, the operator equations are constructed and the Riesz theory which
provides the existence of the inverse operator is used.
Furthermore, for
solution of  the invers scattering
problems, an interior boundary value problem is considered. Finally, a linear
integral equation is obtained whose the solution yield the support of  the scattering object.

References

  • Referans1 Adams, R.A. (1998) A Complete Course Calculus 4th ed., Addison-Wesley, Canada,834-835.
  • Referans2 Angell, T.S., Colton, D., Kirsch, A. (1982) The three dimensional inverse scattering problem for acoustic waves, J.Diff. Equations, 46: 46-58.
  • Referans3 Cakoni, F., Colton, D., Monk, P., (2001) The direct and inverse scattering problems for partially coated obstacles, Inverse Problems, 17: 1997-2015.
  • Referans4 Cakoni, F., Colton, D., Haddar, H. (2002) The linear sampling method for anisopratic media”, J. Comput. Appl. Math., 146: 285-299.
  • Referans5 Cakoni, F., Colton,D. (2003) The linear sampling method for craks, Inverse Problems, 19: 279-295.
  • Referans6 Cakoni, F., Colton,D. (2007) Inequalities in inverse scattering theory, J.Inv. III-Posed Problems, 15: 483-491 (2007).
  • Referans7 Colton, D., Kress, R. (1983) Integral Equations Methods in Scattering Theory. John Wiley, New York, 2-106.
  • Referans8 Colton, D., Kress, R., Monk, P. (1997) Inverse scattering from an orthotropic medium, J. Comput. Apply Math., 81: 269-298.
  • Referans9 Colton, D., Piana, M. (1998) The simple method for solving the electromagnetic inverse scattering problem : the case of TE polarized waves, Inverse Problems, 14: 597-614. Referans10 Colton, D., Kirsch, A. (1996) A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12: 383-393 Referans11 Colton, D., Piana, M., Potthast, R. (1997) A simple method using Morozov’s discrepancy principle for solving inverse scattering problems, Inverse Problems, 13: 1477-1493.
  • Referans12 Colton, D., Giebermann, K., Monk, P. (2000) A regularized sampling method for solving three – dimensional inverse scattering problems, SIAM J.Sci. Comput., 21 (6): 2316 – 2330.
  • Referans13 Colton, D., Coyle, J., Monk, P. (2000) Recent developments in inverse acoustic scattering theory, SIAM Review, 42 (3): 369-414.
  • Referans14 Colton, D. (2003) Inverse acoustic and electromagnetic scattering theory, Inverse Problems, 47: 67-110.
  • Referans15 Colton, D., Kress, R. (2006) Using fundamental solutions in inverse scattering theory, Inverse Problems, 22(3): 49-66.
  • Referans16 Colton, D., Kress, R., (1992) Inverse Acoustic and Electromagnetic Scattering Theory, Springer – Verlag , Berlin, 2-86,147-148,207-240.
  • Referans17 Gerlach, T., Kress, R. (1996) Uniqueness in inverse obstacle scattering with conductive boundary condition, Inverse Problems 12: 619-625.
  • Referans18 Kress, R. (1989) Linear Integral Equations, Springer-Verlag, Berlin, 14-45.
  • Referans19 Kirsch, A., Kress, R. (1993) Uniqueness in inverse obstacle scattering, Inverse Problems, 9: 285-299
  • Referans20 Lebedev, N.N. (1972) Special Functions and Their Applications, Silverman, R.A., Dover Publications, Newyork, (107,134-135).
  • Referans21 Qin, H.H., Colton, D. (2011) The inverse scattering problem for cavities with impedance boundary condition, Adv. Comp. Math., 36:157-174
  • Referans22 Seydou, F. (2001) Profile inversion in scattering theory: the TE case, J. Comput. Appl. Math., 137: 49-60.
  • Referans23 Tobocman, W. (1989) Inverse acoustic wave scattering in two dimensions from impenetrable targets, Inverse Problems, 5: 1131-1144.
  • Referans24Torun, G., Anar, İ.E. (2005) The electromagnetic scattering problem: the case of TE polarized waves, ELSEVIER Appl. Math. And Comput.,169: 339-354.
There are 22 citations in total.

Details

Primary Language English
Journal Section Kabul edilmiş makaleler
Authors

Gülten Torun 0000-0002-1897-0174

Publication Date October 16, 2019
Acceptance Date September 23, 2019
Published in Issue Year 2019 Volume: 1 Issue: 2

Cite

APA Torun, G. (2019). The linear method for solving the scattering problem in an inhomegeneous medium: the case of TE polarized. Ikonion Journal of Mathematics, 1(2), 1-26.
AMA Torun G. The linear method for solving the scattering problem in an inhomegeneous medium: the case of TE polarized. ikjm. October 2019;1(2):1-26.
Chicago Torun, Gülten. “The Linear Method for Solving the Scattering Problem in an Inhomegeneous Medium: The Case of TE Polarized”. Ikonion Journal of Mathematics 1, no. 2 (October 2019): 1-26.
EndNote Torun G (October 1, 2019) The linear method for solving the scattering problem in an inhomegeneous medium: the case of TE polarized. Ikonion Journal of Mathematics 1 2 1–26.
IEEE G. Torun, “The linear method for solving the scattering problem in an inhomegeneous medium: the case of TE polarized”, ikjm, vol. 1, no. 2, pp. 1–26, 2019.
ISNAD Torun, Gülten. “The Linear Method for Solving the Scattering Problem in an Inhomegeneous Medium: The Case of TE Polarized”. Ikonion Journal of Mathematics 1/2 (October 2019), 1-26.
JAMA Torun G. The linear method for solving the scattering problem in an inhomegeneous medium: the case of TE polarized. ikjm. 2019;1:1–26.
MLA Torun, Gülten. “The Linear Method for Solving the Scattering Problem in an Inhomegeneous Medium: The Case of TE Polarized”. Ikonion Journal of Mathematics, vol. 1, no. 2, 2019, pp. 1-26.
Vancouver Torun G. The linear method for solving the scattering problem in an inhomegeneous medium: the case of TE polarized. ikjm. 2019;1(2):1-26.