Research Article
BibTex RIS Cite

Üst Bilişsel Sorgulamaya Dayalı Problem Çözme Yaklaşımının Öz-düzenleme Becerilerine Etkisinin Yarı Deneysel Bir Çalışma İle Araştırılması

Year 2017, , 547 - 565, 01.04.2017
https://doi.org/10.17051/ilkonline.2017.304716

Abstract

Yapılan çalışmalarla bir sınıf içi öğretim yöntemi olarak sorgulamaya dayalı yaklaşımın öğrencinin aktif katılımını desteklediği, merak duygusunu uyandırdığı, motivasyonunu arttırdığı ve konuya odaklanmalarını kolaylaştırdığı belirlenmiştir. Bu çalışmanın da amacı üst bilişsel sorgulamaya dayalı problem çözme yaklaşımının  sınıf öğretmen adaylarının matematikte öz düzenleme becerilerine etkisi araştırmaktır. Öntest-sontest deney-kontrol gruplu yarı deneysel desen olarak yapılandırılan bu çalışma İç Anadolu Bölgesi’ndeki bir devlet üniversitesinde 110 birinci sınıf öğretmeni öğretmen adayı ile gerçekleştirilmiştir. Deney grubunda, üst bilişsel sorgulamaya dayalı problem çözme yaklaşımı uygulanırken, kontrol grubunda ise geleneksel problem çözme yaklaşımı uygulanmıştır. Ölçme aracı olarak, Motivated Strategies For Learning Questionnaire (Öğrenmede Motive Edici Stratejiler Ölçeği) kullanılmıştır. Verilerin analizinde Çok Değişkenli Kovaryans Analizi kullanılmıştır. Sonuçlar, üst bilişsel sorgulayıcı problem çözme yaklaşımının öğretmen adaylarının öz düzenlemeye dayalı öğrenmenin alt bileşenlerinden konu değeri, öğrenme inançlarını kontrol, üst bilişsel öz düzenleme ve çaba düzenlemesi değişkenlerinde istatistiksel olarak anlamlı bir etkisinin olduğunu gösterirken, diğer alt boyutlarda anlamlı bir etki bulunamamıştır. Çalışmada elde edilen tüm bulgular değerlendirildiğinde üst bilişsel sorgulamaya dayalı problem çözme yaklaşımının öz- düzenleme becerilerinin bazı alt boyutlarında geliştirici bir yöntem olduğu söylenebilir.

