Research Article
BibTex RIS Cite

Yapay Zekânın Ruh Sağlığı Hizmetlerinde Kullanımına İlişkin Fırsatlar ve Sorunlar

Year 2022, Volume: 12 Issue: 3, 121 - 158, 18.09.2022
https://doi.org/10.12658/M0664

Abstract

Günümüzde adına dördüncü teknoloji devrimi denilen disiplinler arası gelişme önemli bir tartışma konusu olmaya devam etmektedir. Sırasıyla buharlı makine, elektrik ve bilgisayarın merkezinde yer aldığı bundan önceki üç devrim, köklü toplumsal dönüşümleri beraberinde getirmişti. 21. yüzyılla birlikte başlayan dördüncü teknoloji devrimini yapay zekâ ve makine öğrenmesi karakterize etmektedir. Pek çok uzman, yapay zekânın doğrudan insanın yerine geçebilecek olması ihtimalini tartışmaktadır. Bu yönüyle içinde bulunduğumuz dönemin öncekilerden farklı olduğu belirtilmektedir. Biyoloji, internet ve yapay zekânın birbirine entegre edilmesiyle ortaya çıkan yeni teknolojilerin hemen her disiplinde olduğu gibi ruh sağlığı alanında da önemli dönüşümlere yol açması beklenmektedir. Ruh sağlığı hizmetlerinin eğitim, tanı, tahmin, tedavi ve değerlendirme aşamalarında yapay zekâ ve makine öğrenmesini kullanan çalışmalar giderek artmaktadır. Bu çalışmalar, yapay zekânın ruh sağlığı hizmetlerini hangi boyutlarda ve ne yönde etkileyeceğine ilişkin tartışmaları da beraberinde getirmektedir. Yapay zekânın ruh sağlığı hizmetlerinde kullanımının avantajlarına yapılan vurgu daha güçlü olsa da dezavantaj ve sınırlılıklarına da dikkat çekilmektedir. Bu makalenin amacı; yapay zekâ ve makine öğrenmesinin ruh sağlığı hizmetlerinde kullanımına ilişkin araştırma bulgularını incelemek, yapay zekânın ruh sağlığı alanına getireceği fırsatları ve sorunları tartışmak, gelecek araştırmalar için önerilerde bulunmaktır.

References

  • Abbas, H., Garberson, F., Liu-Mayo, S., Glover, E. & Wall, D. P. (2020). Multi-modular AI approach to streamline autism diagnosis in young children. Scientific Reports, 10, 5014. https://www.nature.com/articles/ s41598-020-61213-w. https://doi.org/10.1038/s41598-020-61213-w.
  • Ahmed, A., Ali, N., Aziz, S., Abd-alrazaq, A. A., Hassan, A., Khalifa, Elhusein, M. B., Ahmed, M., Ahmed, M. A. S., & Househ, M. (2021). A review of mobile chatbot apps for anxiety and depression and their self-care features. Computer Methods and Programs in Biomedicine Update, 1. https://doi.org/10.1016/j.cmpbup.2021.100012.
  • Airenti, G. (2015). The cognitive bases of anthropomorphism: From relatedness to empathy. International Journal of Social Robotics, 7, 117-127. https://doi.org/10.1007/s12369-014-0263-x
  • Allen, S. (2020). Artificial intelligence and the future of psychiatry. IEEE Pulse, 11(3), 2-6. https://doi. org/10.1109/MPULS.2020.2993657.
  • Altınbaşak, G. (2019). Bipolar ve unipolar bozuklukların uygun biyobelirteç kullanarak makine öğrenme yöntemleri ile sınıflandırılması. [Yayınlanmamış master tezi]. Üsküdar Üniversitesi.
  • Amoroso, N., Diacono, D., Fanizzi, A., La Rocca, M., Monaco, A., Lombardi, Guaragnella, C., Bellotti, R. & Tangaro, S. (2018). Deep learning reveals alzheimer’s disease onset in MCI subjects: Results from an international challenge. Journal of Neuroscience Methods, 302, 3-9. https://doi.org/10.1016/j.jneumeth.2017.12.011
  • Auer, M. & Griffiths, M.D. (2019). Predicting limit-setting behavior of gamblers using machine learning algorithms: a real-world study of norwegian gamblers using account data. International Journal of Mental Health and Addiction, 20, 771-788. https://doi.org/10.1007/s11469-019-00166-2
  • Avrupa Komisyonu Yapay Zeka Üst Düzey Uzman Grubu. (2019). A definition of AI: Main capabilities and scientific disciplines. European Commission B-1049 Brussels.
  • Bain, E. E., Shafner, L., Walling, D. P., Othman, A. A., Chuang-Stein, C., Hinkle, J. & Hanina, A. (2017). Use of a novel artificial intelligence platform on mobile devices to assess dosing compliance in a phase 2 clinical trial in subjects with schizophrenia. JMIR Mhealth Uhealth, 5(2). https://doi.org/10.2196/mhealth.7030, S., Hardt, M. & Narayanan, A. (2019). Fairness in machine learning. Fordham Law Review, 28.
  • Bartgis, J. & Albright, G. (2016). Online role-play simulations with emotionally responsive avatars for the early detection of native youth psychological distress, including depression and suicidal ideation. American İndian And Alaska Native Mental Health Research, 23(2), 1-27. https://doi.org/10.5820/ aian.2302.2016.1
  • Bedi, G., Carrillo, F., Cecchi, G., Slezak, D. F., Sigman, M., Mota, N. B., Ribeiro, S., Javitt, D. C., Copelli, M. & Corcoran, C. M. (2015). Automated analysis of free speech predicts psychosis onset in high-risk youths. NPJ Schizophrenia, 1, 15030. https://doi.org/10.1038/npjschz.2015.30
  • Bennett, C. C. & Doub, T. W. (2016). Expert systems in mental health care: AI applications in decision-making and consultation. In D. D. Luxton (Ed.), Artificial intelligence in behavioral and mental health care (ss. 27–51). Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-420248-1.00002-7.
  • Bickman, L. (2020). Improving mental health services: A 50-year journey from randomized experiments to artificial ıntelligence and precision mental health, Administration and Policy in Mental Health and Mental Health Services Research, Vol. 47, pp 795–843. https://doi.org/10.1007/s10488-020-01065-8
  • Bilge, Y., Gül, E. & Birçek, N. I. (2020). Bir sosyal fobi vakasında bilişsel davranışçı terapi ve sanal gerçeklik kombinasyonu.. Bilişsel Davranışçı Psikoterapi ve Araştırmalar Dergisi, 9(2), 158 - 165. https://doi. org/10.5455/JCBPR.61718
  • Bindoff, I., Stafford, A., Peterson, G., Kang, B. H. & Tenni, P. (2012). The potential for intelligent decision support systems to improve the quality and consistency of medication reviews. Journal of Clinical Pharmacy and Therapeutics, 37 (4) :452-458. https://doi.org/10.1111/j.1365-2710.2011.01327.x
  • Blease, C., Locher, C., Leon-Carlyle, M. & Doraiswamy, M. (2020). Artificial intelligence and the future of psychiatry: Qualitative findings from a global physician survey. Digital Health, 6, 1-18. https://doi. org/10.1177/2055207620968355
  • Bostrom, N. (2014). Süper zekâ yapay zekâ uygulamaları tehlikeler ve stratejiler. F. Burak Aydar (Çev.). Koç Üniversitesi Yayınları.
  • Boucher, E. M., Harake, N. R., Ward, H. E., Stoeckl, S. E., Vargas, J., Minkel, J. Parks, A. C., & Zilca, R. (2021). Artificially intelligent chatbots in digital mental health interventions: A review. Expert Review of Medical Devices, 18(1), 37-49. https://doi.org/10.1080/17434440.2021.2013200
  • Boyle, D. (2014). Alan turing: Enigmanın şifresini çözmek. R. N. Ercan (Çev.). Zeplin Kitap.
  • Broadbent, E. (2017). Interactions with robots: The truths we reveal about ourselves. Annual Review of Psychology, 68, 627-52. https://doi.org/10.1146/annurev-psych-010416-043958.
  • Brunn, M., Diefenbacher, A., Courtet, P. & Genieys, W. (2020). The future is knocking: How artificial intelligence will fundamentally change psychiatry. Academic Psychiatry, 44, 461-466. https://doi.org/10.1007/ s40596-020-01243-8
  • Brynjolfsson, E. & McAfee, A. (2019). Yapay zekânın vaat ettikleri. Harvard Business Review (Ed) Dijital dönüşüm yapay zekâ içinde (ss. 56-19). L. Göktem (Çev.). Optimist Yayınları.
  • Burns, M. N., Begale, M., Duffecy, J., Gergle, D., Karr, C. J., Giangrande, E. & Mohr, D.C. (2011). Harnessingcontext sensing to develop a mobile intervention for depression. Journal of Medical Internet Research, 13(3), 55-174. https://doi.org/10.2196/jmir.1838
  • Bzdok, D. & Meyer-Lindenberg, A. (2018). Machine learning for precision psychiatry: Opportunities and challenges. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(3), 223-230. https://doi. org/10.1016/j.bpsc.2017.11.007
  • Cao, B., Cho, R. Y., Chen, D., Xiu, M., Wang, L., Soares, J. C. & Zhang, X. Y. (2018). Treatment response prediction and individualized identification of first-episode drug-naïve schizophrenia using brain functional connectivity. Molecular Psychiatry, 25, 906-913. https://doi.org/10.1038/s41380-018-0106-5
  • Casgrove, L., Karter, J. M., McGinley, M. & Morril, Z. (2020). Digital phenotyping and digital psychotropic drugs: Mental health surveillance tools that threaten human rights. Health and Human Rights Journal, 22(2), 33-39.
