Research Article
BibTex RIS Cite

DÜŞÜK DOZ LUTEOLİN SIÇANLARDA DOKSORUBİSİNİN NEDEN OLDUĞU KARDİYOVASKÜLER VE PULMONER HASARI AZALTMADA BAŞARISIZDIR: HİSTOPATOLOJİK ÇALIŞMA

Year 2025, Volume: 13 Issue: 3, 778 - 790
https://doi.org/10.33715/inonusaglik.1696064

Abstract

Bu çalışmanın amacı doksorubisin (DOX) ile indüklenen hasara maruz kalan sıçanlarda luteolinin (LUT) akciğer, kalp ve aort histolojisi üzerindeki etkisini değerlendirmektir. Otuz dört-adet 8-haftalık erkek sıçan dört gruba ayrılmıştır: kontrol (salin), LUT (20 μg/kg/gün), DOX (1, 7, 14, 21, 28. günlerde 5 mg/kg) ve DOX+LUT (kombine tedavi). 29. günde sıçanlar kardiyovasküler ve pulmoner hasarın histolojik değerlendirmesi için sakrifiye edilmiştir. Kalp, akciğer ve aort dokuları Hematoksilen & Eozin (H&E), Toluidin Mavisi (TB), Safranin & Hemalum (SH) veya Picrosirius Kırmızısı (PSR) ile boyandı. Kolajen ve elastik liflerin yarı kantitatif analizi ImageJ kullanılarak gerçekleştirilmiştir. Grup karşılaştırmaları Bonferroni düzeltmeli tek yönlü ANOVA kullanılarak yapılmıştır (p < 0.0083). DOX, kas çizgilenmesinin kaybı, sitoplazmik vakuolizasyon, koagülatif nekroz ve aortik elastik liflerde azalma ve aortik kolajende artış ile kolajen birikiminde artışın yanı sıra alveolar septal kalınlaşma, hemoraji ve pulmoner mast hücre yoğunluğunda ve interstisyel kolajende artış ile kanıtlanan belirgin miyokardiyal hasara neden olmuştur (tümü p < 0.0083). Tek başına LUT tedavisi hiçbir histolojik değişikliğe yol açmamış ve 20 µg/kg dozunda birlikte uygulanması DOX ile indüklenen değişikliklerin hiçbirini anlamlı derecede iyileştirmemiştir. Sonuç olarak, LUT (20 µg/kg) DOX ile indüklenen kardiyopulmoner hasarı hafifletmemiştir ve gelecekteki çalışmalarda doz optimizasyonu ihtiyacının altını çizmektedir.

Ethical Statement

Çalışmanın etik onayı Sağlık Bilimleri Üniversitesi Hamidiye Deney Hayvanları Etik Kurulu'ndan alınmıştır (Onay No: 2020-06/13).