References

  • Allen, M. (2003). Eight questions on teacher preparation: What does the research say? A summary of finding. Denver, CO:Education Commission of the States.
  • Altun, M. ve Sezgin-Memnun, D. (2008). Matematik öğretmeni adaylarının rutin olmayan matematiksel problemleri çözme becerileri ve bu konudaki düşünceleri. Eğitimde Kuram ve Uygulama, 4 (2): 213-238.
  • Arslan, Ç. (2002). İlköğretim yedinci ve sekizinci sınıf öğrencilerinin problem çözme stratejilerini kullanabilme düzeyleri üzerine bir çalışma. Yayımlanmamış yüksek lisans tezi, Uludağ Universitesi, Bursa.
  • Artzt, A. ve Armour-Thomas, E. (1992). Development of a cognitive-metacognitive framework for protocol analysis of mathematical problem solving in small groups. Cognition and Instruction, 9, 137-175.
  • Ball, D.L. (1989). Breaking with experience in learning to teach mathematics: the role of a pre-service methods course. Annual Meeting of the American Educational Research Association, San Francisco, CA.
  • Ball, D. L., ve Bass, H. (2000). Interweaving content and pedagoy in teaching and learning to teach: Knowing and using mathematics. In J.Boaler (ED.), Multiple perspectives on mathematics learning and teaching. Westport, CT: Ablex Publishing.
  • Baker, M., E (1998). Mathematical problem solving skills in undergraduate preservice teacher education students. Yayımlanmamış yüksek lisans tezi, Arizona Universitesi, Arizona, ABD.
  • Bandura, A. (1986). Social foundation of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall
  • Biggs, J. (1978). Individual and group differences in study processes. British Journal of Educational Psychology, 48, 266- 279.
  • Biggs, J. (1985). The role of metalearning in study processes. British Journal of Educational Psychology, 55, 185-212.
  • Buschman, L. (2003). Share and compare: A teacher’s story about helping children become problem solvers in mathematics. Reston, Va: NCTM, USA.
  • Cai, J. (2003). Singaporean students’ mathematical thinking in problem solving and problem posing: An exploratory study. International Journal of Mathematical Education in Science and Technology, 34(5), 719-737.
  • Carpenter, T. P. (1989). Teaching as problem solving. In R. I.Charles & E. A. Silver (Eds), The teaching and assessing of mathematical problem solving: Volume III. Reston, VA: NCTM, ABD.
  • Campione, J.C.; Brown, A.L. and Connell, M.L. (1989). Metacognition: On the importance of understanding what you are doing. In Charles, R.I. and Silver, E.A. (Eds.). The Teaching and Assessing of Mathematical Problem Solving, Vol. 3. (pp. 93-114). Reston, VA: The National Council of Teachers of Mathematics, ABD.
  • Chuang W. (2004). Self-regulated learning strategies and self-efficacy believes of children learning English as a second Language. Yayımlanmamış doktora tezi, Ohio State Universitesi, ABD.
  • Cobb, P. (1994). Learning mathematics: Constructivist and interactionist theories of mathematical development. Dordrecht, Netherlands: Kluwer Academic.
  • Cohen J (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd ed., Hillsdale, NJ: Lawrence Erlbaum.
  • Cohen, J. ve Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences (2nd Ed.) Hillside, NJ: Prentice Hall.
  • Davidson, J.E. ve Sternberg, R.J. (1998). Smart problem solving: How metacognition helps. In D. Hacker, J. Dunlosky and A. Graesser (Eds), Metacognition in Educational Theory and Practise. Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.
  • De Corte, E. (2004). Mainstreams and perspectives in research on learning mathematics from instruction, Applied Psychology, 2(53), 279-310.
  • De Corte, E., Verschaffel, L., ve Eynde, P. O. (2000). Self-regulation: A characteristic and a goal of mathematics education. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of Self-regulation. San Diego: Academic Press.
  • De Hoys, M., Gray, E., ve Simpson, A. (2002). Students assumptions during problem solving, Second International Conference on the Teaching of Mathematics, Crete.
  • De Mesquita, P. B., ve Drake, J. C. (1994). Educational reform and self-efficacy beliefs of teachers implementing nongraded primary school programs. Teaching and Teacher Education, 10(3), 291-302.
  • Fraenkel, J.R. ve Wallen, N.E. (1996). How to design and evaluate research in education. New York: McGraw-Hill.
  • Follmer, R. (2000). Reading, mathematics and problem solving: The effects of direct instruction in the development of fourth grade students’ strategic reading and problem solving approaches to textbased, nonroutine mathematical problems. Yayınlanmamış Doktora Tezi, Widener Üniversitesi.
  • Fuchs, L.S., Fuchs, D., Prentice, K., Burch, M., Hamlett, C.L., Owen, R., ve Schroeter, K. (2003). Enhancing third-grade student’s mathematical problem solving with self regulated learning strategies. Journal of Educational Psychology, 95(2), 306-315.
  • Garofalo, J., ve Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education, 16, 163-176.
  • George, D., ve Mallery, P. (2003). SPSS for windows step by step: a simple guide and reference, 11.0 update. Boston: Allyn and Bacon.
  • Gravetter, F., ve Wallnau, L. B. (2004). Statistics for the behavioral sciences. Australia; Belmont, CA: Thomson/Wadsworth.
  • Green, S., Salkind, N. (2004). Using SPSS for Windows and Macintosh. Analyzing and understanding data. New Jersey: Prentice Hall.
  • Grissom, R. J., ve Kim, J. J. (2005). Effect sizes for research. A broad practical approach. Mahwah, NJ: Erlbaum.
  • Hair, J., Anderson, R., Black, B ve Tatham, R. (1998). Multivariate data analysis (4th edition). Upper Saddle River, NJ: Prentice-Hall. New Jersey.
  • Harskamp E, Suhre C. (2007) Schoenfeld’s problem solving theory in a student controlled learning environment. Computers & Education, 49, 822–839.
  • Higgins, K. M. (1997). The effect of long ınstruction in mathematical problem solving on middle school students’attitudes, beliefs and abilities. Journal of Experimental Education, 66(1), 5-24.
  • Hojat M. ve Xu G. A. (2004). Visitor's guide to effect sizes: statistical significance versus practical (clinical) importance of research findings. Advances in Health Science Education, 9:241–249.
  • Howard, B. C., McGee, S., Shia, R., Hong, N. S. (2001). The influence of metacognitive self-regulation and ability levels on problem solving. Annual Meeting of the American Educational Research Association Seattle, WA.
