Research Article
BibTex RIS Cite

DAİMİ RESTORATİF MATERYAL OLARAK KULLANILAN GÜÇLENDİRİLMİŞ CAM İYONOMER SİMANLARIN MAKASLAMA BAĞLANMA DAYANIMLARI,MİKROSIZINTI VE BASMA DAYANIMLARININ DEĞERLENDİRİLMESİ

Year 2021, Volume: 9 Issue: 1, 41 - 54, 25.03.2021
https://doi.org/10.33715/inonusaglik.815914

Abstract

Bu çalışmada, yüksek viskoziteli cam iyonomer ve giomer gibi güçlendirilmiş cam iyonomer malzemelerin daimi bir restoratif materyal olarak kullanımının kompozit rezin ile mekanik özellikler açısından karşılaştırılması amaçlanmıştır. Çalışmamızda üç grup kullanıldı: Equia Forte, Beautifil II ve Solare X. Makaslama bağlanma kuvveti testi için 48 tane ve mikrosızıntı testi için 27 tane çekilmiş üçüncü azı dişi kullanıldı. Basma dayanımı testi için toplam 30 numune hazırlandı. Makaslama ve basma dayanımı testleri, evrensel test cihazları kullanılarak yapıldı. Mikrosızıntı testi için dişin bukkal ve lingual yüzeylerinde standart sınıf V kaviteler hazırlandı. Restore edilen dişlere termal siklus (5-55oC x 10.000) uygulandı. İstatistiksel analize göre; makaslama bağlanma dayanımı, basma dayanımı ve mikrosızıntı testlerinde tüm gruplar arasında fark bulundu (p <0.05). Solare X, en yüksek makaslama bağlanma kuvveti göstermiştir. Equia Forte, mikrosızıntı testinde en düşük değeri göstermiştir. Beautifil II, en yüksek basma dayanımını göstermiştir. Güçlendirilmiş cam iyonomer simanların, makaslama bağ mukavemeti testi dışındaki tüm testlerde kompozit rezine benzer ve daha iyi mekanik özelliklere sahip olduğu tespit edilmiştir.

Supporting Institution

inönü üniversitesi bilimsel araştırma birimleri tarafından desteklenmiştir.

