Review
BibTex RIS Cite

BİYOMÜHENDİSLİKTE KULLANILAN KAN ANALOGLARINA GENEL BİR BAKIŞ

Year 2020, Volume: 8 Issue: 3, 946 - 963, 30.11.2020
https://doi.org/10.33715/inonusaglik.794844

Abstract

Biyomühendislikte yapılan çalışmalarda in vitro deneyler için gerçek kanın kullanılması; elde edilmesi, saklanması, manipülasyonu, büyük miktarlarda gerekli olması, hava ile temas ettiğinde yapısının değişmesi ve toksisitesi gibi nedenlerden dolayı pek mümkün değildir. Bu yüzden in vitro ortamda yapılan deneylerde kan yerine kullanılacak sıvıların araştırılması önemli bir konudur. Bu sıvıların insan kanına benzer reolojik özellikler göstermesi beklenir. Fakat kan reolojisi son derece karmaşık olduğundan, kanın tüm reolojik özelliklerini karşılayan analog sıvılar geliştirmek oldukça zordur. Tek bir analog sıvısı ile kanın bütün özellikleri aynı anda sağlanamadığından, laboratuvar ortamında yapılacak çalışmanın özelliğine bağlı olarak kan yerine geçecek farklı kan analoglarının seçimi yapılmaktadır. Yapılan çoğu çalışmalarda, bu kan analogları için hazırlanan bileşimlere Xanthan Gum (XG) ilavesiyle kanın reolojik özelliklerine en yakın davranış sergileyen analoglar ön plana çıkmaktadır. Bu çalışmamızda in vitro koşullarda kanın yerine geçebilecek kan analog sıvılarının araştırılması yapılmış, bu analogların reolojik özellikleri tablolarla sunulmuş ve önerilerde bulunulmuştur.

Supporting Institution

İnönü Üniversitesi Bilimsel Araştırmalar Projeleri Birimi-BAP

Project Number

FDK-2017-775

Thanks

Bu çalışma İnönü Üniversitesi Bilimsel Araştırma Projeleri Birimi (Proje No: FDK-2017-775) tarafından desteklenmiştir. Katkılarından dolayı İnönü Üniversitesi Bilimsel Araştırma Projeleri Birimi’ne teşekkürlerimizi sunarız.

