Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 3 Sayı: 2, 51 - 57, 30.12.2024
https://doi.org/10.5281/zenodo.14585369

Öz

Kaynakça

  • [1] García-Moreno, F. (2016). Commercial applications of metal foams: Their properties and production. Materials, 9(2), 85.
  • [2] Uzun, A. (2019). Production of aluminium foams reinforced with silicon carbide and carbon nanotubes prepared by powder metallurgy method. Composites Part B: Engineering, 172, 206-217.
  • [3] Körner, C., Arnold, M., & Singer, R. F. (2005). Metal foam stabilization by oxide network particles. Materials Science and Engineering: A, 396(1-2), 28-40.
  • [4] Kennedy, A. R., & Asavavisitchai, S. (2004). Effects of TiB2 particle addition on the expansion, structure and mechanical properties of PM Al foams. Scripta Materialia, 50(1), 115-119.
  • [5] Vinod Kumar, G. S., Chakraborty, M., Garcia-Moreno, F., & Banhart, J. (2011). Foamability of MgAl 2 O 4 (Spinel)-reinforced aluminum alloy composites. Metallurgical and materials transactions A, 42, 2898-2908.
  • [6] Cao, Z. K., Li, B., Yao, G. C., & Wang, Y. (2008). Fabrication of aluminum foam stabilized by copper-coated carbon fibers. Materials Science and Engineering: A, 486(1-2), 350-356.
  • [7] Lehmhus, D., Hünert, D., Mosler, U., Martin, U., & Weise, J. (2019). Effects of eutectic modification and grain refinement on microstructure and properties of PM AlSi7 metallic foams. Metals, 9(12), 1241.
  • [8] Khabushan, J. K., Bonabi, S. B., Aghbagh, F. M., & Khabushan, A. K. (2014). A study of fabricating and compressive properties of cellular Al-Si (355.0) foam using TiH2. Materials & Design, 55, 792-797.
  • [9] Sarajan, Z., Soltani, M., & Kahani Khabushan, J. (2011). Foaming of Al-Si by TiH2. Materials and Manufacturing Processes, 26(10), 1293-1298.
  • [10] Hosseini, S. M., Habibolahzadeh, A., Králík, V., Petráňová, V., & Němeček, J. (2017). Nano-SiCp effects on the production, microstructural evolution and compressive properties of highly porous Al/CaCO3 foam fabricated via continual annealing and roll-bonding process. Materials Science and Engineering: A, 680, 157-167.
  • [11] Li, W., Yang, X., Yang, K., He, C., Sha, J., Shi, C., ... & Zhao, N. (2022). Simultaneously optimizing pore morphology and enhancing mechanical properties of Al-Si alloy composite foams by graphene nanosheets. Journal of Materials Science & Technology, 101, 60-70.
  • [12] Yang, K., Yang, X., He, C., Liu, E., Shi, C., Ma, L., ... & Zhao, N. (2017). Damping characteristics of Al matrix composite foams reinforced by in-situ grown carbon nanotubes. Materials Letters, 209, 68-70.
  • [13] Ma, Y., Yang, X., He, C., Yang, K., Xu, J., Sha, J., & Zhao, N. (2018). Fabrication of in-situ grown carbon nanotubes reinforced aluminum alloy matrix composite foams based on powder metallurgy method. Materials Letters, 233, 351-354.