  • Cavallo, F., Esposito, R., Limosani, R., Manzi, A., Bevilacqua, R., Felici, E., Di Nuovo, A., Cangelosi, A., Lattanzio, F., & Dario, P. (2018). Robotic services acceptance in smart environments with older adults: User satisfaction and acceptability study. Journal of Medical Internet Research, 20(9), e264. https://doi. org/10.2196/jmir.9460.
  • Cecula, P., Yu, J., Dawoodbhoy, F. M., Delaney, J., Tan, J., Peacock, I. & Cox, B. (2021). Applications of artificial intelligence to improve patient flow on mental health inpatient units - Narrative literature review. Heliyon, 7(4), e06626. https://doi.org/10.1016/j.heliyon.2021.e06626
  • Chen, Z., Kibler, R. D., Hunt, A., Busch, F., Pearl, J., Jia, M., VanAernum, Z. L., Wicky, B. I. M., Dods, G., Liao, H., Wilken, M. S., Ciarlo, C., Green, S., El-Samad, H., Stamatoyannopoulos, J., Wysocki, V. H., Jewett, M. C., Boyken, S. E. & Baker, D. (2020). De novo design of protein logic gates. Science, 368(6486), 78-84. https://doi.org/10.1126/science.aay2790
  • Chew, H. S. J. & Achananuparp, P. (2022). Perceptions and needs of artificial intelligence in health care to increase adoption: Scoping review. Journal of Medical Internet Research, 24(1), e32939. https://doi. org/10.2196/32939
  • Cifuentes, C.A., Pinto, M.J., Céspedes, & Munera, M. (2020). Social robots in therapy and care. Current Robotics Reports, 1, 59-74. https://doi.org/10.1007/s43154-020-00009-2
  • Colby, K. M. (1981). Modeling a paranoid mind. Behavioral and Brain Sciences, 4(4), 515-560. https://doi. org/10.1017/S0140525X00000030
  • Ćosić, K., Popović, S., Šarlija, M., Kesedžić, I., Gambiraža, M., Dropuljić, B., Mijić, I., Henigsberg, N. & Jovanovic, T. (2021). AI-based prediction and prevention of psychological and behavioral changes in ex-Covid-19 patients. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.782866
  • Coyle, D., Matthews, M., Sharry, J., Nisbet, A. & Doherty, G. (2005). Personal investigator: A therapeutic 3D game for adolecscent psychotherapy. Interactive Technology and Smart Education, 2(2), 73-88. https:// doi.org/10.1108/17415650580000034
  • Craig, T. K., Rus-Calafell, M., Ward, T., Leff, J. P., Huckvale, M., Howarth, E., Emsley, R., & Garety, P. A. (2018). AVATAR therapy for auditory verbal hallucinations in people with psychosis: A single-blind, randomised controlled trial. Lancet Psychiatry, 5(1), 31-40. https://doi.org/10.1016/S2215-0366(17)30427-3
  • Cresswell, K., Cunnigham-Burley, S. & Sheikh, A. (2018). Health care robotics: Qualitative exploration of key challenges and future directions. Journal of Medical Internet Research, 20(7), e10410. https://doi. org/10.2196/10410.
  • Davenport, T. H. & Ronanki, R. (2019). Gerçek dünya için yapay zekâ. Harvard Business Review (Ed.). Yapay zekâ içinde (ss. 7-29), N. Özata (Çev.). Optimist Yayınları.
  • Davidson, B. I. (2020). The crossroads of digital phenotyping. General Hospital Psychiatry, 74, 126-132. https://doi.org/10.1016/j.genhosppsych.2020.11.009
  • De Mello, F. L. & De Souza, S. A. (2019). Psychotherapy and artificial intelligence: A proposal for alignment. Frontiers in Psychology, 10(263), 1-9. https://doi.org/10.3389/fpsyg.2019.00263
  • DiSalvo, C. F., Gemperle, F., Forlizzi, J., & Kiesler, S. (2002). All robots are not created equal: The design and perception of humanoid robot heads. Proceedings of the 4th Conference on Designing İnteractiveSystems: Processes, Practices, Methods, and Techniques içinde (ss. 321-326). New York. https://doi. org/10.1145/778712.778756
  • Doraiswamy, P. M., Blease, C. & Bodner, K. (2020). Artificial intelligence and the future of psychiatry: Insights from a global physician survey. Artificial Intelligence in Medicine, 102, 101753. https://doi.org/10.1016/j.artmed.2019.101753.
  • Dosovitsky, G., Pineda, B. S., Jacobson, N. C., Chang, C., Escoredo, M. & Bunge, E. L. (2020). Artificial ıntelligence chatbot for depression: Descriptive study of usage. JMIR Formative Research, 4(11), e17065. https://doi.org/10.2196/17065
  • Dünya Sağlık Örgütü. (2020). COVID-19 disrupting mental health services in most countries. WHO survey. https://www.who.int/news/item/05-10-2020-covid-19-disrupting-mental-health-services-in-mostcountries-who-survey adresinden 8.2.2022 tarihinde erişilmiştir.
  • Eichenberg, C., Khamis, M. & Hübner, L. (2019). The attitudes of therapists and physicians on the use of sex robots in sexual therapy: Online survey and interview study. Journal of Medical Internet Research, 21(8), e13853. https://doi.org/10.2196/13853
  • Erebak, S. (2018). Attitudes toward potential robot coworkers: An experimental investigation on anthropomorphism and caregivers’ trust, work intention and preference of level of automation. [Yayınlanmamış master tezi]. Marmara Üniversitesi
  • Erguzel, T. T., Sayar, G. H. & Tarhan, N. (2016). Artificial intelligence approach to classify unipolar and bipolar depressive disorders. Neural Computing and Applications, 27, 1607-1616. https://doi.org/10.1007/ s00521-015-1959-z
  • Erol, K. & Erol, A. (2019). Psikiyatride yeni bir dönem: Teknoloji ve yapay zekânın esinledikleri. Archives of Neuropsychiatry, 56, 84-85.
  • Estabragh, Z.S., Kashani, M. M. R., Moghaddam, F.J. Sari, S., Taherifar, Z., Moosavy, S. M. & Oskooyee, K. S. (2013). Bayesian network modeling for diagnosis of social anxiety using some cognitive-behavioral factors. Network Modeling Analysis in Health Informatics and Bioinformatics, 2: 257–265. https://doi. org/10.1007/s13721-013-0042-x.
  • Eysenck, M. W. & Keane, M. T. (2000). Cognitive psychology student’s handbook (4. Baskı). Hove and New York Psychology Press, Taylor & Francis Group.
  • Fan, S. (2020). Önemli sorular yapay zeka yerimizi alacak mı? 21. yüzyıl için bir rehber. İ. G. Çıgay (Çev.). Hep Kitap.
  • Fiske, A., Henningsen, P. & Buyx, A. (2019). Your robot therapist will see you now: Ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy. Journal of Medical Internet Research, 21(5), e13216. https://doi.org/10.2196/13216
  • Fitzpatrick, K. K., Darcy, A. & Vierhile, M. (2017). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): A randomized controlled trial. JMIR Mental Health, 4(2), e19. https://doi.org/10.2196/mental.7785
  • Freeman, D., Haselton, P., Freeman, J., Spanlang, B., Kishore, S., Albery, E., Denne, M.,Brown, P., Slater, M. & Nickles, A. (2018). Automated psychological therapy using immersive virtual reality for treatment of fear of heights: A single-blind, parallel-group, randomised controlled trial. Lancet Psychiatry, 5(8), 625- 632. https://doi.org/10.1016/S2215-0366(18)30226-8
  • Frey, C. B. & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? Technological Forecasting and Social Change, 114, 254-280. https://doi.org/10.1016/j.techfore.2016.08.019.
  • Fujiwara, T., Kamada, M. & Okuno, Y. (2018). [Artificial intelligence in drug discovery], Gan to Kagaku ryoho. Cancer & Chemotherapy, 45(4), 593-596.
  • Fulmer, R., Joerin, A., Gentile, B., Lakerink, L. & Rauws, M. (2018). Using psychological artificial intelligence (tess) to relieve symptoms of depression and anxiety: Randomized controlled trial. JMIR Mental Health, 5(4), e64. https://doi.org/10.2196/mental.9782
  • Goldstein, E. B. (2013). Bilişsel psikoloji. O. Gündüz (Çev.). Kaknüs Yayınları.
  • Goodman, M. (2016). Geleceğin suçları dijital dünyanın karanlık yüzü. Timaş Yayınları.
  • Graham, S., Depp, C., Lee, E. L., Nebeker, C., Tu, X., Kim, H. C. & diğerleri. (2019). Artificial intelligence for mental health and mental illnesses: An overview. Current Psychiatry Reports, 21(11), 1-18. https://doi. org/10.1007/s11920-019-1094-0.