References

  • Anastasiou, A. D., Spyrogianni, A. S., Koskinas, K. C., Giannoglou, G. D., Paras, S. V. (2012). Experimental investigation of the flow of a blood analogue fluid in a replica of a bifurcated small artery. Medical Engineering and Physics, 34, 211–218.
  • Babbar, S. B., Jain, R. (2006). Xanthan gum: An economical partial substitute for agar in microbial culture media. Current Microbiology, 52, 287–292.
  • Benard, N., Jarny, S., Coisne, D. (2007). Definition of an experimental blood like fluid for laser measurements in cardiovascular studies. Applied Rheology, 17, 44251- 1-44251-8.
  • Bernacca, G. M., Gulbransen, M. J., Wilkinson, R., Wheatley, D. J. (1998). In vitro blood compatibility of surface-modified polyurethanes. Biomaterials, 19, 1151-1165.
  • Botnar, R., Rappitsch, G., Beat Scheidegger, M., Liepsch, D., Perktold, K., Boesiger, P. (2000). Hemodynamics in the carotid artery bifurcation: A comparison between numerical simulations and in vitro MRI measurements. Journal of Biomechanics, 33, 137-144.
  • Brindise, M. C., Busse, M. M., Vlachos, P. P. (2018). Density- and viscosity-matched Newtonian and non-Newtonian blood-analog solutions with PDMS refractive index. Experiments in Fluids, 59, 173-1-173-8.
  • Brookshier, K. A., Tarbell, J. M. (1993). Evaluation of a transparent blood analog fluid: Aqueous Xanthan gum/glycerin. Biorheology, 30, 107-116.
  • Calejo, J., Pinho, D., Galindo-Rosales, F. J., Lima, R., Campo-Deaño, L. (2016). Particulate blood analogues reproducing the erythrocytes cell-free layer in a microfluidic device containing a hyperbolic contraction. Micromachines, 7, 4-1-4-12.
  • Campo-Deaño, L., Dullens, R. P. A., Aarts, D. G. A. L., Pinho, F. T., Oliveira, M. S. N. (2013). Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system. Biomicrofluidics, 7, 034102-1-034102-11.
  • Carey, R. F., Herman, B. A. (1989). The effects of a glycerin-based blood analog on the testing of bioprosthetic heart valves. Journal of Biomechanics, 22(11/12), 1185-1192.
  • Chandran, K. B., Khalighi, B. (1984). A note on the blood analog for in–vitro testing of heart valve bioprostheses. Transactions of the ASME, 106, 112-114.
  • Chhabra, R. P., Richardson, J. F. (2008). Non-newtonian flow and applied rheology. Non-Newtonian Flow and Applied Rheology, Chapter 1, 1-55.
  • Chien, S. (1970). Shear dependence of effective cell volume as a determinant of blood viscosity. Science, 168, 977–979.
  • Chien, S. (1975). Biophysical Behavior of Red Cells in Suspensions. In The Red Blood Cell. 2nd edn, Vol. II. Academic, New York. Chapter 26, 1031–1133.
  • Chien, S., Usami, S., Taylor, H. M., Lundberg, J. L., Gregersen, M. I. (1966). Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. Journal of Applied Physiolog,. 21, 81–87.
  • Completo, C., Geraldes, V., Semiao, V. (2014). Rheological and dynamical characterization of blood analogue flows in a slit. International Journal of Heat and Fluid Flow, 46, 17–28.
  • Crawshaw, H. M., Quist, W. C., Serrallach, E., Valeri, C. R., Logerfo, F. W. (1980). Flow disturbance at the distal end-to-side anastomosis: effect of patency of the proximal outflow segment and angle of anastomosis. Archives of Surgery, 115, 1280–1284.
  • Deplano, V., Knapp, Y., Bailly, L., Bertrand, E. (2014). Flow of a blood analogue fluid in a compliant abdominal aortic aneurysm model: Experimental modelling. Journal of Biomechanics, 47, 1262–1269.
  • Deutsch, S., Tarbell, J. M., Manning, K. B., Rosenberg, G., Fontaine, A. A. (2006). Experimental fluid mechanics of pulsatile artificial blood pumps. Annual Review of Fluid Mechanics, 38, 65–86.