  • Kloosterman, P., ve F. Stage. (1992). Measuring beliefs about mathematical Problem Solving. School Science and Mathematics, 92, 109-15.
  • Kirk, R. E. (1996). Practical significance: A concept whose time has come. Educational and Psychological Measurement, 56, 746–759.
  • Kitsantas, A. (2002). Test preparation and performance: A self- regulatory analysis. The Journal of Experimental Education, 70(2), 101-113.
  • Korkmaz, E., Gür, H. ve Ersoy, Y. (2006). Ögretmen Adaylarının Problem Kurma Becerilerinin Belirlenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitisü Dergisi, 8(1), 64-75.
  • Krulik, S., Rudnick, J.A. (1989). Problem Solving: a handbook for senior high school teachers. Allyn and Bacon.
  • Lesh, R. A. ve Doerr, H.M. (2003). Beyond Constructivism: Models and Modeling Perspectives on Mathematics Teaching, Learning, and Problem Solving. Mahawah, N.J.: Lawrence Erlbaum.
  • Lester, F. K. (1980). Problem Solving: Is it a Problem? In M. M. Lindsquist (Ed.), Selected Issues in Mathematics (pp. 29-45). NCTM, Reston VA.
  • Lesh, R. ve M. Landau (Eds.). Acquisition of mathematics concepts and processes. Developmental psychology series, (pp. 229 - 261). New York: Academic Press.
  • Lester, F. K. (1994). Musings about Mathematical Problem Solving Research: 1970- 1994. Journal for Research in Mathematics Education, 25(6), 660-675.
  • Lester, F. K., Garofalo, J. ve Kroll, D. L. 1989. Self-confidence, interest, beliefs, and metacognition: Key influences on problem solving behavior. In: affects and mathematical problem solving (eds. D. B. McLeod, V. M. Adams), 75–88. New York: Springer-Verlag.
  • Livingston, J. (1997). Metacognition: An overview. http://www.gse.buffalo.edu/fas/shuell/cep564/Metacog.htm] adresinden indirilmiştir.
  • Nancarrow, M. (2004). Exploration of metacognition and non-routine problem based mathematics instruction on undergraduate student problem solving success. Yayımlanmamış doktora tezi, Florida State Universitesi, Florida, ABD.
  • National Council of Teachers of Mathematics: (2000) Principles and Standards for School Mathematics, National Council of Mathematics, Reston. VA
  • Newton, D., P. (2000). Teaching for understanding: What it is and How to do it. London: Roudledge-Falmer.
  • MEB (2006). Milli Eğitim Müdürlüğü İlköğretim 6.-8. Sınıf Matematik Öğretim Programı Kitabı, Ankara: Devlet Kitapları Müdürlüğü.
  • MEB (2013). Milli Eğitim Bakanlığı Talim Terbiye Kurulu Başkanlığı, Ortaokul (5-8) Matematik Dersi Öğretim Programı http://ttkb.meb.gov.tr/www/guncellenen-ogretim-programlari/icerik/151 adresinden indirilmiştir.
  • Missildine, M.(2004). The relations between self-regulated learning, motivation, anxiety, attributions, student Factors and mathematics performance among fifth and sixth grade Learners. Yayımlanmamış doktora tezi, Auborn, Alabama, ABD
  • Montague M. (1992). The effects of cognitive and metacognitive strategy instruction on the mathematical problem solving of middle school students with learning disabilities. Journal of Learning Disabilites, 25, 230-248
  • Montague M., Applegate, B. ve Marguard, K. (1993). Cognitive strategy instruction and mathematical problem- solving performance of students with learning disabilities. Learning Disabilities Research and Practice, 8(4), 4, 223-232
  • Montague M. (2003). Solve it. A practical approach to teaching mathematical problem solving skills. Exceptional Innovations, Reston.
  • Montague M. (2008). Self-regulation rtrategies to improve mathematical problem solving for students with learning disabilities. Learning Disabilities, 31, 37-44
  • Nancarrow A.M. (2009). Exploration of metacognition and non-routine problem based mathematics instruction on undergraduate student problem solving success. Yayımlanmamış doktora tezi, Florida State Universitesi, ABD.
  • Olkun, S. (2006). Yayımlanmamış Temel Matematik Ders Notları, Ankara.
  • Özsoy G., Ataman, A. (2009) The effect of metacognitive strategy training on mathematical problem solving achievement. International Electronic Journal of Elementary Education. 1(2).
  • Pape, S. J., Bell, C.V., Yetkin, İ. E. (2003). Developing mathematical thinking and self regulated learning: A teaching experiment in a seventh- grade mathematics classroom. Educational Studies in Mathematics. 53, 179-202
  • Pape, J.S., Smith, C. (2002). Self Regulated Mathematical Skills. Theory into Practice, 41(2), 91-101.
  • Pape, J.S., ve Wang, C. (2003). Middle school children’s strategic behavior: classification and relation to academic achievement and mathematical problem solving, Instructional Science, 31, 419-449.
  • Pugalee, D. K. (2001). Writing, mathematics and metacognition: Looking for connections through students’ work in mathematical problem solving. School Science and Mathematics, 101(8), 236-245.
  • Pintrich, P. R., Smith, D. A. F., Garcia, T., ve McKeachie, W. J. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ). Ann Arbor, MI: National Center for Research to Improve Postsecondary Teaching and Learning.
  • Pintrich, P. R., De Groot, E. V. (1990). Motivational and self-regulated searning components of classroom academic performance. Journal of Educational Psychology, 82(1), 33-40.
  • Pintrich, P. R. (1999). The role of motivation in promoting and sustaining self-regulated Learning. International Journal of Educational Research, 31(6), 459-470.
  • Pintrich, P. R. (2004). A conceptional framework for assessing motivation and self-Regulated learning in college students. Educational Psychology Review, 16(4).
  • Polya, G. (1953). On Teaching Problem Solving. In H. F. Fehr (Ed.), The learning of mathematics: Its theory and practice (pp. 228-270). 21st Yearbook of the NCTM. Reston, VA: NCTM.
  • Polya, G.(1957). How to solve it. Princeton, NJ: Princeton University Press, New Jersey.
  • Polya, G. (1962). Mathematical Discovery: On understanding, teaching, and learning problem solving. New York: John Wiley.
  • Polya, G. (1973). How to solve it. (2nd Ed). Princeton, NJ: Princeton University Press.
  • Posamentier, A. S., Krulick, S. (2009). Problem solving in mathematics grades 3-6: powerful strategies to deepen understanding. Thousand Oaks, CA: Corwin.