  • Gutierrez-Maldonado, J., Alsina, I., Ferrer, M. & Aguilar, A. (2008). Virtual reality and artificial intelligence to train abilities of diagnosis in psychology and psychiatry. G. A. Tsihrintzis, M. Virvou, R. J. Howlett ve L. C. Jain (Ed). New directions in intelligent interactive multimedia içinde (ss. 497-505). Verlag Berlin Heidelberg, Springer. https://doi.org/10.1007/978-3-540-68127-4
  • Gültekin, M. (2021). Psikolojik sağlık hizmetlerinde dijital fenotipleme kullanımı: Fırsatlar, etik ve yasal sorunlar. Nesne, 9(22), 968-988. https://doi.org/10.7816/nesne-09-22-13
  • Hagendorff, T. & Wezel, K. (2019). 15 challenges for AI: or what AI (currently) can’t do. AI & Society, 35, 355- 365. https://doi.org/10.1007/s00146-019-00886-y
  • Haring, K. S., Matsumoto, Y. & Watanabe, K. (2013). Perception and trust towards a lifelike android robot in Japan. H. K. Kim, S. Ao ve M. A. Amouzegar (Ed.). Transactions on engineering technologies içinde (ss. 485-497). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9115-1_37
  • Haynos, A., Wang, S., Lipson, S., Peterson, C. B., Mitchell, J. E., Halmi, K. A., Agras, W. S. & Crow, S. J. (2020). Machine learning enhances prediction of illness course: a longitudinal study in eating disorders. Psychological Medicine, 51(8), 1392-1402. https://doi.org/10.1017/S0033291720000227
  • Hilty, D. M. ve De Jong, S. (2018). Putting technologies used for clinical care and education in contex. Academic Psychiatry, 42, 753-758. https://doi.org/10.1007/s40596-018-0996-1
  • Hirschtritt, M. E. & Insel, T. R. (2018). Digital technologies in psychiatry: Present and future. Focus (American Psychiatric Publishing), 16(3), 251-258. https://doi.org/10.1176/appi.focus.20180001
  • Hoenen, M., Lubke, K. T. & Pause, B. M. (2016). Non-anthropomorphic robots as social entities on a neurophysiological level. Computers in Human Behavior, 57, 182-186. https://doi.org/10.1016/j.chb.2015.12.034
  • Huckvale, K., Torous, J. & Larsen, M.E. (2019). Assessment of the data sharing and privacy practices of smartphone apps for depression and smoking cessation. JAMA Network Open, 2(4):e192542. https:// doi.org/10.1001/jamanetworkopen.2019.2542
  • Hudlica, E. (2016). Virtual affective agents and therapeutic games. David L. Luxton (Ed.). Artificial Intelligence in Behavioral And Mental Health Care içinde, (s.s. 81-115), London Wall, Elsevier Academic Press,
  • Hung, L., Liu, C., Woldum, E., Au-Yeung, A., Berndt, A. Wallsworth, C., Horne, N., Gregorio, M., Mann, J. & Chaudhury, H. (2019). The benefits of and barriers to using a social robot PARO in care settings: a scoping review. BMC Geriatrics, 19, 232. https://doi.org/10.1186/s12877-019-1244-6
  • Inkster, B., Sarda, S. & Subramanian, V. (2018). An empathy-driven, conversational artificial intelligence agent (wysa) for digital mental well-being: real-world data evaluation mixed-methods study. JMIRn Mhealth Uhealth, 6 (11). https://doi.org/10.2196/12106.
  • Jain, S. H., Powers, B. W., Hawkins, J. B. & Brownstein, J. S. (2015). The digital phenotype. Nature Biotechnology, 33(5), 462-463. https://doi.org/10.1038/nbt.3223
  • Jan, A., Meng, H., Gaus, Y. F. & Zhang, F. (2018). Artificial intelligent system for automatic depression level analysis through visual and vocal expressions. İEEE Transactions Cognitive Develop Systems, 10, 668-680. https://doi.org/10.1109/TCDS.2017.2721552
  • Janssen, R. J., Maurao-Miranda, J. & Schnack, H.G. (2018). Making individual prognoses in psychiatry using neuroimaging and machine learning. Biological Psychiatry Cognitive Neuroscience And Neuroimaging, 3(9), 798-808. https://doi.org/10.1016/j.bpsc.2018.04.004
  • Joerin, A., Rauws, M. & Ackerman, M. (2019). Psychological artificial intelligence service, tess: Delivering on-demand support to patients and their caregivers: Technical report. Cureus, 11(1), e3972. https:// doi.org/10.7759/cureus.3972
  • Jøranson, N., Pedersen, I., Roksdad, A. M. M. & Ihlebæk, C. (2015). Effects on symptoms of agitation and depression in persons with dementia participating in robot-assisted activity: A cluster-randomized controlled trial. Journal Of The American Medical Directors Association, 16(10), 867-73. https://doi.org/10.1016/j.jamda.2015.05.002
  • Kahn, P. H., Kanda, T., Ishiguro, H., Freier, N. G., Severson, R., Gill, B. T. & diğerleri. (2012). “Robovie, you’ll have to go into the closet now”: Children’s social and moral relationships with a humanoid robot. Devolepmental Psychology, 48(2), 303-314. https://doi.org/10.1037/a0027033
  • Kalmady, S. V., Greiner, R., Agrawal, R., Shivakumar, V., Narayanaswamy, J. C., Brown, M. R. G., Greenshaw, A., Dursun, S. M. & Venkatasubramanian, G. (2019). Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning. NPJ Schizophrenia, 5, 2. https://doi.org/10.1038/s41537-018-0070-8
  • Khan, K. S., Mamun, M. A., Griffiths, M. D. & Ullah, I. (2020) The mental health impact of the Covid-19 pandemic across different cohorts. International journal of Mental Health and Addiction, 20, 380 -386. https://doi.org/10.1007/s11469-020-00367-0
  • Khan, N. S., Gahni, S. M., & Anjum, G. G. (2021). ADAM-sense: Anxiety-displaying activities recognition by motion sensors. Pervasive and Mobile Computing, 78. https://doi.org/10.1016/j.pmcj.2021.101485
  • Kim, J. W., Jones, K. L. & D’Angelo, E. (2019). How to prepare prospective psychiatrists in the era of artificial intelligence. Academic Psychiatry, 43(3), 337-339. https://doi.org/10.1007/s40596-019-01025-x.
  • Kim, J. W., Torous, J., Chan, S. & Gipson, S. Y. T. (2018). Developing a digitally informed curriculum in psychiatry education and clinical practice. Academic Psychiatry, 42(6), 782-790. https://doi.org/10.1007/ s40596-018-0895-5
  • Körtner, T. (2016). Ethical challenges in the use of social service robots for elderly people. Zeitschrift für Gerontologie und Geriatrie, 49(4), 303-307. https://doi.org/10.1007/s00391-016-1066-5.
  • Kuhn, E., Greene, C., Hoffman, J., Nguyen, T., Wald, L., Schimidt, J., Ramsey, K. M. & Ruzek, J. (2014). Preliminary evaluation of PTSD coach, a smartphone app for post-traumatic stress symptoms. Military Medicine, 179(1), 12-18. https://doi.org/10.7205/MILMED-D-13-00271
  • Kulke, L., Feyerabend, D. & Schacht, A. (2020). A comparison of the affectiva imotions facial expression analysis software with EMG for identifying facial expressions of emotion. Frontiers in Psychology, 11, 4. https://doi.org/10.3389/fpsyg.2020.00329
  • Kurnaz, I. A. & Arslanhan, S. (2019). Biyoteknoloji ve yaşam bilimlerinde girişimcilik: Türkiye ve dünyada biyoteknoloji pazarı ve start-up’ların itici gücü. S. S. Ünver ve I. Aksan Kurnaz (Ed.). Adım adım biyogirişimcilik: Biyoteknoloji girişimci ve yatırıcımlarına yol haritası içinde (ss. 39-60). Aba Yayın.
  • Kurnaz, I. A., Uyar, O. A. & Ünver, S. S. (2019). Girişimcilik ve biyoteknolojiye giriş. S. S. Ünver ve I. Aksan
  • Kurnaz (Ed.). Adım adım biyogirişimcilik: Biyoteknoloji girişimci ve yatırıcımlarına yol haritası içinde (ss. 9-35). Aba Yayın.
  • Lambert, M. & Barley, D. E. (2001). Research summary on the therapeutic relationship and psychotherapy outcome. Psychotherapy Theory Research & Practice, 38(4), 357-361. https://doi.org/10.1037/0033- 3204.38.4.357
  • Lee, M. K., Kiesler, S. & Forlizzi, J. (2010). Receptionist or information kiosk: How do people talk with a robot? Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work içinde. Feb. 6-10, Savannah, Georgia, USA.
  • Li, S. H., Beames, J. R., Newby, J. M., Maston, K., Christensen, H. & Werner-Seidler, A. (2021). The impact of -19 on the lives and mental health of Australian adolescents. European Child & Adolescent Psychiatry, 28, 1-13. https://doi.org/10.1007/s00787-021-01790-x
  • Liang, Y., Zheng, X. & Zeng, D. (2019). A survey on big data-driven digital phenotyping of mental health. Information Fusion, 52, 290-307. https://doi.org/10.1016/j.inffus.2019.04.001
  • Librenza-Garcia, D., Kotzian, B. J., Yang, J., Mwangi, B., Cao, B., Lima, L. N. P. Bermudez, M. B., Boeira, M. V., Kapczinski, F. & Passos, I. C. (2017). The impact of machine learning techniques in the study of bipolar disorder: A systematic review. Neuroscience & Biobehavioral Reviews, 80, 538-554. https://doi. org/10.1016/j.neubiorev.2017.07.004
  • Lim, S. M., Shiau, C. W. C., Cheng, L. J. & Lau, Y. (2021). Chatbot-delivered psychotherapy for adults with depressive and anxiety symptoms: A systematic review and meta-regression, Behavior Therapy, 53(2), 334-347. https://doi.org/10.1016/j.beth.2021.09.007
  • Loi, M. (2019). The digital phenotype: A philosophical and ethical exploration. Philosophy & Technology, 32, 155-171. https://doi.org/10.1007/s13347-018-0319-1
  • Lorenzo-Luaces, L., Johns, E. & Keefe, J. R. (2018). The generalizability of randomized controlled trials of self-guided internet-based cognitive behavioral therapy for depressive symptoms: Systematic review andmeta-regression analysis. Journal of Medical Internet Research, 20 (11). https://doi.org/10.2196/10113
  • Lovejoy, C. A. (2019). Technology and mental health: The role of artificial intelligence. European Psychiatry, 55, 1-3. https://doi.org/10.1016/j.eurpsy.2018.08.004.