  • Farina, A., Mikelic, A.,Saccomandi, G., Sequeira, A., Toro, E. F. (2018). Non-Newtonian fluid mechanics and complex flows: springer, 1-89.
  • Fournier, R. L. (2011). Basic transport phenomena in biomedical engineering third edition. CRC Press.
  • Fukada, E., Seaman, G. V. F., Liepsch, D., Lee, M., Friis-Baastad, L. (1989). Blood modeling using polystyrene microspheres. Biorheology, 26, 401-413.
  • Gijsen, F. J. H., Allanic, E., Van De Vosse, F. N., Janssen, J. D. (1999). The influence of the non-Newtonian properties of blood on the flow in large arteries: Unsteady flow in a 90°curved tube. Journal of Biomechanics, 32, 705-713.
  • Gijsen, F. J. H., Van De Vosse, F. N., Janssen, J. D. (1999). The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model. Journal of Biomechanics, 32, 601-608.
  • Gray, J. D., Owen, I., Escudier, M. P. (2007). Dynamic scaling of unsteady shear-thinning non-Newtonian fluid flows in a large-scale model of a distal anastomosis. Experiments in Fluids, 43, 535–546.
  • Hoskins, P. R., Anderson, T., McDicken, W. N. (1989). A computer controlled flow phantom for generation of physiological Doppler waveforms. Physics in Medicine and Biology, 34(11), 1709-1717.
  • Kim, S., Cho, Y. I., Jeon, A. H., Hogenauer, B., Kensey, K. R. (2000). A new method for blood viscosity measurement. Journal of Non-Newtonian Fluid Mechanics, 94, 47-56.
  • Kimme-Smith, C., Hussain, R., Duerinckx, A., Tessler, F., Grant, E. (1990). Assurance of consistent peak-velocity measurements with a variety of duplex doppler instruments. Radiology, 177, 265–272.
  • Kita, R., Dobashi, T. (2015). Nano/Micro science and technology in biorheology: principles, methods, and applications. nano/micro science and technology in biorheology: principles, methods, and applications. Springer Japan, 1-444.
  • Lewis, J. M. O., Macleod, N. (1983). A blood analogue for the experimental study of flow-related thrombosis at prosthetic heart valves. Cardiovascular Research, 17, 466-475.
  • Liepsch, D. (1989). Biofluid mechanics: Blood flow in large vessels. Springer Munich.. 351-408.
  • Mann, D. E., Tarbell, J. M. (1990). Flow of non-Newtonian blood analog fluids in rigid curved and straight artery models. Biorheology, 27, 711-733.
  • Moita, A. S., Caldeira, C., Jacinto, F., Lima, R., Vega, E. J., Moreira, A. L. N. (2019). Cell deformability studies for clinical diagnostics: Tests with blood analogue fluids using a drop based microfluidic device. In BIODEVICES 2019 - 12th International Conference on Biomedical Electronics and Devices, Proceedings; Part of 12th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2019, 99-107.
  • Moravec, S., Liepsch, D. (1983). Flow investigations in a model of a three-dimensional human artery with Newtonian and non-Newtonian fluids. Part I. Biorheology, 20, 745-759.
  • Najjari, M. R., Hinke, J. A., Bulusu, K. V., Plesniak, M. W. (2016). On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments. Experiments in Fluids, 57, 96-1-96-6.
  • Nandy, S., Tarbell, J. M. (1987). Flush mounted hot film anemometer measurement of wall shear stress distal to a tri-leaflet valve for Newtonian and non-Newtonian blood analog fluids. Biorheology, 24,483-500.
  • Nguyen, T. T., Biadillah, Y., Mongrain, R., Brunette, J., Tardif, J. C., Bertrand, O. F. (2004). A method for matching the refractive index and kinematic viscosity of a blood analog for flow visualization in hydraulic cardiovascular models. Journal of Biomechanical Engineering, 126, 529-535.
  • Nugent, A. H., Bertram, C. D. (2010). Three-dimensional ray tracing through curvilinear interfaces with application to laser Doppler anemometry in a blood analogue fluid. Medical and Biological Engineering and Computing, 48, 147–156.