Supporting Institution

Sağlık Bilimleri Üniversitesi

References

  • Bosman, M., Favere, K., Neutel, C. H. G., Jacobs, G., De Meyer, G. R. Y., Martinet, W., …Guns, P. J. D. F. (2021). Doxorubicin induces arterial stiffness: A comprehensive in vivo and ex vivo evaluation of vascular toxicity in mice. Toxicology Letters, 346. https://doi.org/10.1016/j.toxlet.2021.04.015
  • Bosman, M., Krüger, D., Van Assche, C., Boen, H., Neutel, C., Favere, K., … Guns, P. J. (2023). Doxorubicin-induced cardiovascular toxicity: a longitudinal evaluation of functional and molecular markers. Cardiovascular Research, 119(15). https://doi.org/10.1093/cvr/cvad136
  • Chaosuwannakit, N., D’Agostino, R., Hamilton, C. A., Lane, K. S., Ntim, W. O., Lawrence, J., …Hundley, W. G. (2010). Aortic Stiffness Increases Upon Receipt of Anthracycline Chemotherapy. Journal of Clinical Oncology, 28(1), 166–172. https://doi.org/10.1200/JCO.2009.23.8527
  • Courtoy, G. E., Leclercq, I., Froidure, A., Schiano, G., Morelle, J., Devuyst, … Bouzin, C. (2020). Digital image analysis of picrosirius red staining: A robust method for multi-organ fibrosis quantification and characterization. Biomolecules, 10(11). https://doi.org/10.3390/biom10111585
  • Elagül-Tombul, N., Söğüt, İ., & Köse-Vuruşkan, A. (2024). An Examination of the Role of Luteolin in Doxorubicin-Induced Testicular Damage. Journal of Evolutionary Biochemistry and Physiology, 60(3), 947–956. https://doi.org/10.1134/S0022093024030086
  • Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149
  • Gibson, N. M., Greufe, S. E., Hydock, D. S., & Hayward, R. (2013). Doxorubicin-induced vascular dysfunction and its attenuation by exercise preconditioning. Journal of Cardiovascular Pharmacology, 62(4). https://doi.org/10.1097/FJC.0b013e31829c9993
  • Han, M., Lu, Y., Tao, Y., Zhang, X., Dai, C., Zhang, B., … Li, J. (2023). Luteolin Protects Pancreatic β Cells against Apoptosis through Regulation of Autophagy and ROS Clearance. Pharmaceuticals, 16(7). https://doi.org/10.3390/ph16070975
  • Injac, R., Radic, N., Govedarica, B., Perse, M., Cerar, A., Djordjevic, A., & Strukelj, B. (2009). Acute doxorubicin pulmotoxicity in rats with malignant neoplasm is effectively treated with fullerenol C60(OH)24 through inhibition of oxidative stress. Pharmacological Reports, 61(2), 335–342. https://doi.org/10.1016/S1734-1140(09)70041-6
  • Li, L., Luo, W., Qian, Y., Zhu, W., Qian, J., Li, J., … Liang, G. (2019). Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine, 59. https://doi.org/10.1016/j.phymed.2018.11.034
  • Li, W., Dong, M., Guo, P., Liu, Y., Jing, Y., Chen, R., & Zhang, M. (2019). Luteolin-induced coronary arterial relaxation involves activation of the myocyte voltage-gated K + channels and inward rectifier K + channels. Life Sciences, 221. https://doi.org/10.1016/j.lfs.2019.02.028
  • Liu, Z., Gao, S., Bu, Y., & Zheng, X. (2022). Luteolin Protects Cardiomyocytes Cells against Lipopolysaccharide-Induced Apoptosis and Inflammatory Damage by Modulating Nlrp3. Yonsei Medical Journal, 63(3). https://doi.org/10.3349/ymj.2022.63.3.220
  • Lv, J., Song, X., Luo, Z., Huang, D., Xiao, L., & Zou, K. (2025a). Luteolin: exploring its therapeutic potential and molecular mechanisms in pulmonary diseases. Frontiers in Pharmacology, 16. https://doi.org/10.3389/fphar.2025.1535555
  • Lv, J., Song, X., Luo, Z., Huang, D., Xiao, L., & Zou, K. (2025b). Luteolin: exploring its therapeutic potential and molecular mechanisms in pulmonary diseases. Frontiers in Pharmacology, 16. https://doi.org/10.3389/fphar.2025.1535555
  • Malla, S., Prasad Niraula, N., Singh, B., Liou, K., & Kyung Sohng, J. (2010). Limitations in doxorubicin production from Streptomyces peucetius. In Microbiological Research (Vol. 165, Issue 5). https://doi.org/10.1016/j.micres.2009.11.006
  • Mitry, M. A., & Edwards, J. G. (2016). Doxorubicin induced heart failure: Phenotype and molecular mechanisms. In IJC Heart and Vasculature (Vol. 10). https://doi.org/10.1016/j.ijcha.2015.11.004
  • Olukman, M., Can, C., Erol, A., Öktem, G., Oral, O., & Çinar, M. G. (2009). Reversal of doxorubicin-induced vascular dysfunction by resveratrol in rat thoracic aorta: Is there a possible role of nitric oxide synthase inhibition? Anadolu Kardiyoloji Dergisi, 9(4).