Project Number

TDH- 2018-1330

References

  • Al-Dahan, Z. A., Al-Attar, A. I., Al-Rubaee, H. E. (2012). A comparative study evaluating the microleakage of different types of restorative materials used in restoration of pulpotomized primary molars. Journal of Baghdad College of Dentistry, 24(2), 150-154.
  • Almuammar, M., Schulman, A., Salama, F. (2001). Shear bond strength of six restorative materials. Journal of Clinical Pediatric Dentistry, 25(3), 221-225.
  • Araujo, R. M., de Paula Eduardo, C., Duarte Junior, S. L. L., Araujo, M. A. M., de Castro Monteiro Loffredo, L. (2001). Microleakage and nanoleakage: influence of laser in cavity preparation and dentin pretreatment. Journal Of Clinical Laser Medicine & Surgery, 19(6), 325-332.
  • Basting, R., Serra, M., Rodrigues, A. (2002). In situ microhardness evaluation of glass–ionomer/composite resin hybrid materials at different post‐irradiation times. Journal of Oral Rehabilitation, 29(12), 1187-1195.
  • Bonifácio, C., Kleverlaan, C., Raggio, D. P., Werner, A., De Carvalho, R., Van Amerongen, W. (2009). Physical‐mechanical properties of glass ionomer cements indicated for atraumatic restorative treatment. Australian Dental Journal, 54(3), 233-237.
  • Carvalho, T. S., van Amerongen, W. E., de Gee, A., Bönecker, M., Sampaio, F. C. (2011). Shear bond strengths of three glass ionomer cements to enamel and dentine. Med Oral Patol Oral Cir Bucal, 16(3), e406-410.
  • Chen, C. C., Huang, T. H., Kao, C. T., Ding, S. J. (2006). Effect of conditioners on bond durability of resin composite to Nd: YAP laser-irradiated dentin. Dental Materials Journal, 25(3), 463-469.
  • Croll, T. P., Nicholson, J. (2002). Glass ionomer cements in pediatric dentistry: review of the literature. Pediatric Dentistry, 24(5), 423-429.
  • Deliperi, S., Bardwell, D. N., Wegley, C., Congiu, M. D. (2006). In vitro evaluation of giomers microleakage after exposure to 33% hydrogen peroxide: self-etch vs total-etch adhesives. Operative Dentistry, 31(2), 227-232.
  • Dionysopoulos, D., Koliniotou-Koumpia, E., Helvatzoglou-Antoniades, M., Kotsanos, N. (2013). Fluoride release and recharge abilities of contemporary fluoride-containing restorative materials and dental adhesives. Dental Materials Journal, 32(2), 296-304.
  • Gjorgievska, E., Van Tendeloo, G., Nicholson, J. W., Coleman, N. J., Slipper, I. J., Booth, S. (2015). The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements. Microscopy and Microanalysis, 21(2), 392-406.
  • Gopinath, V. K. (2017). Comparative evaluation of microleakage between bulk esthetic materials versus resin-modified glass ionomer to restore Class II cavities in primary molars. Journal of Indian Society of Pedodontics and Preventive Dentistry, 35(3), 238-243.
  • Gordan, V. V., Mondragon, E., Watson, R. E., Garvan, C., Mjör, I. A. (2007). A clinical evaluation of a self-etching primer and a giomer restorative material: results at eight years. The Journal of the American Dental Association, 138(5), 621-627.
  • Hakimeh, S., Vaidyanathan, J., Houpt, M. L., Vaidyanathan, T. K., Von Hagen, S., School, N. J. D. (2000). Microleakage of compomer class V restorations: effect of load cycling, thermal cycling, and cavity shape differences. The Journal of Prosthetic Dentistry, 83(2), 194-203.
  • Ikemura, K., Tay, F. R., Endo, T., Pashley, D. H. (2008). A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesives comprising new pre-reacted glass ionomer (PRG) fillers. Dental Materials Journal, 27(3), 315-339.
  • ISO, I. (2007). 9917-1: dentistry-water-based cements—part 1: powder/liquid acid–base cements. Geneva, Switzerland: International Organization for Standardization.
  • Küçükyılmaz, E., Savaş, S., Kavrık, F., Yaşa, B., Botsalı, M. (2017). Fluoride release/recharging ability and bond strength of glass ionomer cements to sound and caries‑affected dentin. Nigerian Journal of Clinical Practice, 20(2), 226-234.
  • Manuja, N., Pandit, I., Srivastava, N., Gugnani, N., Nagpal, R. (2011). Comparative evaluation of shear bond strength of various esthetic restorative materials to dentin: an in vitro study. Journal of Indian Society of Pedodontics and Preventive Dentistry, 29(1), 7-13.
  • Molina, G. F., Cabral, R. J., Mazzola, I., Lascano, L. B., Frencken, J. E. (2013). Mechanical performance of encapsulated restorative glass-ionomer cements for use with Atraumatic Restorative Treatment (ART). Journal of Applied Oral Science, 21(3), 243-249.
  • Moshaverinia, M., Navas, A., Jahedmanesh, N., Shah, K. C., Moshaverinia, A., Ansari, S. (2019). Comparative evaluation of the physical properties of a reinforced glass ionomer dental restorative material. The Journal of Prosthetic Dentistry, 122(2), 154-159.
  • Mousavinasab, S. M., Meyers, I. (2009). Fluoride release by glass ionomer cements, compomer and giomer. Dental Research Journal, 6(2), 75-81.
  • Murdoch-Kinch, C. A., McLean, M. E. (2003). Minimally invasive dentistry. The Journal of the American Dental Association, 134(1), 87-95.
  • Najeeb, S., Khurshid, Z., Zafar, M., Khan, A., Zohaib, S., Martí, J., …Rehman, I. (2016). Modifications in glass ionomer cements: Nano-sized fillers and bioactive nanoceramics. International Journal Of Molecular Sciences, 17(7), 1134-48.
  • Pasricha, S. K. (2011). Comparative evaluation of microleakage of tooth coloured restorative materials after exposure to 33% hydrogen peroxide-An in-vitro study. International Journal of Contemporary Dentistry, 2(5), 28-37.
  • Peker, S., Giray, F. E., Durmuş, B., Bekiroğlu, N., Kargül, B., Özcan, M. (2017). Microleakage in class V cavities prepared using conventional method versus Er: YAG laser restored with glass ionomer cement or resin composite. Journal of Adhesion Science And Technology, 31(5), 509-519.
  • Pereira, L. C. G., Nunes, M. C. P., Dibb, R. G. P., Powers, J. M., Roulet, J.-F., de Lima Navarro, M. F. (2002). Mechanical properties and bond strength of glass-ionomer cements. Journal of Adhesive Dentistry, 4(1),73-80.
  • Peters, M. C., McLean, M. E. (2001). Minimally Invasive Operative Care: II. Contemporary Techniques and Materials: an Overview. Journal of Adhesive Dentistry, 3(1), 17-31.
  • Quader, S. A., Alam, M. S., Bashar, A., Gafur, A., Al Mansur, M. (2012). Compressive strength, fluoride release and recharge of giomer. Update Dental College Journal, 2(2), 28-37.
  • Reichl, F. X., Esters, M., Simon, S., Seiss, M., Kehe, K., Kleinsasser, N., … Hickel, R. (2006). Cell death effects of resin-based dental material compounds and mercurials in human gingival fibroblasts. Archives of Toxicology, 80(6), 370-377.
  • Walia, R., Jasuja, P., Verma, K. G., Juneja, S., Mathur, A., Ahuja, L. (2016). A comparative evaluation of microleakage and compressive strength of Ketac Molar, Giomer, Zirconomer, and Ceram-x: An in vitro study. Journal of Indian Society of Pedodontics and Preventive Dentistry, 34(3), 280-4.
  • Williams, J., Billington, R. (1989). Increase in compressive strength of glass ionomer restorative materials with respect to time: a guide to their suitability for use in posterior primary dentition. Journal of Oral Rehabilitation, 16(5), 475-479.
  • Williams, J., Billington, R., Pearson, G. (1998). Effect of moisture protective coatings on the strength of a modern metal‐reinforced glass–ionomer cement. Journal of Oral Rehabilitation, 25(7), 535-540.
  • Yap, A. U. J., Wang, X., Wu, X., Chung, S. M. (2004). Comparative hardness and modulus of tooth-colored restoratives: a depth-sensing microindentation study. Biomaterials, 25(11), 2179-2185.
  • Yarimizu, H., Sakuma, T., Akahane, S., Hirota, K. (2002). Wear properties of experimental MFR composite (NGD220) for posterior restoration. Paper Presented at The Journal of Dental Research, 81(1), 174-7.
  • Yıkılgan, İ., Akgül, S., Özcan, S., Bala, O., Ömürlü, H. (2016). An in vitro evaluation of the effects of desensitizing agents on microleakage of Class V cavities. Journal of Clinical And Experimental Dentistry, 8(1), e55-9.