  • Oates, C. P. (1991). Towards an ideal blood analogue for Doppler ultrasound phantoms. Physics in Medicine and Biology, 36(11), 1433-1442.
  • Pincombe, B., Mazumdar, J. (1997). The effects of post-stenotic dilatations on the flow of a blood analogue through stenosed coronary arteries. Mathematical and Computer Modelling, 25(6), 57-70.
  • Pinho, D., Muñoz-Sánchez , B. N,. Anes, C. F,. Vega, E. J,. Lima, R. (2019). Flexible PDMS microparticles to mimic RBCs in blood articulate analogue fluids. Mechanics Research Communications, 100 (103399), 1-7.
  • Pohl, M., Wendt, M. O., Werner, S., Koch, B., Lerche, D. (1996). In vitro testing of artificial heart valves: Comparison between Newtonian and Non-Newtonian fluids. Artificial Organs, 20(1), 37-46.
  • Pries, A. R., Secomb, T. W., Geßner, T., Sperandio, M. B., Gross, J. F., Gaehtgens, P. (1994). Resistance to blood flow in microvessels in vivo. Circulation Research, 75, 904-915.
  • Raine-Fenning, N. J., Nordin, N. M., Ramnarine, K. V., Campbell, B. K., Clewes, J. S., Perkins, A., … Johnson, I. R. (2008). Determining the relationship between three-dimensional power Doppler data and true blood flow characteristics: An in-vitro flow phantom experiment. Ultrasound in Obstetrics and Gynecology, 32, 540–550.
  • Ramnarine, K. V., Nassiri, D. K., Hoskins, P. R., Lubbers, J. (1998). Validation of a new blood-mimicking fluid for use in Doppler flow test objects. Ultrasound in Medicine and Biology, 24(3), 451–459.
  • Rogers, K. (2011). Blood Physiology and Circulation (The Human Body). Britannica Educational Publishing, 1-92.
  • Shibeshi, S. S., Collins, W. E. (2005). The rheology of blood flow in a branced arterial system. Applied Rheology, 15, 398-405.
  • Sousa, P. C., Pinho, F. T., Oliveira, M. S. N., Alves, M. A. (2011). Extensional flow of blood analog solutions in microfluidic devices. Biomicrofluidics, 5, 014108-1-014108-19.
  • How, T.V. (1996). Advances in Hemodynamics and Hemorheology. Elsevier Science, 1-112.
  • Throckmorton, A. L., Ballman, K. K., Myers, C. D., Litwak, K. N., Frankel, S. H., Rodefeld, M. D. (2007). Mechanical cavopulmonary assist for the univentricular Fontan circulation using a novel folding propeller blood pump. ASAIO Journal, 53, 734-741.
  • Vallet, G., Meskat, W. (1975). Rheological Theories · Measuring Techniques in Rheology Test Methods in Rheology · Fractures Rheological Properties of Materials · Rheo-Optics · Biorheology. Steinkopff. Chapter 72, 483-487.
  • Van Den Broek, C. N., Pullens, R. A. A., Frøbert, O., Rutten, M. C. M., Den Hartog, W. F., Van De Vosse, F. N. (2008). Medium with blood-analog mechanical properties for cardiovascular tissue culturing. Biorheology, 45, 651–661.
  • Waite, L., Fine, J. (2007). Applied Biofluid Mechanics. Applied biofluid mechanics. McGraw-Hill Osborne Media, 1-333.
  • Wickramasinghe, S. R., Kahr, C. M., Han, B. (2002). Mass transfer in blood oxygenators using blood analogue fluids. Biotechnology Progress, 18, 867-873.
  • Yılmaz, F., Gündogdu, M. Y. (2008). A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Korea Australia Rheology Journal, 20(4),197-211.
  • Yousif, M. Y., Holdsworth, D. W., Poepping, T. L. (2011). A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Experiments in Fluids, 50, 769–774.
  • Zhang, G., Zhang, M., Yang, W., Zhu, X., Hu, Q. (2008). Effects of non-Newtonian fluid on centrifugal blood pump performance. International Communications in Heat and Mass Transfer, 35, 613–617.
  • Zydney, A. L., Oliver, J. D., Colton, C. K. (1991). A constitutive equation for the viscosity of stored red cell suspensions: Effect of hematocrit, shear rate, and suspending phase. Journal of Rheology, 35(8), 1639-1680.