  • Posamentier, A. S., Krulick, S. (1998) Problem-solving strategies for efficient and elegent solutions. Thousand Oaks, CA: Corwin.
  • Posamentier, A.S., Smith, B. S., ve Stepelman, J. (2006). Teaching secondary mathematics: Techniques and enrichment units (7th Ed.). Upper Saddle River, NJ: Pearson Education, New Jersey.
  • Posluoğlu, Z. Y. (2002). İlköğretim matematik dersinde problem çözme becerisinin kazandırılmasında işbirliğine dayalı öğrenme yaklaşımının etkililiği. Yayımlanmamış yüksek lisans tezi, Gazi Üniversitesi, Ankara.
  • Post, T. R. (1992). Teaching mathematics in grades K-8. Boston: Allyn and Bacon.
  • Rey, R. E, Lindquist, M., M, Lambdin, D., V., Smith, N.,L.(2007). Helping children learn Mathematics.Wiley, USA.
  • Ross, M., E. Salisbury-Glennon J.D., Guarino A., Reed C.J., Marshall M. (2003). Situated self regulation: Modeling the interrelationships among instruction, assessment, learning strategies and academic performance. Educational Research and Evaluation, 9(2), 189-209.
  • Santos-Trigo, M. (1998). Instructional qualities of a successful mathematical problem solving class. International Journal of Mathematical Education in Science and Technology, 29(5), 631-646.
  • Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.
  • Schoenfeld, A. H. (1987). What's all the fuss about metacognition? In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 189-215). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Schoenfeld, A. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334–370). New York: Macmillan.
  • Schoenfeld, A. H. (1999). Looking toward the 21st century: Challenges of educational theory and practice. Educational Researcher, 28(7), 4-14.
  • Schraw, G., Brooks, D. W. (2005). Helping students self-regulate in math and sciences courses: Improving the will and the skill. Retrieved from WEB May 10, 2007. [Çevrim-içi: http://dwb.unl.edu/Chau/SR/Self_Reg.html], Erişim tarihi: 10 Mayıs 2007
  • Schunk, D. H. (2001). Social cognitive theory and self-regulated learning. Self regulated learning and academic achievement theoretical perspectives. Zimmerman, B.J.Schunk, D. H., (eds). Lawrance Erlbaum Associates Publishers, London. Pp.125-154
  • Shimizu, Y. (2003). Problem solving as a vehicle for teaching mathematics: A Japanese perspective. In teaching mathematics through problem solving: Prekindergarten- Grade 6 (eds. F.K. Lester, Jr., and R.I.Charles) Teston, VA: NCTM, 205-214
  • Silver, E. A. (1985). Research on teaching mathematical problem solving: some under represented themes and needed directions. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: multiple research perspectives. Hillsdale, NJ: Lawrance Erlbaum Associates.
  • Silver, E. A., ve Marshall, S. P. (1990). Mathematical and scientific problem solving: Findings, issues, and instructional implications. In B. F. Jones & L. Idol (Eds.), Dimensions of Thinking and Cognitive Instruction (pp.265-290). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Sönmez, I., Sünbül, A., M. (2007). The effect of metacognitive strategies in mathematical studies to students’ achievementa attitudes in fifth class at primary school. Selçuk Üniversitesi, Eğitim Fakültesi Dergisi, Sayı: 23.
  • Sungur, S. (2004). An implementation of problem based learning in high school biology course. Yayımlanmamış doktora tezi, ODTU, Ankara.
  • Tanrıseven, I. (2000). Matematik öğretiminde problem çözme stratejisi olarak dramatizasyon kullanılması. Yayımlanmamış yüksek lisans tezi, Marmara Universitesi, İstanbul.
  • Travers, N L, Sheckley, B. G. (2000). Changes in students’ self regulation based on different teaching methodologies. Annual Meeting of the Association for Institutional Research Cincinnati, OH.
  • Umay, A. (2007). Eski arkadaşımız okul matematiğinin yeni yüzü. Aydan Web Tesisleri, Ankara.
  • Van de Walle, J., A. (2007). Elementary and middle school mathematics: teaching developmentally. Pearson Education, USA.
  • Verschaffel, L., De Corte & Lasure, S. (1994). Realistic considerations in mathematical modeling of school arithmetic word problems. Learning and Instruction, 4, 272-294.
  • Verschaffel, L., De Corte, E., Lasure, S., Vaerenbergh, Bogaerts, H., & Ratinckx, E. (1999). Learning to solve mathematical application problems: A design experiment with fifth graders. Mathematical Thinking and Learning, 1 (3), 195-229.
  • Verschaffel, L., De Corte, E. (1997). Teaching realistic mathematical modeling in the elementary school: A teaching experiment with fifth grades. Journal of Research in Mathematics Education, 5, 557- 601
  • Zan, R., (2000). A metacognitive intervention in mathematics at university level. International Journal of Mathematical Education in Science and Technology, 8, 143-150.
  • Zimmerman, B. J.,& Martinez-Pons, M. (1988). Construct validation of a strategy model of self regulated learning. Journal of Educational Psychology, 80 (3), 284-290.
  • Zimmerman, B. J., Martinez-Pons, M. (1990). Students’ differences in self-regulated learning: relating grade sex and giftedness to self- efficacy and strategy use. Journal of Educational Psychology, 83 (1), 52-59.
  • Zimmerman, B. J., & Kitsantas, A. (1996). Self-regulated learning of a motoric skill: the role of goal setting and self-monitoring. Journal of Applied Sport Psychology, 8, 60-75.
  • Zimmerman, B. J. (2000). Attainment of self- regulation: A social cognitive perspective In M. Boekaerts, P R Pintrich, M. Zeidner (Eds) Handbook of self- regulation pp 13-39 San Diego, CA: Academic Press.
  • Zimmerman, B. J (2002) Becoming A self-regulated learner: An Overview Theory into Practice, 41(2), 64-70.
  • Zimmerman, B. J. (1989). A social Cognitive view of self-regulated academic learning. Journal of Educational Psychology, 81(3), 329-339.
  • Wang, C.(2004). Self-regulated learning strategies and self-efficacy beliefs of children learning english as a second language. Yayımlanmamış doktora tezi,Ohio State Universitesi,ABD.
  • Winne P. H. (1995). Inherent details in self- regulated learning. Educational Psychologist, 30(4). 173-187.
  • Xin P. Y., Jitendra A. K., Deatline-Buchman, A (2005). Effects of mathematical word problem–solving instruction on middle school students with learning problems. The Journal of Special Education, 39, 181–192.
Year 2017, , 547 - 565, 01.04.2017
https://doi.org/10.17051/ilkonline.2017.304716