  • Lucas, G. M., Gratch, J., King, A. & Morency, L. P. (2014). It’s only a computer: Virtual humans increase willingness to disclose. Computers in Human Behavior, 37, 94-100. https://doi.org/10.1016/j.chb.2014.04.043
  • Luxton, D. D. (2014). Artificial intelligence in psychological practice: Current and future applications and implications. Professional Psychology: Research and Practice, 45(5), 332-339. https://doi.org/10.1037/a0034559
  • Luxton, D. D. (2016). An introduction to artificial intelligence in behavioral and mental health care. D. L. Luxton (Ed.). Artificial intelligence in behavioral and mental health care içinde (ss. 1-26). London Wall, Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-420248-1.00001-5
  • Madoery, P. G., Detke, R., Blanco, L., Comerci, S., Fraire, J., Montoro, A. G., Bellassai, J. C., Britos, G., Ojeda, S. & Finochietto, J. M. (2021). Feature selection for proximity estimation in COVID-19 contact tracing apps based on Bluetooth Low Energy (BLE). Pervasive and Mobile Computing, 77, 101474. https://doi. org/10.1016/j.pmcj.2021.101474
  • Mak, K.K. & Pichika, M. R. (2019). Artificial intelligence in drug development: Present status and future prospects. Drug Discovery Today, 24(3), 773-780. https://doi.org/10.1016/j.drudis.2018.11.014
  • Marmar, C.R., Brown, A.D., Qian, M., Laska, E., Siegel, C., Li, M., Abu-Amara, D., Tsiartas, A., Richey, C., Smith, J., Knoth, B. & Vergyri, D. (2019). Speech‐based markers for posttraumatic stress disorder in us veterans. Depression & Anxiety, 36: 607-616. https://doi.org/10.1002/da.22890.
  • Martinez-Martin, N., Insel, T. R., Dagum, P., Greely, H. T. ve Cho, M. K. (2018). Data mining for health: Staking out the ethical territory of digital phenotyping. NPJ Digital Medicine, 1(68). https://doi. org/10.1038/s41746-018-0075-8
  • Masri, R. Y. & Jani, H. M. (2012). Employing artificial intelligence techniques in mental health diagnostic expert system. International Conference on Computer & Information Science (ICCIS) sunulan bildiri. Kuala Lumpeu. https://doi.org/10.1109/ICCISci.2012.6297296
  • McCall, B. (2020). COVID-19 and artificial intelligence: Protecting health-care workers and curbing the spread. The Lancet Digital Health, 2(4). https://doi.org/10.1016/S2589-7500(20)30054-6
  • McCharty, J., Minsky, M., Rochester, N. & diğerleri (2006). A proposal for the dartmouth summer research project on artificial intelligence august 31, 1955. AI Magazine, 27, 12-14. https://doi.org/10.1609/aimag.v27i4.1904
  • McCorduck, P. (2004). Machines who think: A personal inquiry into the history and prospects of artificial ıntelligence. Massachusetts A K Peters, Ltd.
  • McGinnis, E.V., Anderau, S.P., Hruschak, J., Gurchiek, R.D., Lopez-Duran, N.L., Fitzgerald, K., Rosenblum, K.L., Muzik, M & McGinnis, R. S. (2019). Giving voice to vulnerable children: Machine learning analysis of speech detects anxiety and depression in early childhood. IEEE Journal of Biomedical and Health Informatics, 23: 2294-2301. https://doi.org/10.1109/JBHI.2019.2913590.
  • McShane, M., Beale, S., Nirenburg, S., Jarrel, B. & Fantry, G. (2012). Inconsistency as a diagnostic tool in a society of intelligent agents. Artificial Intellicence in Medicine, 55(3), 137-48. https://doi.org/10.1016/j. artmed.2012.04.005.
  • Menon, V., Rajan, T. M. & Sarkar, S. (2017). Psychotherapeutic applications of mobile phone-based technologies: A systematic review of current research and trends. Indian Journal of Psychological Medicine, 39(1), 4-11. https://doi.org/10.4103/0253-7176.198956
  • Miner, A. S., Shah, N., Bullock, K. D., Arnow, B. A., Bailenson, J. & Hancock, J. (2019). Key considerations for incorporating conversational AI in psychotherapy. Frontiers in Psychiatry, 10, https://doi.org/10.3389/fpsyt.2019.00746
  • Minh, D., Wang, H. X., Li, Y. F., & Nguyen, T. Y. (2021). Explainable artificial intelligence: A comprehensive review. Artificial Intelligence Review, 6. https://doi.org/10.1007/s10462-021-10088-y
  • Muller, R. T. (2021). Is artificial intelligence the future of mental health? https://www.psychologytoday.com/ intl/blog/talking-about-trauma/202103/is-artificial-intelligence-the-future-mental-health adresinden 8.2.2022 tarihinde erişilmiştir.
  • Nilsson, N. J. (2019). Yapay zeka geçmişi ve geleceği. M. Doğan (Çev.). Boğaziçi Üniversitesi Yayınevi.
  • Özalp, E. (2020). Gençlerle baş başa yapay zekâ. Yordam Yayınları.
  • Özçelik, B. Ş. (2021). Yapay zekanın veri koruma, sorumluluk ve fikri mülkiyet açısından ortaya çıkardığı hukuki gereksinimler. Adalet Dergisi, 66, 87-116.
  • Öztürk, M. O. & Uluşahin, A. (2011). Ruh sağlığı ve bozuklukları. Nobel Tıp Kitapevleri.
  • Pinker, S. (2010). Boş sayfa insan doğasının modern inkarı. M. Doğan (Çev.). Boğaziçi Üniversitesi Yayınevi.
  • Plotnik, R. (2009). Psikolojiye giriş. T. Geniş (Çev.). Kaknüs Yayınları.
  • Powell, T. P. (2017). The ‘smart pill’ for schizophrenia and bipolar disorder raises tricky ethical questions. https:// www.statnews.com/2017/12/05/smart-pill-abilify-ethics/ adresinde 3.7.2020 tarihinde erişilmiştir.
  • Rabbi, M., Philyaw-Kotov, M., Lee, J., Mansour, A., Dent, L., Wang, X., Cunningham, R., Bonar, E., Nahum-Shani, I., Klasnja, P., Walton, M., & Murphy, S. (2017). SARA: A mobile app to engage users in health data collection. ACM International Joint Conference on Pervasive and Ubiquitous Computing sunulan bildiri (ss. 781-789). https://doi.org/10.1145/3123024.3125611
  • Ravens-Sieberer, U., Kaman, A., Erhart, M., Devine, J., Schlack, R. & Otto, C. (2021). Impact of the COVID-19pandemic on quality of life and mental health in children and adolescents in Germany. European Child & Adolescent Psychiatry, 25, 1-11. https://doi.org/10.1007/s00787-021-01726-5
  • Reese, B. (2020). Yapay zeka çağı dördüncü çağ: Akıllı robotlar, bilinçli bilgisayarlar ve insanlığın geleceği. M. Doğan (Çev.). Say Yayınları.
  • Rein, B. A., McNeil, D. W., Hayes, A. R., Hawkins, T. A., Ng, H. M. & Yura, C. A. (2018). Evaluation of an avatar-based training program to promote suicide prevention awareness in a college setting. Journal of
  • American College Health, 66(5), 401-411. https://doi.org/10.1080/07448481. Rizvi, S. L., Dimeff, L. A., Skutch, J., Carroll D. & Linehan, M. M. (2011). A pilot study of the dbt coach: An interactive mobile phone application for individuals with borderline personality disorder and substance use disorder. Behavior Therapy, 42(4), 589-600. https://doi.org/10.1016/j.beth.2011.01.003
  • Rouhiainen, L. (2020). Yapay zekâ geceleceğimizle ilgili bugün bilmeniz gereken 101 şey. Toprak Deniz Odabaşı (Çev.) Pegasus Yayınları.
  • Russell, S. J. & Norvig, P. (1995). Artificial ıntelligence a modern approach. Prentice Hall, Inc. Sarker, S., Jamal, L., Ahmed, S.F. & Irtisam, N. (2021). Robotics and artificial intelligence in healthcare during COVID-19 pandemic: A systematic review. Robotics and Autonomous Systems, 146, 103902. https:// doi.org/10.1016/j.robot.2021.103902
  • Sattler, A. F., Whiteside, S. P. H., Bentley, J. P. & Young, J. (2018). Development and validation of a brief screening procedure for pediatric obsessive-compulsive disorder derived from the spence children’s anxiety scale. Journal of Obsessive-Compulsive and Related Disorders, 16, 29-35. https://doi.org/10.1016/j.jocrd.2017.12.004
  • Say, C. (2018). 50 soruda yapay zeka (3. Baskı). Bilim ve Gelecek Kitaplığı.