An Overview of Blood Analogues Used in Bioengineering

Year 2020, Volume: 8 Issue: 3, 946 - 963, 30.11.2020
https://doi.org/10.33715/inonusaglik.794844

Abstract

The use of real blood for in vitro experiments in bioengineering studies is unlikely not possible due to reasons as; obtaining, storing, manipulating, being required in large quantities, changing of the structure when exposed to air and toxicity. Therefore, it is an important issue to investigate the fluids that will be used instead of blood in the in vitro experiments. These fluids are expected to exhibit rheological properties similar to human blood. However, as blood rheology is extremely complex, it is difficult to develop blood analogue fluids that meet all rheological properties of blood. Since all properties of blood cannot be achieved at the same time with a single analogue fluid, depending on the characteristics of the study in laboratory environment different blood analogues are selected to replace blood. In most studies, analogues exhibiting the closest behavior to the rheological properties of the blood come to the fore with the addition of Xanthan Gum (XG) to the compositions prepared for these blood analogs. In this study; blood analogue fluids that can replace blood in in vitro conditions have been investigated, the main characteristics of these analogs have been presented with tables and suggestions have been made. 

Project Number

FDK-2017-775

References

  • Anastasiou, A. D., Spyrogianni, A. S., Koskinas, K. C., Giannoglou, G. D., Paras, S. V. (2012). Experimental investigation of the flow of a blood analogue fluid in a replica of a bifurcated small artery. Medical Engineering and Physics, 34, 211–218.
  • Babbar, S. B., Jain, R. (2006). Xanthan gum: An economical partial substitute for agar in microbial culture media. Current Microbiology, 52, 287–292.
  • Benard, N., Jarny, S., Coisne, D. (2007). Definition of an experimental blood like fluid for laser measurements in cardiovascular studies. Applied Rheology, 17, 44251- 1-44251-8.
  • Bernacca, G. M., Gulbransen, M. J., Wilkinson, R., Wheatley, D. J. (1998). In vitro blood compatibility of surface-modified polyurethanes. Biomaterials, 19, 1151-1165.
  • Botnar, R., Rappitsch, G., Beat Scheidegger, M., Liepsch, D., Perktold, K., Boesiger, P. (2000). Hemodynamics in the carotid artery bifurcation: A comparison between numerical simulations and in vitro MRI measurements. Journal of Biomechanics, 33, 137-144.
  • Brindise, M. C., Busse, M. M., Vlachos, P. P. (2018). Density- and viscosity-matched Newtonian and non-Newtonian blood-analog solutions with PDMS refractive index. Experiments in Fluids, 59, 173-1-173-8.
  • Brookshier, K. A., Tarbell, J. M. (1993). Evaluation of a transparent blood analog fluid: Aqueous Xanthan gum/glycerin. Biorheology, 30, 107-116.
  • Calejo, J., Pinho, D., Galindo-Rosales, F. J., Lima, R., Campo-Deaño, L. (2016). Particulate blood analogues reproducing the erythrocytes cell-free layer in a microfluidic device containing a hyperbolic contraction. Micromachines, 7, 4-1-4-12.
  • Campo-Deaño, L., Dullens, R. P. A., Aarts, D. G. A. L., Pinho, F. T., Oliveira, M. S. N. (2013). Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system. Biomicrofluidics, 7, 034102-1-034102-11.
  • Carey, R. F., Herman, B. A. (1989). The effects of a glycerin-based blood analog on the testing of bioprosthetic heart valves. Journal of Biomechanics, 22(11/12), 1185-1192.
  • Chandran, K. B., Khalighi, B. (1984). A note on the blood analog for in–vitro testing of heart valve bioprostheses. Transactions of the ASME, 106, 112-114.
  • Chhabra, R. P., Richardson, J. F. (2008). Non-newtonian flow and applied rheology. Non-Newtonian Flow and Applied Rheology, Chapter 1, 1-55.
  • Chien, S. (1970). Shear dependence of effective cell volume as a determinant of blood viscosity. Science, 168, 977–979.
  • Chien, S. (1975). Biophysical Behavior of Red Cells in Suspensions. In The Red Blood Cell. 2nd edn, Vol. II. Academic, New York. Chapter 26, 1031–1133.
  • Chien, S., Usami, S., Taylor, H. M., Lundberg, J. L., Gregersen, M. I. (1966). Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. Journal of Applied Physiolog,. 21, 81–87.
  • Completo, C., Geraldes, V., Semiao, V. (2014). Rheological and dynamical characterization of blood analogue flows in a slit. International Journal of Heat and Fluid Flow, 46, 17–28.