Abstract

References

  • Allen, M. (2003). Eight questions on teacher preparation: What does the research say? A summary of finding. Denver, CO:Education Commission of the States.
  • Altun, M. ve Sezgin-Memnun, D. (2008). Matematik öğretmeni adaylarının rutin olmayan matematiksel problemleri çözme becerileri ve bu konudaki düşünceleri. Eğitimde Kuram ve Uygulama, 4 (2): 213-238.
  • Arslan, Ç. (2002). İlköğretim yedinci ve sekizinci sınıf öğrencilerinin problem çözme stratejilerini kullanabilme düzeyleri üzerine bir çalışma. Yayımlanmamış yüksek lisans tezi, Uludağ Universitesi, Bursa.
  • Artzt, A. ve Armour-Thomas, E. (1992). Development of a cognitive-metacognitive framework for protocol analysis of mathematical problem solving in small groups. Cognition and Instruction, 9, 137-175.
  • Ball, D.L. (1989). Breaking with experience in learning to teach mathematics: the role of a pre-service methods course. Annual Meeting of the American Educational Research Association, San Francisco, CA.
  • Ball, D. L., ve Bass, H. (2000). Interweaving content and pedagoy in teaching and learning to teach: Knowing and using mathematics. In J.Boaler (ED.), Multiple perspectives on mathematics learning and teaching. Westport, CT: Ablex Publishing.
  • Baker, M., E (1998). Mathematical problem solving skills in undergraduate preservice teacher education students. Yayımlanmamış yüksek lisans tezi, Arizona Universitesi, Arizona, ABD.
  • Bandura, A. (1986). Social foundation of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall
  • Biggs, J. (1978). Individual and group differences in study processes. British Journal of Educational Psychology, 48, 266- 279.
  • Biggs, J. (1985). The role of metalearning in study processes. British Journal of Educational Psychology, 55, 185-212.
  • Buschman, L. (2003). Share and compare: A teacher’s story about helping children become problem solvers in mathematics. Reston, Va: NCTM, USA.
  • Cai, J. (2003). Singaporean students’ mathematical thinking in problem solving and problem posing: An exploratory study. International Journal of Mathematical Education in Science and Technology, 34(5), 719-737.
  • Carpenter, T. P. (1989). Teaching as problem solving. In R. I.Charles & E. A. Silver (Eds), The teaching and assessing of mathematical problem solving: Volume III. Reston, VA: NCTM, ABD.
  • Campione, J.C.; Brown, A.L. and Connell, M.L. (1989). Metacognition: On the importance of understanding what you are doing. In Charles, R.I. and Silver, E.A. (Eds.). The Teaching and Assessing of Mathematical Problem Solving, Vol. 3. (pp. 93-114). Reston, VA: The National Council of Teachers of Mathematics, ABD.
  • Chuang W. (2004). Self-regulated learning strategies and self-efficacy believes of children learning English as a second Language. Yayımlanmamış doktora tezi, Ohio State Universitesi, ABD.
  • Cobb, P. (1994). Learning mathematics: Constructivist and interactionist theories of mathematical development. Dordrecht, Netherlands: Kluwer Academic.
  • Cohen J (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd ed., Hillsdale, NJ: Lawrence Erlbaum.
  • Cohen, J. ve Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences (2nd Ed.) Hillside, NJ: Prentice Hall.
  • Davidson, J.E. ve Sternberg, R.J. (1998). Smart problem solving: How metacognition helps. In D. Hacker, J. Dunlosky and A. Graesser (Eds), Metacognition in Educational Theory and Practise. Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.
  • De Corte, E. (2004). Mainstreams and perspectives in research on learning mathematics from instruction, Applied Psychology, 2(53), 279-310.
  • De Corte, E., Verschaffel, L., ve Eynde, P. O. (2000). Self-regulation: A characteristic and a goal of mathematics education. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of Self-regulation. San Diego: Academic Press.
  • De Hoys, M., Gray, E., ve Simpson, A. (2002). Students assumptions during problem solving, Second International Conference on the Teaching of Mathematics, Crete.
  • De Mesquita, P. B., ve Drake, J. C. (1994). Educational reform and self-efficacy beliefs of teachers implementing nongraded primary school programs. Teaching and Teacher Education, 10(3), 291-302.
  • Fraenkel, J.R. ve Wallen, N.E. (1996). How to design and evaluate research in education. New York: McGraw-Hill.
  • Follmer, R. (2000). Reading, mathematics and problem solving: The effects of direct instruction in the development of fourth grade students’ strategic reading and problem solving approaches to textbased, nonroutine mathematical problems. Yayınlanmamış Doktora Tezi, Widener Üniversitesi.
  • Fuchs, L.S., Fuchs, D., Prentice, K., Burch, M., Hamlett, C.L., Owen, R., ve Schroeter, K. (2003). Enhancing third-grade student’s mathematical problem solving with self regulated learning strategies. Journal of Educational Psychology, 95(2), 306-315.
  • Garofalo, J., ve Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education, 16, 163-176.
  • George, D., ve Mallery, P. (2003). SPSS for windows step by step: a simple guide and reference, 11.0 update. Boston: Allyn and Bacon.
  • Gravetter, F., ve Wallnau, L. B. (2004). Statistics for the behavioral sciences. Australia; Belmont, CA: Thomson/Wadsworth.
  • Green, S., Salkind, N. (2004). Using SPSS for Windows and Macintosh. Analyzing and understanding data. New Jersey: Prentice Hall.
  • Grissom, R. J., ve Kim, J. J. (2005). Effect sizes for research. A broad practical approach. Mahwah, NJ: Erlbaum.
  • Hair, J., Anderson, R., Black, B ve Tatham, R. (1998). Multivariate data analysis (4th edition). Upper Saddle River, NJ: Prentice-Hall. New Jersey.
  • Harskamp E, Suhre C. (2007) Schoenfeld’s problem solving theory in a student controlled learning environment. Computers & Education, 49, 822–839.
  • Higgins, K. M. (1997). The effect of long ınstruction in mathematical problem solving on middle school students’attitudes, beliefs and abilities. Journal of Experimental Education, 66(1), 5-24.
  • Hojat M. ve Xu G. A. (2004). Visitor's guide to effect sizes: statistical significance versus practical (clinical) importance of research findings. Advances in Health Science Education, 9:241–249.
  • Howard, B. C., McGee, S., Shia, R., Hong, N. S. (2001). The influence of metacognitive self-regulation and ability levels on problem solving. Annual Meeting of the American Educational Research Association Seattle, WA.