  • Scholten, M. R., Kelders, S. M. & Van Gemert-Pijnen, J. E. (2017). Self-guided web-based interventions: Scoping review on user needs and the potential of embodied conversational agents to address them. Journal of Medical Internet Research, 19(11). https://doi.org/10.2196/jmir.7351
  • Sebri, V., Pizzoli, S., Savioni, L. & Triberti, S. (2020). Artificial Intelligence in mental health: Professionals’ attitudes towards AI as a psychotherapist. Annual Review of CyberTherapy and Telemedicine, 18, 229-233.
  • Senders, J. T., Maher, N., Hulsbergen, A. F. C., Lamba, N., Bredenoord, A. L. & Broekman, M. L. D. (2019). The ethics of passive data and digital phenotyping in neurosurgery. M. L. D. Broekman (Ed.). Ethics of innovation in neurosurgery içinde (ss. 129-142). Springer. https://doi.org/10.1007/978-3-030-05502-8.
  • Shibata, T. & Wada, K. (2010). Robot therapy: A new approach for mental healthcare of the elderly-a mini-review. Gerontology, 57(4), 378-386. https://doi.org/10.1159/000319015
  • Shortliffe, E. H., Davis, R., Axline, S. G., Buchanan, B. G., Green, C. C. & Cohen, S. N. (1975). Computer-base consultations in clinical therapeutics:Eexplanation and rule acquisition capabilities of the MYCIN system. Computers and Biomedical Research, 8(4), 303-320. https://doi.org/10.1016/0010-4809(75)90009-9 Valenti Soler, M., Agüera-Ortiz, L., Rodriguez, J. O., Rebolledo, C. M., Munoz, A. P., Perez, I. R. Osa Ruiz, E., Barrios Sánchez, A., Herrero Cano, V., Carrasco Chillón, L., Felipe Ruiz, S., López Alvarez, J., León Salas, B., Cañas Plaza, J. M. , Martín Rico, F., Abella Dago, G. & Martínez Martín, P. (2015).
  • Social robots in advanced dementia. Frontiers in Aging Neuroscience, 7(133). https://doi.org/10.3389/fnagi.2015.00133
  • Sparrow, R. & Sparrow, L. (2006). In the hands of machines? The future of aged care. Minds and Machines, 16, 141-161. https://doi.org/10.1007/s11023-006-9030-6
  • Taylor, J. E. T. & Taylor, G. W. (2021). Artificial cognition: How experimental psychology can help generate explainable artificial intelligence. Psychonomic Bulletin & Review, 28, 454-475. https://doi.org/10.3758/ s13423-020-01825-5
  • Tegmark, M. (2019). Yaşam 3.0 yapay zeka çağında insan olmak. E. C. Göksoy (Çev.). Pegasus Yayınları.
  • Torous, J., Staples, P. & Onnela, J. P. (2015). Realizing the potential of mobile mental health: New methods for new data in psychiatry. Current Psychiatry Report, 17(8). https://doi.org/10.1007/s11920-015-0602-0
  • Turkle, S. (2010). In good company? Y. Wilks (Ed.). Close engagements with artificial companions içinde (ss. 3-10). Benjamins.
  • Twomey, C., O’Reilly, G. & Meyer, B. (2017). Effectiveness of an individually-tailored computerised CBT programme (Deprexis) for depression: A meta-analysis. Psychiatry Research, 256, 371-377. https://doi. org/10.1016/j.psychres.2017.06.081
  • Ucuz, İ., Özcan, Ö., Mete, B., Ari, A., Kayhan-Tetik, B. & Yıldırım, K. (2020). Evaluation of inflammatory markers in childhood-onset psychiatric disorders by using artificial intelligence architectures. Anadolu Psikiyatri Dergisi, 21(3), 301-309. https://doi.org/10.5455/apd.56153.
  • Usta, M. B., Karabekiroğlu, K., Say, G. N., Gumus, Y. Y., Aydon, M., Sahin, B., Bozkurt, A., Karaosman, T., Aral, A., Çobanoğlu Osmanlı, C., Duman Kurt, A., Kesim, N. & Sahin, I. (2020). Can we predict psychiatric disorders at the adolescence period in toddlers? A machine learning approach. Psychiatry and Behavioral Sciences, 10(1-1), 7-12. https://doi.org/10.5455/PBS.20190806125540
  • Wada, K. & Shibata, T. (2007). Living with seal robots-its sociopsychological and physiological influences on the elderly at a care house. IEEE Transactions on Robotics, 23(5), 972-980. https://doi.org/10.1109/ TRO.2007.906261
  • Waldrop, M. M. (1987). A question of responsibility. AI Magazine, 8, 29-39. https://doi.org/10.1609/aimag. v8i1.572
  • Walsh, C.G., Riberio, J. D. & Franklin, J. C. (2017). Predicting risk of suicide attempts over time through machine learning. Clinical Psychological Science, 5(3), 457-469. https://doi.org/10.1177/2167702617691560
  • Weizenbaum, J. (1966). ELIZA-A computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36-45. https://doi.org/10.1145/365153.365168
  • Whitby, B. (2005). Yapay zekâ. Ç. Karabağlı (Çev.). İletişim Yayınları.
  • Wood, L. J., Zaraki, A., Robins, B. & Dautenhahn, K. (2019, Temmuz 8). Developing kaspar: A humanoid robot for children with autism. International Journal of Social Robotics, 13, 491-508. https://doi. org/10.1007/s12369-019-00563-6
  • Yonck, R. (2019). Makinenin kalbi yapay duygusal zekâ dünyasında geleceğimiz. T. Gönekçin (Çev.). Paloma Yayınları.
  • Yu, R., Hui, E., Lee, J., Poon, D., Ng, A., Sit, K., Ip, K., Yeung, F., Wong, M., Shibata, T. & Woo, J. (2015). Use of a therapeutic, socially assistive pet robot (paro) in improving mood and stimulating social interaction and communication for people with dementia: Study protocol for a randomized controlled trial. JMIR Research Protocols, 4(2). https://doi.org/10.2196/resprot.4189 Zhang, X., Wang, R., Sharma, A. & Deverajand, G. G. (2021). Artificial intelligence in cognitive psychology-Influence of literature based on artificial intelligence on children’s men

The Advantages and Disadvantages of Using Artificial Intelligence in Mental Health Services

Year 2022, Volume: 12 Issue: 3, 121 - 158, 18.09.2022
https://doi.org/10.12658/M0664

Abstract

Today, interdisciplinary development, which is called the fourth technological revolution, continues to be an important topic of discussion. Three previous revolutions in which the steam engine, electricity, and the computer were at the center respectively brought about social changes along with them. Artificial intelligence and machine learning characterize the fourth technology revolution that started in the 21st century. Many experts discuss the possibility that artificial intelligence could directly replace human beings. In this respect, the period we are in is considered to differ from the previous ones. The new technologies emerging with the integration of biology, the Internet, and artificial intelligence are expected to lead to significant changes in the field of mental health as in almost every discipline. The number of studies utilizing artificial intelligence and machine learning in training, diagnosis, prediction, treatment, and evaluation stages of mental health services are gradually increasing. These studies bring along discussions about how artificial intelligence will affect mental health services. Despite the stronger emphasis on the advantages of using artificial intelligence in mental health services, attention is also drawn to its disadvantages and limitations. The aim of this article is to examine the research findings on the use of artificial intelligence and machine learning in mental health services and to discuss the opportunities and problems that artificial intelligence would bring to the field of mental health, and to make suggestions for future research.

References

  • Abbas, H., Garberson, F., Liu-Mayo, S., Glover, E. & Wall, D. P. (2020). Multi-modular AI approach to streamline autism diagnosis in young children. Scientific Reports, 10, 5014. https://www.nature.com/articles/ s41598-020-61213-w. https://doi.org/10.1038/s41598-020-61213-w.
  • Ahmed, A., Ali, N., Aziz, S., Abd-alrazaq, A. A., Hassan, A., Khalifa, Elhusein, M. B., Ahmed, M., Ahmed, M. A. S., & Househ, M. (2021). A review of mobile chatbot apps for anxiety and depression and their self-care features. Computer Methods and Programs in Biomedicine Update, 1. https://doi.org/10.1016/j.cmpbup.2021.100012.
  • Airenti, G. (2015). The cognitive bases of anthropomorphism: From relatedness to empathy. International Journal of Social Robotics, 7, 117-127. https://doi.org/10.1007/s12369-014-0263-x
  • Allen, S. (2020). Artificial intelligence and the future of psychiatry. IEEE Pulse, 11(3), 2-6. https://doi. org/10.1109/MPULS.2020.2993657.
  • Altınbaşak, G. (2019). Bipolar ve unipolar bozuklukların uygun biyobelirteç kullanarak makine öğrenme yöntemleri ile sınıflandırılması. [Yayınlanmamış master tezi]. Üsküdar Üniversitesi.