  • [14] Duarte, I., & Ferreira, J. M. (2016). Composite and nanocomposite metal foams. Materials, 9(2), 79.
  • [15] Wang, K., Jiang, H. Y., Wang, Y. X., Wang, Q. D., Ye, B., & Ding, W. J. (2016). Microstructure and mechanical properties of hypoeutectic Al-Si composite reinforced with TiCN nanoparticles. Materials & Design, 95, 545-554.
  • [16] Du, Y., Li, A. B., Zhang, X. X., Tan, Z. B., Su, R. Z., Pu, F., & Geng, L. (2015). Enhancement of the mechanical strength of aluminum foams by SiC nanoparticles. Materials Letters, 148, 79-81.
  • [17] Feng, S., Guo, Q., Li, Z., Fan, G., Li, Z., Xiong, D. B., ... & Zhang, D. (2017). Strengthening and toughening mechanisms in graphene-Al nanolaminate composite micro-pillars. Acta Materialia, 125, 98-108.
  • [18] Yang, W., Chen, G., Qiao, J., Liu, S., Xiao, R., Dong, R., ... & Wu, G. (2017). Graphene nanoflakes reinforced Al-20Si matrix composites prepared by pressure infiltration method. Materials Science and Engineering: A, 700, 351-357.
  • [19] Li, W., Yang, X., He, C., Sha, J., Shi, C., Li, J., & Zhao, N. (2019). Compressive responses and strengthening mechanisms of aluminum composite foams reinforced with graphene nanosheets. Carbon, 153, 396-406.
  • [20] An, Y., Yang, S., Wu, H., Zhao, E., & Wang, Z. (2017). Investigating the internal structure and mechanical properties of graphene nanoflakes enhanced aluminum foam. Materials & Design, 134, 44-53.
  • [21] Guan, R., Wang, Y., Zheng, S., Su, N., Ji, Z., Liu, Z., ... & Chen, B. (2019). Fabrication of aluminum matrix composites reinforced with Ni-coated graphene nanosheets. Materials Science and Engineering: A, 754, 437-446.
  • [22] Prados Martín, E. (2021). Microstructural parameters affecting the compressive response of closed-cell aluminum foams. Mechanics of Advanced Materials and Structures, 1-20.
  • [23] Degischer, H. P., & Kriszt, B. (2002). Handbook of cellular metals (Vol. 71). Wiley-VCH, Weinheim.
  • [24] Idris, M. I., Vodenitcharova, T., & Hoffman, M. (2009). Mechanical behaviour and energy absorption of closed-cell aluminium foam panels in uniaxial compression. Materials Science and Engineering: A, 517(1-2), 37-45.
  • [25] Bhogi, S., Pamidi, V., Nampoothiri, J., Ravi, K. R., & Mukherjee, M. (2022). Influence of ultrasonic treatment on the structure and properties of MgAl2O4 particle-stabilized aluminum foams. Materials Science and Engineering: A, 858, 144187.
  • [26] Leitlmeier, D., Degischer, H. P., & Flankl, H. J. (2002). Development of a foaming process for particulate-reinforced aluminum melts. Advanced Engineering Materials, 4(10), 735-740.
  • [27] Chakraborty, M., Garcia-Moreno, F., & Banhart, J. (2011). Foamability of MgAl2O4 (spinel)-reinforced aluminum alloy composites. Metallurgical and materials transactions A, 42(9), 2898-2908.
  • [28] Haibel, A., Rack, A., & Banhart, J. (2006). Why are metal foams stable? Applied Physics Letters, 89(15), 154102.