EVALUATION OF THE SHEAR BOND STRENGTH, MICROLEAKAGE AND COMPRESSIVE STRENGTH OF REINFORCED GLASS IONOMER CEMENTS USED AS PERMANENT RESTORATİVE MATERİALS

Year 2021, Volume: 9 Issue: 1, 41 - 54, 25.03.2021
https://doi.org/10.33715/inonusaglik.815914

Abstract

In this study, it is aimed to compare the usage of reinforced glass ionomer materials such as high viscosity glass ionomer and giomer as a permanent restorative material with the composite resin in terms of the mechanical properties. In our study, three groups were used: Equia Forte, Beautifil II and Solare X. For the shear bond strength test; 48, and for the microleakage test; 27 extracted third molar teeth were used. A total of 30 samples were prepared for the compressive strength test. Shear and compressive strength tests were performed by using universal test devices. Standard class V cavities were prepared on the buccal and lingual surfaces of the tooth for the microleakage test. Thermal cycling (5-55oCx10.000) was applied to the restored teeth. According to the statistical analysis, difference was found between all groups in the shear bond strength, compressive strength and microleakage tests (p<0.05). Solare X has showed the highest shear bond strength. Equia Forte has showed the lowest value in the microleakage test. Beautifil II has showed the highest compressive strength. Reinforced glass ionomer cements have been determined to have similar and better mechanical properties than composite resin in all the tests except the shear bond strength test.