  • Amoroso, N., Diacono, D., Fanizzi, A., La Rocca, M., Monaco, A., Lombardi, Guaragnella, C., Bellotti, R. & Tangaro, S. (2018). Deep learning reveals alzheimer’s disease onset in MCI subjects: Results from an international challenge. Journal of Neuroscience Methods, 302, 3-9. https://doi.org/10.1016/j.jneumeth.2017.12.011
  • Auer, M. & Griffiths, M.D. (2019). Predicting limit-setting behavior of gamblers using machine learning algorithms: a real-world study of norwegian gamblers using account data. International Journal of Mental Health and Addiction, 20, 771-788. https://doi.org/10.1007/s11469-019-00166-2
  • Avrupa Komisyonu Yapay Zeka Üst Düzey Uzman Grubu. (2019). A definition of AI: Main capabilities and scientific disciplines. European Commission B-1049 Brussels.
  • Bain, E. E., Shafner, L., Walling, D. P., Othman, A. A., Chuang-Stein, C., Hinkle, J. & Hanina, A. (2017). Use of a novel artificial intelligence platform on mobile devices to assess dosing compliance in a phase 2 clinical trial in subjects with schizophrenia. JMIR Mhealth Uhealth, 5(2). https://doi.org/10.2196/mhealth.7030, S., Hardt, M. & Narayanan, A. (2019). Fairness in machine learning. Fordham Law Review, 28.
  • Bartgis, J. & Albright, G. (2016). Online role-play simulations with emotionally responsive avatars for the early detection of native youth psychological distress, including depression and suicidal ideation. American İndian And Alaska Native Mental Health Research, 23(2), 1-27. https://doi.org/10.5820/ aian.2302.2016.1
  • Bedi, G., Carrillo, F., Cecchi, G., Slezak, D. F., Sigman, M., Mota, N. B., Ribeiro, S., Javitt, D. C., Copelli, M. & Corcoran, C. M. (2015). Automated analysis of free speech predicts psychosis onset in high-risk youths. NPJ Schizophrenia, 1, 15030. https://doi.org/10.1038/npjschz.2015.30
  • Bennett, C. C. & Doub, T. W. (2016). Expert systems in mental health care: AI applications in decision-making and consultation. In D. D. Luxton (Ed.), Artificial intelligence in behavioral and mental health care (ss. 27–51). Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-420248-1.00002-7.
  • Bickman, L. (2020). Improving mental health services: A 50-year journey from randomized experiments to artificial ıntelligence and precision mental health, Administration and Policy in Mental Health and Mental Health Services Research, Vol. 47, pp 795–843. https://doi.org/10.1007/s10488-020-01065-8
  • Bilge, Y., Gül, E. & Birçek, N. I. (2020). Bir sosyal fobi vakasında bilişsel davranışçı terapi ve sanal gerçeklik kombinasyonu.. Bilişsel Davranışçı Psikoterapi ve Araştırmalar Dergisi, 9(2), 158 - 165. https://doi. org/10.5455/JCBPR.61718
  • Bindoff, I., Stafford, A., Peterson, G., Kang, B. H. & Tenni, P. (2012). The potential for intelligent decision support systems to improve the quality and consistency of medication reviews. Journal of Clinical Pharmacy and Therapeutics, 37 (4) :452-458. https://doi.org/10.1111/j.1365-2710.2011.01327.x
  • Blease, C., Locher, C., Leon-Carlyle, M. & Doraiswamy, M. (2020). Artificial intelligence and the future of psychiatry: Qualitative findings from a global physician survey. Digital Health, 6, 1-18. https://doi. org/10.1177/2055207620968355
  • Bostrom, N. (2014). Süper zekâ yapay zekâ uygulamaları tehlikeler ve stratejiler. F. Burak Aydar (Çev.). Koç Üniversitesi Yayınları.
  • Boucher, E. M., Harake, N. R., Ward, H. E., Stoeckl, S. E., Vargas, J., Minkel, J. Parks, A. C., & Zilca, R. (2021). Artificially intelligent chatbots in digital mental health interventions: A review. Expert Review of Medical Devices, 18(1), 37-49. https://doi.org/10.1080/17434440.2021.2013200
  • Boyle, D. (2014). Alan turing: Enigmanın şifresini çözmek. R. N. Ercan (Çev.). Zeplin Kitap.
  • Broadbent, E. (2017). Interactions with robots: The truths we reveal about ourselves. Annual Review of Psychology, 68, 627-52. https://doi.org/10.1146/annurev-psych-010416-043958.
  • Brunn, M., Diefenbacher, A., Courtet, P. & Genieys, W. (2020). The future is knocking: How artificial intelligence will fundamentally change psychiatry. Academic Psychiatry, 44, 461-466. https://doi.org/10.1007/ s40596-020-01243-8
  • Brynjolfsson, E. & McAfee, A. (2019). Yapay zekânın vaat ettikleri. Harvard Business Review (Ed) Dijital dönüşüm yapay zekâ içinde (ss. 56-19). L. Göktem (Çev.). Optimist Yayınları.
  • Burns, M. N., Begale, M., Duffecy, J., Gergle, D., Karr, C. J., Giangrande, E. & Mohr, D.C. (2011). Harnessingcontext sensing to develop a mobile intervention for depression. Journal of Medical Internet Research, 13(3), 55-174. https://doi.org/10.2196/jmir.1838
  • Bzdok, D. & Meyer-Lindenberg, A. (2018). Machine learning for precision psychiatry: Opportunities and challenges. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(3), 223-230. https://doi. org/10.1016/j.bpsc.2017.11.007
  • Cao, B., Cho, R. Y., Chen, D., Xiu, M., Wang, L., Soares, J. C. & Zhang, X. Y. (2018). Treatment response prediction and individualized identification of first-episode drug-naïve schizophrenia using brain functional connectivity. Molecular Psychiatry, 25, 906-913. https://doi.org/10.1038/s41380-018-0106-5
  • Casgrove, L., Karter, J. M., McGinley, M. & Morril, Z. (2020). Digital phenotyping and digital psychotropic drugs: Mental health surveillance tools that threaten human rights. Health and Human Rights Journal, 22(2), 33-39.
  • Cavallo, F., Esposito, R., Limosani, R., Manzi, A., Bevilacqua, R., Felici, E., Di Nuovo, A., Cangelosi, A., Lattanzio, F., & Dario, P. (2018). Robotic services acceptance in smart environments with older adults: User satisfaction and acceptability study. Journal of Medical Internet Research, 20(9), e264. https://doi. org/10.2196/jmir.9460.
  • Cecula, P., Yu, J., Dawoodbhoy, F. M., Delaney, J., Tan, J., Peacock, I. & Cox, B. (2021). Applications of artificial intelligence to improve patient flow on mental health inpatient units - Narrative literature review. Heliyon, 7(4), e06626. https://doi.org/10.1016/j.heliyon.2021.e06626
  • Chen, Z., Kibler, R. D., Hunt, A., Busch, F., Pearl, J., Jia, M., VanAernum, Z. L., Wicky, B. I. M., Dods, G., Liao, H., Wilken, M. S., Ciarlo, C., Green, S., El-Samad, H., Stamatoyannopoulos, J., Wysocki, V. H., Jewett, M. C., Boyken, S. E. & Baker, D. (2020). De novo design of protein logic gates. Science, 368(6486), 78-84. https://doi.org/10.1126/science.aay2790
  • Chew, H. S. J. & Achananuparp, P. (2022). Perceptions and needs of artificial intelligence in health care to increase adoption: Scoping review. Journal of Medical Internet Research, 24(1), e32939. https://doi. org/10.2196/32939
  • Cifuentes, C.A., Pinto, M.J., Céspedes, & Munera, M. (2020). Social robots in therapy and care. Current Robotics Reports, 1, 59-74. https://doi.org/10.1007/s43154-020-00009-2
  • Colby, K. M. (1981). Modeling a paranoid mind. Behavioral and Brain Sciences, 4(4), 515-560. https://doi. org/10.1017/S0140525X00000030
  • Ćosić, K., Popović, S., Šarlija, M., Kesedžić, I., Gambiraža, M., Dropuljić, B., Mijić, I., Henigsberg, N. & Jovanovic, T. (2021). AI-based prediction and prevention of psychological and behavioral changes in ex-Covid-19 patients. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.782866
  • Coyle, D., Matthews, M., Sharry, J., Nisbet, A. & Doherty, G. (2005). Personal investigator: A therapeutic 3D game for adolecscent psychotherapy. Interactive Technology and Smart Education, 2(2), 73-88. https:// doi.org/10.1108/17415650580000034
  • Craig, T. K., Rus-Calafell, M., Ward, T., Leff, J. P., Huckvale, M., Howarth, E., Emsley, R., & Garety, P. A. (2018). AVATAR therapy for auditory verbal hallucinations in people with psychosis: A single-blind, randomised controlled trial. Lancet Psychiatry, 5(1), 31-40. https://doi.org/10.1016/S2215-0366(17)30427-3
  • Cresswell, K., Cunnigham-Burley, S. & Sheikh, A. (2018). Health care robotics: Qualitative exploration of key challenges and future directions. Journal of Medical Internet Research, 20(7), e10410. https://doi. org/10.2196/10410.
  • Davenport, T. H. & Ronanki, R. (2019). Gerçek dünya için yapay zekâ. Harvard Business Review (Ed.). Yapay zekâ içinde (ss. 7-29), N. Özata (Çev.). Optimist Yayınları.