  • Crawshaw, H. M., Quist, W. C., Serrallach, E., Valeri, C. R., Logerfo, F. W. (1980). Flow disturbance at the distal end-to-side anastomosis: effect of patency of the proximal outflow segment and angle of anastomosis. Archives of Surgery, 115, 1280–1284.
  • Deplano, V., Knapp, Y., Bailly, L., Bertrand, E. (2014). Flow of a blood analogue fluid in a compliant abdominal aortic aneurysm model: Experimental modelling. Journal of Biomechanics, 47, 1262–1269.
  • Deutsch, S., Tarbell, J. M., Manning, K. B., Rosenberg, G., Fontaine, A. A. (2006). Experimental fluid mechanics of pulsatile artificial blood pumps. Annual Review of Fluid Mechanics, 38, 65–86.
  • Farina, A., Mikelic, A.,Saccomandi, G., Sequeira, A., Toro, E. F. (2018). Non-Newtonian fluid mechanics and complex flows: springer, 1-89.
  • Fournier, R. L. (2011). Basic transport phenomena in biomedical engineering third edition. CRC Press.
  • Fukada, E., Seaman, G. V. F., Liepsch, D., Lee, M., Friis-Baastad, L. (1989). Blood modeling using polystyrene microspheres. Biorheology, 26, 401-413.
  • Gijsen, F. J. H., Allanic, E., Van De Vosse, F. N., Janssen, J. D. (1999). The influence of the non-Newtonian properties of blood on the flow in large arteries: Unsteady flow in a 90°curved tube. Journal of Biomechanics, 32, 705-713.
  • Gijsen, F. J. H., Van De Vosse, F. N., Janssen, J. D. (1999). The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model. Journal of Biomechanics, 32, 601-608.
  • Gray, J. D., Owen, I., Escudier, M. P. (2007). Dynamic scaling of unsteady shear-thinning non-Newtonian fluid flows in a large-scale model of a distal anastomosis. Experiments in Fluids, 43, 535–546.
  • Hoskins, P. R., Anderson, T., McDicken, W. N. (1989). A computer controlled flow phantom for generation of physiological Doppler waveforms. Physics in Medicine and Biology, 34(11), 1709-1717.
  • Kim, S., Cho, Y. I., Jeon, A. H., Hogenauer, B., Kensey, K. R. (2000). A new method for blood viscosity measurement. Journal of Non-Newtonian Fluid Mechanics, 94, 47-56.
  • Kimme-Smith, C., Hussain, R., Duerinckx, A., Tessler, F., Grant, E. (1990). Assurance of consistent peak-velocity measurements with a variety of duplex doppler instruments. Radiology, 177, 265–272.
  • Kita, R., Dobashi, T. (2015). Nano/Micro science and technology in biorheology: principles, methods, and applications. nano/micro science and technology in biorheology: principles, methods, and applications. Springer Japan, 1-444.
  • Lewis, J. M. O., Macleod, N. (1983). A blood analogue for the experimental study of flow-related thrombosis at prosthetic heart valves. Cardiovascular Research, 17, 466-475.
  • Liepsch, D. (1989). Biofluid mechanics: Blood flow in large vessels. Springer Munich.. 351-408.
  • Mann, D. E., Tarbell, J. M. (1990). Flow of non-Newtonian blood analog fluids in rigid curved and straight artery models. Biorheology, 27, 711-733.
  • Moita, A. S., Caldeira, C., Jacinto, F., Lima, R., Vega, E. J., Moreira, A. L. N. (2019). Cell deformability studies for clinical diagnostics: Tests with blood analogue fluids using a drop based microfluidic device. In BIODEVICES 2019 - 12th International Conference on Biomedical Electronics and Devices, Proceedings; Part of 12th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2019, 99-107.
  • Moravec, S., Liepsch, D. (1983). Flow investigations in a model of a three-dimensional human artery with Newtonian and non-Newtonian fluids. Part I. Biorheology, 20, 745-759.
  • Najjari, M. R., Hinke, J. A., Bulusu, K. V., Plesniak, M. W. (2016). On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments. Experiments in Fluids, 57, 96-1-96-6.
  • Nandy, S., Tarbell, J. M. (1987). Flush mounted hot film anemometer measurement of wall shear stress distal to a tri-leaflet valve for Newtonian and non-Newtonian blood analog fluids. Biorheology, 24,483-500.
  • Nguyen, T. T., Biadillah, Y., Mongrain, R., Brunette, J., Tardif, J. C., Bertrand, O. F. (2004). A method for matching the refractive index and kinematic viscosity of a blood analog for flow visualization in hydraulic cardiovascular models. Journal of Biomechanical Engineering, 126, 529-535.
  • Nugent, A. H., Bertram, C. D. (2010). Three-dimensional ray tracing through curvilinear interfaces with application to laser Doppler anemometry in a blood analogue fluid. Medical and Biological Engineering and Computing, 48, 147–156.