Project Number

TDH- 2018-1330

References

  • Al-Dahan, Z. A., Al-Attar, A. I., Al-Rubaee, H. E. (2012). A comparative study evaluating the microleakage of different types of restorative materials used in restoration of pulpotomized primary molars. Journal of Baghdad College of Dentistry, 24(2), 150-154.
  • Almuammar, M., Schulman, A., Salama, F. (2001). Shear bond strength of six restorative materials. Journal of Clinical Pediatric Dentistry, 25(3), 221-225.
  • Araujo, R. M., de Paula Eduardo, C., Duarte Junior, S. L. L., Araujo, M. A. M., de Castro Monteiro Loffredo, L. (2001). Microleakage and nanoleakage: influence of laser in cavity preparation and dentin pretreatment. Journal Of Clinical Laser Medicine & Surgery, 19(6), 325-332.
  • Basting, R., Serra, M., Rodrigues, A. (2002). In situ microhardness evaluation of glass–ionomer/composite resin hybrid materials at different post‐irradiation times. Journal of Oral Rehabilitation, 29(12), 1187-1195.
  • Bonifácio, C., Kleverlaan, C., Raggio, D. P., Werner, A., De Carvalho, R., Van Amerongen, W. (2009). Physical‐mechanical properties of glass ionomer cements indicated for atraumatic restorative treatment. Australian Dental Journal, 54(3), 233-237.
  • Carvalho, T. S., van Amerongen, W. E., de Gee, A., Bönecker, M., Sampaio, F. C. (2011). Shear bond strengths of three glass ionomer cements to enamel and dentine. Med Oral Patol Oral Cir Bucal, 16(3), e406-410.
  • Chen, C. C., Huang, T. H., Kao, C. T., Ding, S. J. (2006). Effect of conditioners on bond durability of resin composite to Nd: YAP laser-irradiated dentin. Dental Materials Journal, 25(3), 463-469.
  • Croll, T. P., Nicholson, J. (2002). Glass ionomer cements in pediatric dentistry: review of the literature. Pediatric Dentistry, 24(5), 423-429.
  • Deliperi, S., Bardwell, D. N., Wegley, C., Congiu, M. D. (2006). In vitro evaluation of giomers microleakage after exposure to 33% hydrogen peroxide: self-etch vs total-etch adhesives. Operative Dentistry, 31(2), 227-232.
  • Dionysopoulos, D., Koliniotou-Koumpia, E., Helvatzoglou-Antoniades, M., Kotsanos, N. (2013). Fluoride release and recharge abilities of contemporary fluoride-containing restorative materials and dental adhesives. Dental Materials Journal, 32(2), 296-304.
  • Gjorgievska, E., Van Tendeloo, G., Nicholson, J. W., Coleman, N. J., Slipper, I. J., Booth, S. (2015). The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements. Microscopy and Microanalysis, 21(2), 392-406.
  • Gopinath, V. K. (2017). Comparative evaluation of microleakage between bulk esthetic materials versus resin-modified glass ionomer to restore Class II cavities in primary molars. Journal of Indian Society of Pedodontics and Preventive Dentistry, 35(3), 238-243.
  • Gordan, V. V., Mondragon, E., Watson, R. E., Garvan, C., Mjör, I. A. (2007). A clinical evaluation of a self-etching primer and a giomer restorative material: results at eight years. The Journal of the American Dental Association, 138(5), 621-627.
  • Hakimeh, S., Vaidyanathan, J., Houpt, M. L., Vaidyanathan, T. K., Von Hagen, S., School, N. J. D. (2000). Microleakage of compomer class V restorations: effect of load cycling, thermal cycling, and cavity shape differences. The Journal of Prosthetic Dentistry, 83(2), 194-203.
  • Ikemura, K., Tay, F. R., Endo, T., Pashley, D. H. (2008). A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesives comprising new pre-reacted glass ionomer (PRG) fillers. Dental Materials Journal, 27(3), 315-339.
  • ISO, I. (2007). 9917-1: dentistry-water-based cements—part 1: powder/liquid acid–base cements. Geneva, Switzerland: International Organization for Standardization.
  • Küçükyılmaz, E., Savaş, S., Kavrık, F., Yaşa, B., Botsalı, M. (2017). Fluoride release/recharging ability and bond strength of glass ionomer cements to sound and caries‑affected dentin. Nigerian Journal of Clinical Practice, 20(2), 226-234.
  • Manuja, N., Pandit, I., Srivastava, N., Gugnani, N., Nagpal, R. (2011). Comparative evaluation of shear bond strength of various esthetic restorative materials to dentin: an in vitro study. Journal of Indian Society of Pedodontics and Preventive Dentistry, 29(1), 7-13.
  • Molina, G. F., Cabral, R. J., Mazzola, I., Lascano, L. B., Frencken, J. E. (2013). Mechanical performance of encapsulated restorative glass-ionomer cements for use with Atraumatic Restorative Treatment (ART). Journal of Applied Oral Science, 21(3), 243-249.