  • Kloosterman, P., ve F. Stage. (1992). Measuring beliefs about mathematical Problem Solving. School Science and Mathematics, 92, 109-15.
  • Kirk, R. E. (1996). Practical significance: A concept whose time has come. Educational and Psychological Measurement, 56, 746–759.
  • Kitsantas, A. (2002). Test preparation and performance: A self- regulatory analysis. The Journal of Experimental Education, 70(2), 101-113.
  • Korkmaz, E., Gür, H. ve Ersoy, Y. (2006). Ögretmen Adaylarının Problem Kurma Becerilerinin Belirlenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitisü Dergisi, 8(1), 64-75.
  • Krulik, S., Rudnick, J.A. (1989). Problem Solving: a handbook for senior high school teachers. Allyn and Bacon.
  • Lesh, R. A. ve Doerr, H.M. (2003). Beyond Constructivism: Models and Modeling Perspectives on Mathematics Teaching, Learning, and Problem Solving. Mahawah, N.J.: Lawrence Erlbaum.
  • Lester, F. K. (1980). Problem Solving: Is it a Problem? In M. M. Lindsquist (Ed.), Selected Issues in Mathematics (pp. 29-45). NCTM, Reston VA.
  • Lesh, R. ve M. Landau (Eds.). Acquisition of mathematics concepts and processes. Developmental psychology series, (pp. 229 - 261). New York: Academic Press.
  • Lester, F. K. (1994). Musings about Mathematical Problem Solving Research: 1970- 1994. Journal for Research in Mathematics Education, 25(6), 660-675.
  • Lester, F. K., Garofalo, J. ve Kroll, D. L. 1989. Self-confidence, interest, beliefs, and metacognition: Key influences on problem solving behavior. In: affects and mathematical problem solving (eds. D. B. McLeod, V. M. Adams), 75–88. New York: Springer-Verlag.
  • Livingston, J. (1997). Metacognition: An overview. http://www.gse.buffalo.edu/fas/shuell/cep564/Metacog.htm] adresinden indirilmiştir.
  • Nancarrow, M. (2004). Exploration of metacognition and non-routine problem based mathematics instruction on undergraduate student problem solving success. Yayımlanmamış doktora tezi, Florida State Universitesi, Florida, ABD.
  • National Council of Teachers of Mathematics: (2000) Principles and Standards for School Mathematics, National Council of Mathematics, Reston. VA
  • Newton, D., P. (2000). Teaching for understanding: What it is and How to do it. London: Roudledge-Falmer.
  • MEB (2006). Milli Eğitim Müdürlüğü İlköğretim 6.-8. Sınıf Matematik Öğretim Programı Kitabı, Ankara: Devlet Kitapları Müdürlüğü.
  • MEB (2013). Milli Eğitim Bakanlığı Talim Terbiye Kurulu Başkanlığı, Ortaokul (5-8) Matematik Dersi Öğretim Programı http://ttkb.meb.gov.tr/www/guncellenen-ogretim-programlari/icerik/151 adresinden indirilmiştir.
  • Missildine, M.(2004). The relations between self-regulated learning, motivation, anxiety, attributions, student Factors and mathematics performance among fifth and sixth grade Learners. Yayımlanmamış doktora tezi, Auborn, Alabama, ABD
  • Montague M. (1992). The effects of cognitive and metacognitive strategy instruction on the mathematical problem solving of middle school students with learning disabilities. Journal of Learning Disabilites, 25, 230-248
  • Montague M., Applegate, B. ve Marguard, K. (1993). Cognitive strategy instruction and mathematical problem- solving performance of students with learning disabilities. Learning Disabilities Research and Practice, 8(4), 4, 223-232
  • Montague M. (2003). Solve it. A practical approach to teaching mathematical problem solving skills. Exceptional Innovations, Reston.
  • Montague M. (2008). Self-regulation rtrategies to improve mathematical problem solving for students with learning disabilities. Learning Disabilities, 31, 37-44
  • Nancarrow A.M. (2009). Exploration of metacognition and non-routine problem based mathematics instruction on undergraduate student problem solving success. Yayımlanmamış doktora tezi, Florida State Universitesi, ABD.
  • Olkun, S. (2006). Yayımlanmamış Temel Matematik Ders Notları, Ankara.
  • Özsoy G., Ataman, A. (2009) The effect of metacognitive strategy training on mathematical problem solving achievement. International Electronic Journal of Elementary Education. 1(2).
  • Pape, S. J., Bell, C.V., Yetkin, İ. E. (2003). Developing mathematical thinking and self regulated learning: A teaching experiment in a seventh- grade mathematics classroom. Educational Studies in Mathematics. 53, 179-202
  • Pape, J.S., Smith, C. (2002). Self Regulated Mathematical Skills. Theory into Practice, 41(2), 91-101.
  • Pape, J.S., ve Wang, C. (2003). Middle school children’s strategic behavior: classification and relation to academic achievement and mathematical problem solving, Instructional Science, 31, 419-449.
  • Pugalee, D. K. (2001). Writing, mathematics and metacognition: Looking for connections through students’ work in mathematical problem solving. School Science and Mathematics, 101(8), 236-245.
  • Pintrich, P. R., Smith, D. A. F., Garcia, T., ve McKeachie, W. J. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ). Ann Arbor, MI: National Center for Research to Improve Postsecondary Teaching and Learning.
  • Pintrich, P. R., De Groot, E. V. (1990). Motivational and self-regulated searning components of classroom academic performance. Journal of Educational Psychology, 82(1), 33-40.
  • Pintrich, P. R. (1999). The role of motivation in promoting and sustaining self-regulated Learning. International Journal of Educational Research, 31(6), 459-470.
  • Pintrich, P. R. (2004). A conceptional framework for assessing motivation and self-Regulated learning in college students. Educational Psychology Review, 16(4).
  • Polya, G. (1953). On Teaching Problem Solving. In H. F. Fehr (Ed.), The learning of mathematics: Its theory and practice (pp. 228-270). 21st Yearbook of the NCTM. Reston, VA: NCTM.
  • Polya, G.(1957). How to solve it. Princeton, NJ: Princeton University Press, New Jersey.
  • Polya, G. (1962). Mathematical Discovery: On understanding, teaching, and learning problem solving. New York: John Wiley.
  • Polya, G. (1973). How to solve it. (2nd Ed). Princeton, NJ: Princeton University Press.
  • Posamentier, A. S., Krulick, S. (2009). Problem solving in mathematics grades 3-6: powerful strategies to deepen understanding. Thousand Oaks, CA: Corwin.