  • Owumi, S. E., Lewu, D. O., Arunsi, U. O., & Oyelere, A. K. (2021). Luteolin attenuates doxorubicin-induced derangements of liver and kidney by reducing oxidative and inflammatory stress to suppress apoptosis. Human and Experimental Toxicology, 40(10). https://doi.org/10.1177/09603271211006171
  • Owumi, S. E., Nwozo, S. O., Arunsi, U. O., Oyelere, A. K., & Odunola, O. A. (2021). Co-administration of Luteolin mitigated toxicity in rats’ lungs associated with doxorubicin treatment. Toxicology and Applied Pharmacology, 411. https://doi.org/10.1016/j.taap.2020.115380
  • Pan, J., Chen, M.-Y., Jiang, C.-Y., Zhang, Z.-Y., Yan, J.-L., Meng, X.-F., … Qian, L.-B. (2025). Luteolin alleviates diabetic cardiac injury related to inhibiting SHP2/STAT3 pathway. European Journal of Pharmacology, 989, 177259. https://doi.org/10.1016/j.ejphar.2025.177259
  • Rawat, P. S., Jaiswal, A., Khurana, A., Bhatti, J. S., & Navik, U. (2021). Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. In Biomedicine and Pharmacotherapy (Vol. 139). https://doi.org/10.1016/j.biopha.2021.111708
  • Roberts, R. E., Allen, S., Chang, A. P. Y., Henderson, H., Hobson, G. C., Karania, B., … Alexander, S. P. H. (2013). Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels. Toxicology and Applied Pharmacology, 272(3). https://doi.org/10.1016/j.taap.2013.06.021
  • Seelinger, G., Merfort, I., Wölfle, U., & Schempp, C. M. (2008). Anti-carcinogenic effects of the flavonoid luteolin. In Molecules (Vol. 13, Issue 10). https://doi.org/10.3390/molecules13102628
  • Sheibani, M., Azizi, Y., Shayan, M., Nezamoleslami, S., Eslami, F., Farjoo, M. H., & Dehpour, A. R. (2022). Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-clinical Therapeutic Approaches. In Cardiovascular Toxicology (Vol. 22, Issue 4). https://doi.org/10.1007/s12012-022-09721-1
  • Shen, B., Ye, C. L., Ye, K. H., Zhuang, L., & Jiang, J. H. (2009). Doxorubicin-induced vasomotion and [Ca2+](i) elevation in vascular smooth muscle cells from C57BL/6 mice. Acta Pharmacologica Sinica, 30(11). https://doi.org/10.1038/aps.2009.145
  • Songbo, M., Lang, H., Xinyong, C., Bin, X., Ping, Z., & Liang, S. (2019). Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicology Letters, 307, 41–48. https://doi.org/10.1016/j.toxlet.2019.02.013
  • Tongda, X., Li, D., & Jiang, D. (2012). Targeting cell signaling and apoptotic pathways by luteolin: Cardioprotective role in rat cardiomyocytes following ischemia/reperfusion. In Nutrients (Vol. 4, Issue 12). https://doi.org/10.3390/nu4122008
  • Vincent, D. T., Ibrahim, Y. F., Espey, M. G., & Suzuki, Y. J. (2013). The role of antioxidants in the era of cardio-oncology. In Cancer Chemotherapy and Pharmacology (Vol. 72, Issue 6). https://doi.org/10.1007/s00280-013-2260-4
  • Xiong, L., Liu, Y., Wang, Y., Zhao, H., Song, X., Fan, W., … Zhang, Y. (2024). The protective effect of Lonicera japonica Thunb. against lipopolysaccharide-induced acute lung injury in mice: Modulation of inflammation, oxidative stress, and ferroptosis. Journal of Ethnopharmacology, 331, 118333. https://doi.org/10.1016/j.jep.2024.118333
  • Xu, H., Yu, W., Sun, S., Li, C., Zhang, Y., & Ren, J. (2020). Luteolin Attenuates Doxorubicin-Induced Cardiotoxicity Through Promoting Mitochondrial Autophagy. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.00113
  • Xu, Y. C., Leung, S. W. S., Yeung, D. K. Y., Hu, L. H., Chen, G. H., Che, C. M., & Man, R. Y. K. (2007). Structure-activity relationships of flavonoids for vascular relaxation in porcine coronary artery. Phytochemistry, 68(8). https://doi.org/10.1016/j.phytochem.2007.02.013
  • Yahyazadeh, A., & Altunkaynak, B. Z. (2019). Protective effects of luteolin on rat testis following exposure to 900 MHz electromagnetic field. Biotechnic and Histochemistry, 94(4). https://doi.org/10.1080/10520295.2019.1566568
  • Yalçın, A., Türk, A., Aydın, H., Yılmaz, E., Çelik, İ. S., & Üçkardeş, F. (2020). Effects of Vitamin D on doxorubucin-induced lung injury and TRPM2 immunoreactivity in rats. Journal of Surgery and Medicine, 4(12). https://doi.org/10.28982/josam.842133
  • Yan, Q., Li, Y., Yan, J., Zhao, Y., Liu, Y., & Liu, S. (2019). Luteolin improves heart preservation through inhibiting hypoxia dependent L type calcium channels in cardiomyocytes. Experimental and Therapeutic Medicine. https://doi.org/10.3892/etm.2019.7214