  • Davidson, B. I. (2020). The crossroads of digital phenotyping. General Hospital Psychiatry, 74, 126-132. https://doi.org/10.1016/j.genhosppsych.2020.11.009
  • De Mello, F. L. & De Souza, S. A. (2019). Psychotherapy and artificial intelligence: A proposal for alignment. Frontiers in Psychology, 10(263), 1-9. https://doi.org/10.3389/fpsyg.2019.00263
  • DiSalvo, C. F., Gemperle, F., Forlizzi, J., & Kiesler, S. (2002). All robots are not created equal: The design and perception of humanoid robot heads. Proceedings of the 4th Conference on Designing İnteractiveSystems: Processes, Practices, Methods, and Techniques içinde (ss. 321-326). New York. https://doi. org/10.1145/778712.778756
  • Doraiswamy, P. M., Blease, C. & Bodner, K. (2020). Artificial intelligence and the future of psychiatry: Insights from a global physician survey. Artificial Intelligence in Medicine, 102, 101753. https://doi.org/10.1016/j.artmed.2019.101753.
  • Dosovitsky, G., Pineda, B. S., Jacobson, N. C., Chang, C., Escoredo, M. & Bunge, E. L. (2020). Artificial ıntelligence chatbot for depression: Descriptive study of usage. JMIR Formative Research, 4(11), e17065. https://doi.org/10.2196/17065
  • Dünya Sağlık Örgütü. (2020). COVID-19 disrupting mental health services in most countries. WHO survey. https://www.who.int/news/item/05-10-2020-covid-19-disrupting-mental-health-services-in-mostcountries-who-survey adresinden 8.2.2022 tarihinde erişilmiştir.
  • Eichenberg, C., Khamis, M. & Hübner, L. (2019). The attitudes of therapists and physicians on the use of sex robots in sexual therapy: Online survey and interview study. Journal of Medical Internet Research, 21(8), e13853. https://doi.org/10.2196/13853
  • Erebak, S. (2018). Attitudes toward potential robot coworkers: An experimental investigation on anthropomorphism and caregivers’ trust, work intention and preference of level of automation. [Yayınlanmamış master tezi]. Marmara Üniversitesi
  • Erguzel, T. T., Sayar, G. H. & Tarhan, N. (2016). Artificial intelligence approach to classify unipolar and bipolar depressive disorders. Neural Computing and Applications, 27, 1607-1616. https://doi.org/10.1007/ s00521-015-1959-z
  • Erol, K. & Erol, A. (2019). Psikiyatride yeni bir dönem: Teknoloji ve yapay zekânın esinledikleri. Archives of Neuropsychiatry, 56, 84-85.
  • Estabragh, Z.S., Kashani, M. M. R., Moghaddam, F.J. Sari, S., Taherifar, Z., Moosavy, S. M. & Oskooyee, K. S. (2013). Bayesian network modeling for diagnosis of social anxiety using some cognitive-behavioral factors. Network Modeling Analysis in Health Informatics and Bioinformatics, 2: 257–265. https://doi. org/10.1007/s13721-013-0042-x.
  • Eysenck, M. W. & Keane, M. T. (2000). Cognitive psychology student’s handbook (4. Baskı). Hove and New York Psychology Press, Taylor & Francis Group.
  • Fan, S. (2020). Önemli sorular yapay zeka yerimizi alacak mı? 21. yüzyıl için bir rehber. İ. G. Çıgay (Çev.). Hep Kitap.
  • Fiske, A., Henningsen, P. & Buyx, A. (2019). Your robot therapist will see you now: Ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy. Journal of Medical Internet Research, 21(5), e13216. https://doi.org/10.2196/13216
  • Fitzpatrick, K. K., Darcy, A. & Vierhile, M. (2017). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): A randomized controlled trial. JMIR Mental Health, 4(2), e19. https://doi.org/10.2196/mental.7785
  • Freeman, D., Haselton, P., Freeman, J., Spanlang, B., Kishore, S., Albery, E., Denne, M.,Brown, P., Slater, M. & Nickles, A. (2018). Automated psychological therapy using immersive virtual reality for treatment of fear of heights: A single-blind, parallel-group, randomised controlled trial. Lancet Psychiatry, 5(8), 625- 632. https://doi.org/10.1016/S2215-0366(18)30226-8
  • Frey, C. B. & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? Technological Forecasting and Social Change, 114, 254-280. https://doi.org/10.1016/j.techfore.2016.08.019.
  • Fujiwara, T., Kamada, M. & Okuno, Y. (2018). [Artificial intelligence in drug discovery], Gan to Kagaku ryoho. Cancer & Chemotherapy, 45(4), 593-596.
  • Fulmer, R., Joerin, A., Gentile, B., Lakerink, L. & Rauws, M. (2018). Using psychological artificial intelligence (tess) to relieve symptoms of depression and anxiety: Randomized controlled trial. JMIR Mental Health, 5(4), e64. https://doi.org/10.2196/mental.9782
  • Goldstein, E. B. (2013). Bilişsel psikoloji. O. Gündüz (Çev.). Kaknüs Yayınları.
  • Goodman, M. (2016). Geleceğin suçları dijital dünyanın karanlık yüzü. Timaş Yayınları.
  • Graham, S., Depp, C., Lee, E. L., Nebeker, C., Tu, X., Kim, H. C. & diğerleri. (2019). Artificial intelligence for mental health and mental illnesses: An overview. Current Psychiatry Reports, 21(11), 1-18. https://doi. org/10.1007/s11920-019-1094-0.
  • Gutierrez-Maldonado, J., Alsina, I., Ferrer, M. & Aguilar, A. (2008). Virtual reality and artificial intelligence to train abilities of diagnosis in psychology and psychiatry. G. A. Tsihrintzis, M. Virvou, R. J. Howlett ve L. C. Jain (Ed). New directions in intelligent interactive multimedia içinde (ss. 497-505). Verlag Berlin Heidelberg, Springer. https://doi.org/10.1007/978-3-540-68127-4
  • Gültekin, M. (2021). Psikolojik sağlık hizmetlerinde dijital fenotipleme kullanımı: Fırsatlar, etik ve yasal sorunlar. Nesne, 9(22), 968-988. https://doi.org/10.7816/nesne-09-22-13
  • Hagendorff, T. & Wezel, K. (2019). 15 challenges for AI: or what AI (currently) can’t do. AI & Society, 35, 355- 365. https://doi.org/10.1007/s00146-019-00886-y
  • Haring, K. S., Matsumoto, Y. & Watanabe, K. (2013). Perception and trust towards a lifelike android robot in Japan. H. K. Kim, S. Ao ve M. A. Amouzegar (Ed.). Transactions on engineering technologies içinde (ss. 485-497). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9115-1_37
  • Haynos, A., Wang, S., Lipson, S., Peterson, C. B., Mitchell, J. E., Halmi, K. A., Agras, W. S. & Crow, S. J. (2020). Machine learning enhances prediction of illness course: a longitudinal study in eating disorders. Psychological Medicine, 51(8), 1392-1402. https://doi.org/10.1017/S0033291720000227
  • Hilty, D. M. ve De Jong, S. (2018). Putting technologies used for clinical care and education in contex. Academic Psychiatry, 42, 753-758. https://doi.org/10.1007/s40596-018-0996-1
  • Hirschtritt, M. E. & Insel, T. R. (2018). Digital technologies in psychiatry: Present and future. Focus (American Psychiatric Publishing), 16(3), 251-258. https://doi.org/10.1176/appi.focus.20180001
  • Hoenen, M., Lubke, K. T. & Pause, B. M. (2016). Non-anthropomorphic robots as social entities on a neurophysiological level. Computers in Human Behavior, 57, 182-186. https://doi.org/10.1016/j.chb.2015.12.034
  • Huckvale, K., Torous, J. & Larsen, M.E. (2019). Assessment of the data sharing and privacy practices of smartphone apps for depression and smoking cessation. JAMA Network Open, 2(4):e192542. https:// doi.org/10.1001/jamanetworkopen.2019.2542
  • Hudlica, E. (2016). Virtual affective agents and therapeutic games. David L. Luxton (Ed.). Artificial Intelligence in Behavioral And Mental Health Care içinde, (s.s. 81-115), London Wall, Elsevier Academic Press,
  • Hung, L., Liu, C., Woldum, E., Au-Yeung, A., Berndt, A. Wallsworth, C., Horne, N., Gregorio, M., Mann, J. & Chaudhury, H. (2019). The benefits of and barriers to using a social robot PARO in care settings: a scoping review. BMC Geriatrics, 19, 232. https://doi.org/10.1186/s12877-019-1244-6
  • Inkster, B., Sarda, S. & Subramanian, V. (2018). An empathy-driven, conversational artificial intelligence agent (wysa) for digital mental well-being: real-world data evaluation mixed-methods study. JMIRn Mhealth Uhealth, 6 (11). https://doi.org/10.2196/12106.