Production of Ni-GNP/AlSi12 Composite Foams and Investigation of Their Properties

Yıl 2024, Cilt: 3 Sayı: 2, 51 - 57, 30.12.2024
https://doi.org/10.5281/zenodo.14585369

Öz

In this study, Ni-GNP/AlSi12 composite foams were produced by using powder metallurgy process using aluminum powder as matrix material, silicon (12%) for alloying, titanium hydride (1%-TiH₂) as foaming agent and graphene nanoplatelets (0%, 0.4%, 0.8% and 1.2%-GNP) as reinforcement. The powders were mixed at specified ratios, cold compressed and extruded at different ratios to produce precursor samples with diameters of 6 mm and 12 mm. Foaming experiments were carried out at 750 °C in open atmosphere by measuring the expansion rates volumetrically. After foaming, the samples were analyzed in terms of their cellular structure, relative density and cell wall hardness. The results showed that the addition of Ni-GNP decreased the expansion rates but increased the relative density and stability, and the optimum reinforcement effects were observed at 0.4% Ni-GNP concentration. Therefore, the addition of Ni-GNP provides improved stability and hardness, albeit at the expense of reduced expansion, for applications requiring structural strength.

Kaynakça

  • [1] García-Moreno, F. (2016). Commercial applications of metal foams: Their properties and production. Materials, 9(2), 85.
  • [2] Uzun, A. (2019). Production of aluminium foams reinforced with silicon carbide and carbon nanotubes prepared by powder metallurgy method. Composites Part B: Engineering, 172, 206-217.
  • [3] Körner, C., Arnold, M., & Singer, R. F. (2005). Metal foam stabilization by oxide network particles. Materials Science and Engineering: A, 396(1-2), 28-40.
  • [4] Kennedy, A. R., & Asavavisitchai, S. (2004). Effects of TiB2 particle addition on the expansion, structure and mechanical properties of PM Al foams. Scripta Materialia, 50(1), 115-119.
  • [5] Vinod Kumar, G. S., Chakraborty, M., Garcia-Moreno, F., & Banhart, J. (2011). Foamability of MgAl 2 O 4 (Spinel)-reinforced aluminum alloy composites. Metallurgical and materials transactions A, 42, 2898-2908.
  • [6] Cao, Z. K., Li, B., Yao, G. C., & Wang, Y. (2008). Fabrication of aluminum foam stabilized by copper-coated carbon fibers. Materials Science and Engineering: A, 486(1-2), 350-356.
  • [7] Lehmhus, D., Hünert, D., Mosler, U., Martin, U., & Weise, J. (2019). Effects of eutectic modification and grain refinement on microstructure and properties of PM AlSi7 metallic foams. Metals, 9(12), 1241.
  • [8] Khabushan, J. K., Bonabi, S. B., Aghbagh, F. M., & Khabushan, A. K. (2014). A study of fabricating and compressive properties of cellular Al-Si (355.0) foam using TiH2. Materials & Design, 55, 792-797.
  • [9] Sarajan, Z., Soltani, M., & Kahani Khabushan, J. (2011). Foaming of Al-Si by TiH2. Materials and Manufacturing Processes, 26(10), 1293-1298.
  • [10] Hosseini, S. M., Habibolahzadeh, A., Králík, V., Petráňová, V., & Němeček, J. (2017). Nano-SiCp effects on the production, microstructural evolution and compressive properties of highly porous Al/CaCO3 foam fabricated via continual annealing and roll-bonding process. Materials Science and Engineering: A, 680, 157-167.
  • [11] Li, W., Yang, X., Yang, K., He, C., Sha, J., Shi, C., ... & Zhao, N. (2022). Simultaneously optimizing pore morphology and enhancing mechanical properties of Al-Si alloy composite foams by graphene nanosheets. Journal of Materials Science & Technology, 101, 60-70.
  • [12] Yang, K., Yang, X., He, C., Liu, E., Shi, C., Ma, L., ... & Zhao, N. (2017). Damping characteristics of Al matrix composite foams reinforced by in-situ grown carbon nanotubes. Materials Letters, 209, 68-70.
  • [13] Ma, Y., Yang, X., He, C., Yang, K., Xu, J., Sha, J., & Zhao, N. (2018). Fabrication of in-situ grown carbon nanotubes reinforced aluminum alloy matrix composite foams based on powder metallurgy method. Materials Letters, 233, 351-354.