LOW-DOSE LUTEOLIN FAILS TO MITIGATE DOXORUBICIN-INDUCED CARDIOVASCULAR AND PULMONARY INJURY IN RATS: HISTOPATHOLOGICAL STUDY

Year 2025, Volume: 13 Issue: 3, 778 - 790
https://doi.org/10.33715/inonusaglik.1696064

Abstract

This study aimed to evaluate the effect of luteolin (LUT) on lung, heart, and aorta histology in rats subjected to doxorubicin (DOX)-induced injury. Thirty-four 8-week-old male rats were divided to four groups: control (saline), LUT (20 μg/kg/day), DOX (5 mg/kg on days 1, 7, 14, 21, 28), and DOX+LUT (combined treatment). On day 29, rats were sacrificed for histological assessment of cardiovascular and pulmonary damage. Heart, lung, and aorta tissues were stained with Hematoxylin and Eosin (H&E), Toluidine Blue (TB), Safranin and Hemalum (SH), or Picrosirius Red (PSR). Semi-quantitative analyses of collagen and elastic fibers was performed using ImageJ. Group comparisons were made using one-way ANOVA with Bonferroni correction (p < 0.0083). DOX induced pronounced myocardial injury evidenced by loss of cross-striations, cytoplasmic vacuolization, coagulative necrosis, and an increase in collagen deposition with reduction in aortic elastic fibers and increase in aortic-collagen, as well as alveolar septal thickening, hemorrhage, and an increase in pulmonary mast cell density and interstitial collagen (all p < 0.0083). LUT treatment alone produced no histological alterations, and its co-administration at 20 µg/kg failed to ameliorate any of the DOX-induced changes. In conclusion, LUT (20 µg/kg) did not alleviate DOX-induced cardiopulmonary damage, underscoring the need for dose optimization in future studies.

Ethical Statement

Ethical approval of the study was obtained from the Health Sciences University Hamidiye Experimental Animals Ethics Committee (Approval No: 2020-06/13).