  • Posamentier, A. S., Krulick, S. (1998) Problem-solving strategies for efficient and elegent solutions. Thousand Oaks, CA: Corwin.
  • Posamentier, A.S., Smith, B. S., ve Stepelman, J. (2006). Teaching secondary mathematics: Techniques and enrichment units (7th Ed.). Upper Saddle River, NJ: Pearson Education, New Jersey.
  • Posluoğlu, Z. Y. (2002). İlköğretim matematik dersinde problem çözme becerisinin kazandırılmasında işbirliğine dayalı öğrenme yaklaşımının etkililiği. Yayımlanmamış yüksek lisans tezi, Gazi Üniversitesi, Ankara.
  • Post, T. R. (1992). Teaching mathematics in grades K-8. Boston: Allyn and Bacon.
  • Rey, R. E, Lindquist, M., M, Lambdin, D., V., Smith, N.,L.(2007). Helping children learn Mathematics.Wiley, USA.
  • Ross, M., E. Salisbury-Glennon J.D., Guarino A., Reed C.J., Marshall M. (2003). Situated self regulation: Modeling the interrelationships among instruction, assessment, learning strategies and academic performance. Educational Research and Evaluation, 9(2), 189-209.
  • Santos-Trigo, M. (1998). Instructional qualities of a successful mathematical problem solving class. International Journal of Mathematical Education in Science and Technology, 29(5), 631-646.
  • Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.
  • Schoenfeld, A. H. (1987). What's all the fuss about metacognition? In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 189-215). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Schoenfeld, A. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334–370). New York: Macmillan.
  • Schoenfeld, A. H. (1999). Looking toward the 21st century: Challenges of educational theory and practice. Educational Researcher, 28(7), 4-14.
  • Schraw, G., Brooks, D. W. (2005). Helping students self-regulate in math and sciences courses: Improving the will and the skill. Retrieved from WEB May 10, 2007. [Çevrim-içi: http://dwb.unl.edu/Chau/SR/Self_Reg.html], Erişim tarihi: 10 Mayıs 2007
  • Schunk, D. H. (2001). Social cognitive theory and self-regulated learning. Self regulated learning and academic achievement theoretical perspectives. Zimmerman, B.J.Schunk, D. H., (eds). Lawrance Erlbaum Associates Publishers, London. Pp.125-154
  • Shimizu, Y. (2003). Problem solving as a vehicle for teaching mathematics: A Japanese perspective. In teaching mathematics through problem solving: Prekindergarten- Grade 6 (eds. F.K. Lester, Jr., and R.I.Charles) Teston, VA: NCTM, 205-214
  • Silver, E. A. (1985). Research on teaching mathematical problem solving: some under represented themes and needed directions. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: multiple research perspectives. Hillsdale, NJ: Lawrance Erlbaum Associates.
  • Silver, E. A., ve Marshall, S. P. (1990). Mathematical and scientific problem solving: Findings, issues, and instructional implications. In B. F. Jones & L. Idol (Eds.), Dimensions of Thinking and Cognitive Instruction (pp.265-290). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Sönmez, I., Sünbül, A., M. (2007). The effect of metacognitive strategies in mathematical studies to students’ achievementa attitudes in fifth class at primary school. Selçuk Üniversitesi, Eğitim Fakültesi Dergisi, Sayı: 23.
  • Sungur, S. (2004). An implementation of problem based learning in high school biology course. Yayımlanmamış doktora tezi, ODTU, Ankara.
  • Tanrıseven, I. (2000). Matematik öğretiminde problem çözme stratejisi olarak dramatizasyon kullanılması. Yayımlanmamış yüksek lisans tezi, Marmara Universitesi, İstanbul.
  • Travers, N L, Sheckley, B. G. (2000). Changes in students’ self regulation based on different teaching methodologies. Annual Meeting of the Association for Institutional Research Cincinnati, OH.
  • Umay, A. (2007). Eski arkadaşımız okul matematiğinin yeni yüzü. Aydan Web Tesisleri, Ankara.
  • Van de Walle, J., A. (2007). Elementary and middle school mathematics: teaching developmentally. Pearson Education, USA.
  • Verschaffel, L., De Corte & Lasure, S. (1994). Realistic considerations in mathematical modeling of school arithmetic word problems. Learning and Instruction, 4, 272-294.
  • Verschaffel, L., De Corte, E., Lasure, S., Vaerenbergh, Bogaerts, H., & Ratinckx, E. (1999). Learning to solve mathematical application problems: A design experiment with fifth graders. Mathematical Thinking and Learning, 1 (3), 195-229.
  • Verschaffel, L., De Corte, E. (1997). Teaching realistic mathematical modeling in the elementary school: A teaching experiment with fifth grades. Journal of Research in Mathematics Education, 5, 557- 601
  • Zan, R., (2000). A metacognitive intervention in mathematics at university level. International Journal of Mathematical Education in Science and Technology, 8, 143-150.
  • Zimmerman, B. J.,& Martinez-Pons, M. (1988). Construct validation of a strategy model of self regulated learning. Journal of Educational Psychology, 80 (3), 284-290.
  • Zimmerman, B. J., Martinez-Pons, M. (1990). Students’ differences in self-regulated learning: relating grade sex and giftedness to self- efficacy and strategy use. Journal of Educational Psychology, 83 (1), 52-59.
  • Zimmerman, B. J., & Kitsantas, A. (1996). Self-regulated learning of a motoric skill: the role of goal setting and self-monitoring. Journal of Applied Sport Psychology, 8, 60-75.
  • Zimmerman, B. J. (2000). Attainment of self- regulation: A social cognitive perspective In M. Boekaerts, P R Pintrich, M. Zeidner (Eds) Handbook of self- regulation pp 13-39 San Diego, CA: Academic Press.
  • Zimmerman, B. J (2002) Becoming A self-regulated learner: An Overview Theory into Practice, 41(2), 64-70.
  • Zimmerman, B. J. (1989). A social Cognitive view of self-regulated academic learning. Journal of Educational Psychology, 81(3), 329-339.
  • Wang, C.(2004). Self-regulated learning strategies and self-efficacy beliefs of children learning english as a second language. Yayımlanmamış doktora tezi,Ohio State Universitesi,ABD.
  • Winne P. H. (1995). Inherent details in self- regulated learning. Educational Psychologist, 30(4). 173-187.
  • Xin P. Y., Jitendra A. K., Deatline-Buchman, A (2005). Effects of mathematical word problem–solving instruction on middle school students with learning problems. The Journal of Special Education, 39, 181–192.
There are 108 citations in total.