  • [14] Duarte, I., & Ferreira, J. M. (2016). Composite and nanocomposite metal foams. Materials, 9(2), 79.
  • [15] Wang, K., Jiang, H. Y., Wang, Y. X., Wang, Q. D., Ye, B., & Ding, W. J. (2016). Microstructure and mechanical properties of hypoeutectic Al-Si composite reinforced with TiCN nanoparticles. Materials & Design, 95, 545-554.
  • [16] Du, Y., Li, A. B., Zhang, X. X., Tan, Z. B., Su, R. Z., Pu, F., & Geng, L. (2015). Enhancement of the mechanical strength of aluminum foams by SiC nanoparticles. Materials Letters, 148, 79-81.
  • [17] Feng, S., Guo, Q., Li, Z., Fan, G., Li, Z., Xiong, D. B., ... & Zhang, D. (2017). Strengthening and toughening mechanisms in graphene-Al nanolaminate composite micro-pillars. Acta Materialia, 125, 98-108.
  • [18] Yang, W., Chen, G., Qiao, J., Liu, S., Xiao, R., Dong, R., ... & Wu, G. (2017). Graphene nanoflakes reinforced Al-20Si matrix composites prepared by pressure infiltration method. Materials Science and Engineering: A, 700, 351-357.
  • [19] Li, W., Yang, X., He, C., Sha, J., Shi, C., Li, J., & Zhao, N. (2019). Compressive responses and strengthening mechanisms of aluminum composite foams reinforced with graphene nanosheets. Carbon, 153, 396-406.
  • [20] An, Y., Yang, S., Wu, H., Zhao, E., & Wang, Z. (2017). Investigating the internal structure and mechanical properties of graphene nanoflakes enhanced aluminum foam. Materials & Design, 134, 44-53.
  • [21] Guan, R., Wang, Y., Zheng, S., Su, N., Ji, Z., Liu, Z., ... & Chen, B. (2019). Fabrication of aluminum matrix composites reinforced with Ni-coated graphene nanosheets. Materials Science and Engineering: A, 754, 437-446.
  • [22] Prados Martín, E. (2021). Microstructural parameters affecting the compressive response of closed-cell aluminum foams. Mechanics of Advanced Materials and Structures, 1-20.
  • [23] Degischer, H. P., & Kriszt, B. (2002). Handbook of cellular metals (Vol. 71). Wiley-VCH, Weinheim.
  • [24] Idris, M. I., Vodenitcharova, T., & Hoffman, M. (2009). Mechanical behaviour and energy absorption of closed-cell aluminium foam panels in uniaxial compression. Materials Science and Engineering: A, 517(1-2), 37-45.
  • [25] Bhogi, S., Pamidi, V., Nampoothiri, J., Ravi, K. R., & Mukherjee, M. (2022). Influence of ultrasonic treatment on the structure and properties of MgAl2O4 particle-stabilized aluminum foams. Materials Science and Engineering: A, 858, 144187.
  • [26] Leitlmeier, D., Degischer, H. P., & Flankl, H. J. (2002). Development of a foaming process for particulate-reinforced aluminum melts. Advanced Engineering Materials, 4(10), 735-740.
  • [27] Chakraborty, M., Garcia-Moreno, F., & Banhart, J. (2011). Foamability of MgAl2O4 (spinel)-reinforced aluminum alloy composites. Metallurgical and materials transactions A, 42(9), 2898-2908.
  • [28] Haibel, A., Rack, A., & Banhart, J. (2006). Why are metal foams stable? Applied Physics Letters, 89(15), 154102.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları
Bölüm Research Articles
Yazarlar

Kilani A. Mohamed Hassan 0000-0002-5456-7155

Arif Uzun 0000-0002-8120-4114

Erken Görünüm Tarihi 22 Aralık 2024
Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 29 Ekim 2024
Kabul Tarihi 27 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 3 Sayı: 2

Kaynak Göster

APA Hassan, K. A. M., & Uzun, A. (2024). Production of Ni-GNP/AlSi12 Composite Foams and Investigation of Their Properties. Inspiring Technologies and Innovations, 3(2), 51-57. https://doi.org/10.5281/zenodo.14585369

Dergimiz 2024 Yılı Ocak ayı itibariyle artık İngilizce ve Türkçe yayınları kabul etmeye başlamıştır. Türkçe yayınlar İngilizce Özet içerecek şekilde kabul edilecektir. Yazım Kuralları menüsünden Tam Metin yazım şablonunu indirebilirsiniz.