Supporting Institution

Health Sciences University

References

  • Bosman, M., Favere, K., Neutel, C. H. G., Jacobs, G., De Meyer, G. R. Y., Martinet, W., …Guns, P. J. D. F. (2021). Doxorubicin induces arterial stiffness: A comprehensive in vivo and ex vivo evaluation of vascular toxicity in mice. Toxicology Letters, 346. https://doi.org/10.1016/j.toxlet.2021.04.015
  • Bosman, M., Krüger, D., Van Assche, C., Boen, H., Neutel, C., Favere, K., … Guns, P. J. (2023). Doxorubicin-induced cardiovascular toxicity: a longitudinal evaluation of functional and molecular markers. Cardiovascular Research, 119(15). https://doi.org/10.1093/cvr/cvad136
  • Chaosuwannakit, N., D’Agostino, R., Hamilton, C. A., Lane, K. S., Ntim, W. O., Lawrence, J., …Hundley, W. G. (2010). Aortic Stiffness Increases Upon Receipt of Anthracycline Chemotherapy. Journal of Clinical Oncology, 28(1), 166–172. https://doi.org/10.1200/JCO.2009.23.8527
  • Courtoy, G. E., Leclercq, I., Froidure, A., Schiano, G., Morelle, J., Devuyst, … Bouzin, C. (2020). Digital image analysis of picrosirius red staining: A robust method for multi-organ fibrosis quantification and characterization. Biomolecules, 10(11). https://doi.org/10.3390/biom10111585
  • Elagül-Tombul, N., Söğüt, İ., & Köse-Vuruşkan, A. (2024). An Examination of the Role of Luteolin in Doxorubicin-Induced Testicular Damage. Journal of Evolutionary Biochemistry and Physiology, 60(3), 947–956. https://doi.org/10.1134/S0022093024030086
  • Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149
  • Gibson, N. M., Greufe, S. E., Hydock, D. S., & Hayward, R. (2013). Doxorubicin-induced vascular dysfunction and its attenuation by exercise preconditioning. Journal of Cardiovascular Pharmacology, 62(4). https://doi.org/10.1097/FJC.0b013e31829c9993
  • Han, M., Lu, Y., Tao, Y., Zhang, X., Dai, C., Zhang, B., … Li, J. (2023). Luteolin Protects Pancreatic β Cells against Apoptosis through Regulation of Autophagy and ROS Clearance. Pharmaceuticals, 16(7). https://doi.org/10.3390/ph16070975
  • Injac, R., Radic, N., Govedarica, B., Perse, M., Cerar, A., Djordjevic, A., & Strukelj, B. (2009). Acute doxorubicin pulmotoxicity in rats with malignant neoplasm is effectively treated with fullerenol C60(OH)24 through inhibition of oxidative stress. Pharmacological Reports, 61(2), 335–342. https://doi.org/10.1016/S1734-1140(09)70041-6
  • Li, L., Luo, W., Qian, Y., Zhu, W., Qian, J., Li, J., … Liang, G. (2019). Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine, 59. https://doi.org/10.1016/j.phymed.2018.11.034
  • Li, W., Dong, M., Guo, P., Liu, Y., Jing, Y., Chen, R., & Zhang, M. (2019). Luteolin-induced coronary arterial relaxation involves activation of the myocyte voltage-gated K + channels and inward rectifier K + channels. Life Sciences, 221. https://doi.org/10.1016/j.lfs.2019.02.028
  • Liu, Z., Gao, S., Bu, Y., & Zheng, X. (2022). Luteolin Protects Cardiomyocytes Cells against Lipopolysaccharide-Induced Apoptosis and Inflammatory Damage by Modulating Nlrp3. Yonsei Medical Journal, 63(3). https://doi.org/10.3349/ymj.2022.63.3.220
  • Lv, J., Song, X., Luo, Z., Huang, D., Xiao, L., & Zou, K. (2025a). Luteolin: exploring its therapeutic potential and molecular mechanisms in pulmonary diseases. Frontiers in Pharmacology, 16. https://doi.org/10.3389/fphar.2025.1535555
  • Lv, J., Song, X., Luo, Z., Huang, D., Xiao, L., & Zou, K. (2025b). Luteolin: exploring its therapeutic potential and molecular mechanisms in pulmonary diseases. Frontiers in Pharmacology, 16. https://doi.org/10.3389/fphar.2025.1535555
  • Malla, S., Prasad Niraula, N., Singh, B., Liou, K., & Kyung Sohng, J. (2010). Limitations in doxorubicin production from Streptomyces peucetius. In Microbiological Research (Vol. 165, Issue 5). https://doi.org/10.1016/j.micres.2009.11.006
  • Mitry, M. A., & Edwards, J. G. (2016). Doxorubicin induced heart failure: Phenotype and molecular mechanisms. In IJC Heart and Vasculature (Vol. 10). https://doi.org/10.1016/j.ijcha.2015.11.004
  • Olukman, M., Can, C., Erol, A., Öktem, G., Oral, O., & Çinar, M. G. (2009). Reversal of doxorubicin-induced vascular dysfunction by resveratrol in rat thoracic aorta: Is there a possible role of nitric oxide synthase inhibition? Anadolu Kardiyoloji Dergisi, 9(4).
  • Owumi, S. E., Lewu, D. O., Arunsi, U. O., & Oyelere, A. K. (2021). Luteolin attenuates doxorubicin-induced derangements of liver and kidney by reducing oxidative and inflammatory stress to suppress apoptosis. Human and Experimental Toxicology, 40(10). https://doi.org/10.1177/09603271211006171
  • Owumi, S. E., Nwozo, S. O., Arunsi, U. O., Oyelere, A. K., & Odunola, O. A. (2021). Co-administration of Luteolin mitigated toxicity in rats’ lungs associated with doxorubicin treatment. Toxicology and Applied Pharmacology, 411. https://doi.org/10.1016/j.taap.2020.115380