Details

Journal Section Araştırma Articlesi
Authors

Zeynep Sonay Ay

Safure Bulut

Publication Date April 1, 2017
Published in Issue Year 2017

Cite

APA Ay, Z. S., & Bulut, S. (2017). Üst Bilişsel Sorgulamaya Dayalı Problem Çözme Yaklaşımının Öz-düzenleme Becerilerine Etkisinin Yarı Deneysel Bir Çalışma İle Araştırılması. İlköğretim Online, 16(2), 547-565. https://doi.org/10.17051/ilkonline.2017.304716
AMA Ay ZS, Bulut S. Üst Bilişsel Sorgulamaya Dayalı Problem Çözme Yaklaşımının Öz-düzenleme Becerilerine Etkisinin Yarı Deneysel Bir Çalışma İle Araştırılması. İOO. April 2017;16(2):547-565. doi:10.17051/ilkonline.2017.304716
Chicago Ay, Zeynep Sonay, and Safure Bulut. “Üst Bilişsel Sorgulamaya Dayalı Problem Çözme Yaklaşımının Öz-düzenleme Becerilerine Etkisinin Yarı Deneysel Bir Çalışma İle Araştırılması”. İlköğretim Online 16, no. 2 (April 2017): 547-65. https://doi.org/10.17051/ilkonline.2017.304716.
EndNote Ay ZS, Bulut S (April 1, 2017) Üst Bilişsel Sorgulamaya Dayalı Problem Çözme Yaklaşımının Öz-düzenleme Becerilerine Etkisinin Yarı Deneysel Bir Çalışma İle Araştırılması. İlköğretim Online 16 2 547–565.
IEEE Z. S. Ay and S. Bulut, “Üst Bilişsel Sorgulamaya Dayalı Problem Çözme Yaklaşımının Öz-düzenleme Becerilerine Etkisinin Yarı Deneysel Bir Çalışma İle Araştırılması”, İOO, vol. 16, no. 2, pp. 547–565, 2017, doi: 10.17051/ilkonline.2017.304716.
ISNAD Ay, Zeynep Sonay - Bulut, Safure. “Üst Bilişsel Sorgulamaya Dayalı Problem Çözme Yaklaşımının Öz-düzenleme Becerilerine Etkisinin Yarı Deneysel Bir Çalışma İle Araştırılması”. İlköğretim Online 16/2 (April 2017), 547-565. https://doi.org/10.17051/ilkonline.2017.304716.
JAMA Ay ZS, Bulut S. Üst Bilişsel Sorgulamaya Dayalı Problem Çözme Yaklaşımının Öz-düzenleme Becerilerine Etkisinin Yarı Deneysel Bir Çalışma İle Araştırılması. İOO. 2017;16:547–565.
MLA Ay, Zeynep Sonay and Safure Bulut. “Üst Bilişsel Sorgulamaya Dayalı Problem Çözme Yaklaşımının Öz-düzenleme Becerilerine Etkisinin Yarı Deneysel Bir Çalışma İle Araştırılması”. İlköğretim Online, vol. 16, no. 2, 2017, pp. 547-65, doi:10.17051/ilkonline.2017.304716.
Vancouver Ay ZS, Bulut S. Üst Bilişsel Sorgulamaya Dayalı Problem Çözme Yaklaşımının Öz-düzenleme Becerilerine Etkisinin Yarı Deneysel Bir Çalışma İle Araştırılması. İOO. 2017;16(2):547-65.