  • Oates, C. P. (1991). Towards an ideal blood analogue for Doppler ultrasound phantoms. Physics in Medicine and Biology, 36(11), 1433-1442.
  • Pincombe, B., Mazumdar, J. (1997). The effects of post-stenotic dilatations on the flow of a blood analogue through stenosed coronary arteries. Mathematical and Computer Modelling, 25(6), 57-70.
  • Pinho, D., Muñoz-Sánchez , B. N,. Anes, C. F,. Vega, E. J,. Lima, R. (2019). Flexible PDMS microparticles to mimic RBCs in blood articulate analogue fluids. Mechanics Research Communications, 100 (103399), 1-7.
  • Pohl, M., Wendt, M. O., Werner, S., Koch, B., Lerche, D. (1996). In vitro testing of artificial heart valves: Comparison between Newtonian and Non-Newtonian fluids. Artificial Organs, 20(1), 37-46.
  • Pries, A. R., Secomb, T. W., Geßner, T., Sperandio, M. B., Gross, J. F., Gaehtgens, P. (1994). Resistance to blood flow in microvessels in vivo. Circulation Research, 75, 904-915.
  • Raine-Fenning, N. J., Nordin, N. M., Ramnarine, K. V., Campbell, B. K., Clewes, J. S., Perkins, A., … Johnson, I. R. (2008). Determining the relationship between three-dimensional power Doppler data and true blood flow characteristics: An in-vitro flow phantom experiment. Ultrasound in Obstetrics and Gynecology, 32, 540–550.
  • Ramnarine, K. V., Nassiri, D. K., Hoskins, P. R., Lubbers, J. (1998). Validation of a new blood-mimicking fluid for use in Doppler flow test objects. Ultrasound in Medicine and Biology, 24(3), 451–459.
  • Rogers, K. (2011). Blood Physiology and Circulation (The Human Body). Britannica Educational Publishing, 1-92.
  • Shibeshi, S. S., Collins, W. E. (2005). The rheology of blood flow in a branced arterial system. Applied Rheology, 15, 398-405.
  • Sousa, P. C., Pinho, F. T., Oliveira, M. S. N., Alves, M. A. (2011). Extensional flow of blood analog solutions in microfluidic devices. Biomicrofluidics, 5, 014108-1-014108-19.
  • How, T.V. (1996). Advances in Hemodynamics and Hemorheology. Elsevier Science, 1-112.
  • Throckmorton, A. L., Ballman, K. K., Myers, C. D., Litwak, K. N., Frankel, S. H., Rodefeld, M. D. (2007). Mechanical cavopulmonary assist for the univentricular Fontan circulation using a novel folding propeller blood pump. ASAIO Journal, 53, 734-741.
  • Vallet, G., Meskat, W. (1975). Rheological Theories · Measuring Techniques in Rheology Test Methods in Rheology · Fractures Rheological Properties of Materials · Rheo-Optics · Biorheology. Steinkopff. Chapter 72, 483-487.
  • Van Den Broek, C. N., Pullens, R. A. A., Frøbert, O., Rutten, M. C. M., Den Hartog, W. F., Van De Vosse, F. N. (2008). Medium with blood-analog mechanical properties for cardiovascular tissue culturing. Biorheology, 45, 651–661.
  • Waite, L., Fine, J. (2007). Applied Biofluid Mechanics. Applied biofluid mechanics. McGraw-Hill Osborne Media, 1-333.
  • Wickramasinghe, S. R., Kahr, C. M., Han, B. (2002). Mass transfer in blood oxygenators using blood analogue fluids. Biotechnology Progress, 18, 867-873.
  • Yılmaz, F., Gündogdu, M. Y. (2008). A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Korea Australia Rheology Journal, 20(4),197-211.
  • Yousif, M. Y., Holdsworth, D. W., Poepping, T. L. (2011). A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Experiments in Fluids, 50, 769–774.
  • Zhang, G., Zhang, M., Yang, W., Zhu, X., Hu, Q. (2008). Effects of non-Newtonian fluid on centrifugal blood pump performance. International Communications in Heat and Mass Transfer, 35, 613–617.
  • Zydney, A. L., Oliver, J. D., Colton, C. K. (1991). A constitutive equation for the viscosity of stored red cell suspensions: Effect of hematocrit, shear rate, and suspending phase. Journal of Rheology, 35(8), 1639-1680.
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Derleme
Authors

Hatice Bilgili 0000-0002-3897-8835

Teymuraz Abbasov 0000-0002-0290-8333

Project Number FDK-2017-775
Publication Date November 30, 2020
Submission Date September 14, 2020
Acceptance Date September 28, 2020
Published in Issue Year 2020 Volume: 8 Issue: 3

Cite

APA Bilgili, H., & Abbasov, T. (2020). BİYOMÜHENDİSLİKTE KULLANILAN KAN ANALOGLARINA GENEL BİR BAKIŞ. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 8(3), 946-963. https://doi.org/10.33715/inonusaglik.794844