  • Pan, J., Chen, M.-Y., Jiang, C.-Y., Zhang, Z.-Y., Yan, J.-L., Meng, X.-F., … Qian, L.-B. (2025). Luteolin alleviates diabetic cardiac injury related to inhibiting SHP2/STAT3 pathway. European Journal of Pharmacology, 989, 177259. https://doi.org/10.1016/j.ejphar.2025.177259
  • Rawat, P. S., Jaiswal, A., Khurana, A., Bhatti, J. S., & Navik, U. (2021). Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. In Biomedicine and Pharmacotherapy (Vol. 139). https://doi.org/10.1016/j.biopha.2021.111708
  • Roberts, R. E., Allen, S., Chang, A. P. Y., Henderson, H., Hobson, G. C., Karania, B., … Alexander, S. P. H. (2013). Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels. Toxicology and Applied Pharmacology, 272(3). https://doi.org/10.1016/j.taap.2013.06.021
  • Seelinger, G., Merfort, I., Wölfle, U., & Schempp, C. M. (2008). Anti-carcinogenic effects of the flavonoid luteolin. In Molecules (Vol. 13, Issue 10). https://doi.org/10.3390/molecules13102628
  • Sheibani, M., Azizi, Y., Shayan, M., Nezamoleslami, S., Eslami, F., Farjoo, M. H., & Dehpour, A. R. (2022). Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-clinical Therapeutic Approaches. In Cardiovascular Toxicology (Vol. 22, Issue 4). https://doi.org/10.1007/s12012-022-09721-1
  • Shen, B., Ye, C. L., Ye, K. H., Zhuang, L., & Jiang, J. H. (2009). Doxorubicin-induced vasomotion and [Ca2+](i) elevation in vascular smooth muscle cells from C57BL/6 mice. Acta Pharmacologica Sinica, 30(11). https://doi.org/10.1038/aps.2009.145
  • Songbo, M., Lang, H., Xinyong, C., Bin, X., Ping, Z., & Liang, S. (2019). Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicology Letters, 307, 41–48. https://doi.org/10.1016/j.toxlet.2019.02.013
  • Tongda, X., Li, D., & Jiang, D. (2012). Targeting cell signaling and apoptotic pathways by luteolin: Cardioprotective role in rat cardiomyocytes following ischemia/reperfusion. In Nutrients (Vol. 4, Issue 12). https://doi.org/10.3390/nu4122008
  • Vincent, D. T., Ibrahim, Y. F., Espey, M. G., & Suzuki, Y. J. (2013). The role of antioxidants in the era of cardio-oncology. In Cancer Chemotherapy and Pharmacology (Vol. 72, Issue 6). https://doi.org/10.1007/s00280-013-2260-4
  • Xiong, L., Liu, Y., Wang, Y., Zhao, H., Song, X., Fan, W., … Zhang, Y. (2024). The protective effect of Lonicera japonica Thunb. against lipopolysaccharide-induced acute lung injury in mice: Modulation of inflammation, oxidative stress, and ferroptosis. Journal of Ethnopharmacology, 331, 118333. https://doi.org/10.1016/j.jep.2024.118333
  • Xu, H., Yu, W., Sun, S., Li, C., Zhang, Y., & Ren, J. (2020). Luteolin Attenuates Doxorubicin-Induced Cardiotoxicity Through Promoting Mitochondrial Autophagy. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.00113
  • Xu, Y. C., Leung, S. W. S., Yeung, D. K. Y., Hu, L. H., Chen, G. H., Che, C. M., & Man, R. Y. K. (2007). Structure-activity relationships of flavonoids for vascular relaxation in porcine coronary artery. Phytochemistry, 68(8). https://doi.org/10.1016/j.phytochem.2007.02.013
  • Yahyazadeh, A., & Altunkaynak, B. Z. (2019). Protective effects of luteolin on rat testis following exposure to 900 MHz electromagnetic field. Biotechnic and Histochemistry, 94(4). https://doi.org/10.1080/10520295.2019.1566568
  • Yalçın, A., Türk, A., Aydın, H., Yılmaz, E., Çelik, İ. S., & Üçkardeş, F. (2020). Effects of Vitamin D on doxorubucin-induced lung injury and TRPM2 immunoreactivity in rats. Journal of Surgery and Medicine, 4(12). https://doi.org/10.28982/josam.842133
  • Yan, Q., Li, Y., Yan, J., Zhao, Y., Liu, Y., & Liu, S. (2019). Luteolin improves heart preservation through inhibiting hypoxia dependent L type calcium channels in cardiomyocytes. Experimental and Therapeutic Medicine. https://doi.org/10.3892/etm.2019.7214
There are 34 citations in total.

Details

Primary Language English
Subjects Traditional, Complementary and Integrative Medicine (Other)
Journal Section Araştırma Makalesi
Authors

Kübra Şevgin 0000-0001-8250-8227

Yağmur Çelik 0009-0001-1634-7311

Nur Elagül Tombul 0000-0001-5962-5935

Ayşe Köse Vuruşkan 0000-0002-4136-3014

Early Pub Date October 6, 2025
Publication Date October 8, 2025
Submission Date May 9, 2025
Acceptance Date July 24, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Şevgin, K., Çelik, Y., Elagül Tombul, N., Köse Vuruşkan, A. (2025). LOW-DOSE LUTEOLIN FAILS TO MITIGATE DOXORUBICIN-INDUCED CARDIOVASCULAR AND PULMONARY INJURY IN RATS: HISTOPATHOLOGICAL STUDY. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 13(3), 778-790. https://doi.org/10.33715/inonusaglik.1696064