  • Moshaverinia, M., Navas, A., Jahedmanesh, N., Shah, K. C., Moshaverinia, A., Ansari, S. (2019). Comparative evaluation of the physical properties of a reinforced glass ionomer dental restorative material. The Journal of Prosthetic Dentistry, 122(2), 154-159.
  • Mousavinasab, S. M., Meyers, I. (2009). Fluoride release by glass ionomer cements, compomer and giomer. Dental Research Journal, 6(2), 75-81.
  • Murdoch-Kinch, C. A., McLean, M. E. (2003). Minimally invasive dentistry. The Journal of the American Dental Association, 134(1), 87-95.
  • Najeeb, S., Khurshid, Z., Zafar, M., Khan, A., Zohaib, S., Martí, J., …Rehman, I. (2016). Modifications in glass ionomer cements: Nano-sized fillers and bioactive nanoceramics. International Journal Of Molecular Sciences, 17(7), 1134-48.
  • Pasricha, S. K. (2011). Comparative evaluation of microleakage of tooth coloured restorative materials after exposure to 33% hydrogen peroxide-An in-vitro study. International Journal of Contemporary Dentistry, 2(5), 28-37.
  • Peker, S., Giray, F. E., Durmuş, B., Bekiroğlu, N., Kargül, B., Özcan, M. (2017). Microleakage in class V cavities prepared using conventional method versus Er: YAG laser restored with glass ionomer cement or resin composite. Journal of Adhesion Science And Technology, 31(5), 509-519.
  • Pereira, L. C. G., Nunes, M. C. P., Dibb, R. G. P., Powers, J. M., Roulet, J.-F., de Lima Navarro, M. F. (2002). Mechanical properties and bond strength of glass-ionomer cements. Journal of Adhesive Dentistry, 4(1),73-80.
  • Peters, M. C., McLean, M. E. (2001). Minimally Invasive Operative Care: II. Contemporary Techniques and Materials: an Overview. Journal of Adhesive Dentistry, 3(1), 17-31.
  • Quader, S. A., Alam, M. S., Bashar, A., Gafur, A., Al Mansur, M. (2012). Compressive strength, fluoride release and recharge of giomer. Update Dental College Journal, 2(2), 28-37.
  • Reichl, F. X., Esters, M., Simon, S., Seiss, M., Kehe, K., Kleinsasser, N., … Hickel, R. (2006). Cell death effects of resin-based dental material compounds and mercurials in human gingival fibroblasts. Archives of Toxicology, 80(6), 370-377.
  • Walia, R., Jasuja, P., Verma, K. G., Juneja, S., Mathur, A., Ahuja, L. (2016). A comparative evaluation of microleakage and compressive strength of Ketac Molar, Giomer, Zirconomer, and Ceram-x: An in vitro study. Journal of Indian Society of Pedodontics and Preventive Dentistry, 34(3), 280-4.
  • Williams, J., Billington, R. (1989). Increase in compressive strength of glass ionomer restorative materials with respect to time: a guide to their suitability for use in posterior primary dentition. Journal of Oral Rehabilitation, 16(5), 475-479.
  • Williams, J., Billington, R., Pearson, G. (1998). Effect of moisture protective coatings on the strength of a modern metal‐reinforced glass–ionomer cement. Journal of Oral Rehabilitation, 25(7), 535-540.
  • Yap, A. U. J., Wang, X., Wu, X., Chung, S. M. (2004). Comparative hardness and modulus of tooth-colored restoratives: a depth-sensing microindentation study. Biomaterials, 25(11), 2179-2185.
  • Yarimizu, H., Sakuma, T., Akahane, S., Hirota, K. (2002). Wear properties of experimental MFR composite (NGD220) for posterior restoration. Paper Presented at The Journal of Dental Research, 81(1), 174-7.
  • Yıkılgan, İ., Akgül, S., Özcan, S., Bala, O., Ömürlü, H. (2016). An in vitro evaluation of the effects of desensitizing agents on microleakage of Class V cavities. Journal of Clinical And Experimental Dentistry, 8(1), e55-9.
There are 35 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Araştırma Makalesi
Authors

Seda Nur Karakaş 0000-0003-4843-939X

Hacer Turgut This is me 0000-0003-1714-6025

Project Number TDH- 2018-1330
Publication Date March 25, 2021
Submission Date October 24, 2020
Acceptance Date December 21, 2020
Published in Issue Year 2021 Volume: 9 Issue: 1

Cite

APA Karakaş, S. N., & Turgut, H. (2021). EVALUATION OF THE SHEAR BOND STRENGTH, MICROLEAKAGE AND COMPRESSIVE STRENGTH OF REINFORCED GLASS IONOMER CEMENTS USED AS PERMANENT RESTORATİVE MATERİALS. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 9(1), 41-54. https://doi.org/10.33715/inonusaglik.815914