  • Jain, S. H., Powers, B. W., Hawkins, J. B. & Brownstein, J. S. (2015). The digital phenotype. Nature Biotechnology, 33(5), 462-463. https://doi.org/10.1038/nbt.3223
  • Jan, A., Meng, H., Gaus, Y. F. & Zhang, F. (2018). Artificial intelligent system for automatic depression level analysis through visual and vocal expressions. İEEE Transactions Cognitive Develop Systems, 10, 668-680. https://doi.org/10.1109/TCDS.2017.2721552
  • Janssen, R. J., Maurao-Miranda, J. & Schnack, H.G. (2018). Making individual prognoses in psychiatry using neuroimaging and machine learning. Biological Psychiatry Cognitive Neuroscience And Neuroimaging, 3(9), 798-808. https://doi.org/10.1016/j.bpsc.2018.04.004
  • Joerin, A., Rauws, M. & Ackerman, M. (2019). Psychological artificial intelligence service, tess: Delivering on-demand support to patients and their caregivers: Technical report. Cureus, 11(1), e3972. https:// doi.org/10.7759/cureus.3972
  • Jøranson, N., Pedersen, I., Roksdad, A. M. M. & Ihlebæk, C. (2015). Effects on symptoms of agitation and depression in persons with dementia participating in robot-assisted activity: A cluster-randomized controlled trial. Journal Of The American Medical Directors Association, 16(10), 867-73. https://doi.org/10.1016/j.jamda.2015.05.002
  • Kahn, P. H., Kanda, T., Ishiguro, H., Freier, N. G., Severson, R., Gill, B. T. & diğerleri. (2012). “Robovie, you’ll have to go into the closet now”: Children’s social and moral relationships with a humanoid robot. Devolepmental Psychology, 48(2), 303-314. https://doi.org/10.1037/a0027033
  • Kalmady, S. V., Greiner, R., Agrawal, R., Shivakumar, V., Narayanaswamy, J. C., Brown, M. R. G., Greenshaw, A., Dursun, S. M. & Venkatasubramanian, G. (2019). Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning. NPJ Schizophrenia, 5, 2. https://doi.org/10.1038/s41537-018-0070-8
  • Khan, K. S., Mamun, M. A., Griffiths, M. D. & Ullah, I. (2020) The mental health impact of the Covid-19 pandemic across different cohorts. International journal of Mental Health and Addiction, 20, 380 -386. https://doi.org/10.1007/s11469-020-00367-0
  • Khan, N. S., Gahni, S. M., & Anjum, G. G. (2021). ADAM-sense: Anxiety-displaying activities recognition by motion sensors. Pervasive and Mobile Computing, 78. https://doi.org/10.1016/j.pmcj.2021.101485
  • Kim, J. W., Jones, K. L. & D’Angelo, E. (2019). How to prepare prospective psychiatrists in the era of artificial intelligence. Academic Psychiatry, 43(3), 337-339. https://doi.org/10.1007/s40596-019-01025-x.
  • Kim, J. W., Torous, J., Chan, S. & Gipson, S. Y. T. (2018). Developing a digitally informed curriculum in psychiatry education and clinical practice. Academic Psychiatry, 42(6), 782-790. https://doi.org/10.1007/ s40596-018-0895-5
  • Körtner, T. (2016). Ethical challenges in the use of social service robots for elderly people. Zeitschrift für Gerontologie und Geriatrie, 49(4), 303-307. https://doi.org/10.1007/s00391-016-1066-5.
  • Kuhn, E., Greene, C., Hoffman, J., Nguyen, T., Wald, L., Schimidt, J., Ramsey, K. M. & Ruzek, J. (2014). Preliminary evaluation of PTSD coach, a smartphone app for post-traumatic stress symptoms. Military Medicine, 179(1), 12-18. https://doi.org/10.7205/MILMED-D-13-00271
  • Kulke, L., Feyerabend, D. & Schacht, A. (2020). A comparison of the affectiva imotions facial expression analysis software with EMG for identifying facial expressions of emotion. Frontiers in Psychology, 11, 4. https://doi.org/10.3389/fpsyg.2020.00329
  • Kurnaz, I. A. & Arslanhan, S. (2019). Biyoteknoloji ve yaşam bilimlerinde girişimcilik: Türkiye ve dünyada biyoteknoloji pazarı ve start-up’ların itici gücü. S. S. Ünver ve I. Aksan Kurnaz (Ed.). Adım adım biyogirişimcilik: Biyoteknoloji girişimci ve yatırıcımlarına yol haritası içinde (ss. 39-60). Aba Yayın.
  • Kurnaz, I. A., Uyar, O. A. & Ünver, S. S. (2019). Girişimcilik ve biyoteknolojiye giriş. S. S. Ünver ve I. Aksan
  • Kurnaz (Ed.). Adım adım biyogirişimcilik: Biyoteknoloji girişimci ve yatırıcımlarına yol haritası içinde (ss. 9-35). Aba Yayın.
  • Lambert, M. & Barley, D. E. (2001). Research summary on the therapeutic relationship and psychotherapy outcome. Psychotherapy Theory Research & Practice, 38(4), 357-361. https://doi.org/10.1037/0033- 3204.38.4.357
  • Lee, M. K., Kiesler, S. & Forlizzi, J. (2010). Receptionist or information kiosk: How do people talk with a robot? Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work içinde. Feb. 6-10, Savannah, Georgia, USA.
  • Li, S. H., Beames, J. R., Newby, J. M., Maston, K., Christensen, H. & Werner-Seidler, A. (2021). The impact of -19 on the lives and mental health of Australian adolescents. European Child & Adolescent Psychiatry, 28, 1-13. https://doi.org/10.1007/s00787-021-01790-x
  • Liang, Y., Zheng, X. & Zeng, D. (2019). A survey on big data-driven digital phenotyping of mental health. Information Fusion, 52, 290-307. https://doi.org/10.1016/j.inffus.2019.04.001
  • Librenza-Garcia, D., Kotzian, B. J., Yang, J., Mwangi, B., Cao, B., Lima, L. N. P. Bermudez, M. B., Boeira, M. V., Kapczinski, F. & Passos, I. C. (2017). The impact of machine learning techniques in the study of bipolar disorder: A systematic review. Neuroscience & Biobehavioral Reviews, 80, 538-554. https://doi. org/10.1016/j.neubiorev.2017.07.004
  • Lim, S. M., Shiau, C. W. C., Cheng, L. J. & Lau, Y. (2021). Chatbot-delivered psychotherapy for adults with depressive and anxiety symptoms: A systematic review and meta-regression, Behavior Therapy, 53(2), 334-347. https://doi.org/10.1016/j.beth.2021.09.007
  • Loi, M. (2019). The digital phenotype: A philosophical and ethical exploration. Philosophy & Technology, 32, 155-171. https://doi.org/10.1007/s13347-018-0319-1
  • Lorenzo-Luaces, L., Johns, E. & Keefe, J. R. (2018). The generalizability of randomized controlled trials of self-guided internet-based cognitive behavioral therapy for depressive symptoms: Systematic review andmeta-regression analysis. Journal of Medical Internet Research, 20 (11). https://doi.org/10.2196/10113
  • Lovejoy, C. A. (2019). Technology and mental health: The role of artificial intelligence. European Psychiatry, 55, 1-3. https://doi.org/10.1016/j.eurpsy.2018.08.004.
  • Lucas, G. M., Gratch, J., King, A. & Morency, L. P. (2014). It’s only a computer: Virtual humans increase willingness to disclose. Computers in Human Behavior, 37, 94-100. https://doi.org/10.1016/j.chb.2014.04.043
  • Luxton, D. D. (2014). Artificial intelligence in psychological practice: Current and future applications and implications. Professional Psychology: Research and Practice, 45(5), 332-339. https://doi.org/10.1037/a0034559
  • Luxton, D. D. (2016). An introduction to artificial intelligence in behavioral and mental health care. D. L. Luxton (Ed.). Artificial intelligence in behavioral and mental health care içinde (ss. 1-26). London Wall, Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-420248-1.00001-5
  • Madoery, P. G., Detke, R., Blanco, L., Comerci, S., Fraire, J., Montoro, A. G., Bellassai, J. C., Britos, G., Ojeda, S. & Finochietto, J. M. (2021). Feature selection for proximity estimation in COVID-19 contact tracing apps based on Bluetooth Low Energy (BLE). Pervasive and Mobile Computing, 77, 101474. https://doi. org/10.1016/j.pmcj.2021.101474
  • Mak, K.K. & Pichika, M. R. (2019). Artificial intelligence in drug development: Present status and future prospects. Drug Discovery Today, 24(3), 773-780. https://doi.org/10.1016/j.drudis.2018.11.014
  • Marmar, C.R., Brown, A.D., Qian, M., Laska, E., Siegel, C., Li, M., Abu-Amara, D., Tsiartas, A., Richey, C., Smith, J., Knoth, B. & Vergyri, D. (2019). Speech‐based markers for posttraumatic stress disorder in us veterans. Depression & Anxiety, 36: 607-616. https://doi.org/10.1002/da.22890.
  • Martinez-Martin, N., Insel, T. R., Dagum, P., Greely, H. T. ve Cho, M. K. (2018). Data mining for health: Staking out the ethical territory of digital phenotyping. NPJ Digital Medicine, 1(68). https://doi. org/10.1038/s41746-018-0075-8
  • Masri, R. Y. & Jani, H. M. (2012). Employing artificial intelligence techniques in mental health diagnostic expert system. International Conference on Computer & Information Science (ICCIS) sunulan bildiri. Kuala Lumpeu. https://doi.org/10.1109/ICCISci.2012.6297296
  • McCall, B. (2020). COVID-19 and artificial intelligence: Protecting health-care workers and curbing the spread. The Lancet Digital Health, 2(4). https://doi.org/10.1016/S2589-7500(20)30054-6
  • McCharty, J., Minsky, M., Rochester, N. & diğerleri (2006). A proposal for the dartmouth summer research project on artificial intelligence august 31, 1955. AI Magazine, 27, 12-14. https://doi.org/10.1609/aimag.v27i4.1904
  • McCorduck, P. (2004). Machines who think: A personal inquiry into the history and prospects of artificial ıntelligence. Massachusetts A K Peters, Ltd.
  • McGinnis, E.V., Anderau, S.P., Hruschak, J., Gurchiek, R.D., Lopez-Duran, N.L., Fitzgerald, K., Rosenblum, K.L., Muzik, M & McGinnis, R. S. (2019). Giving voice to vulnerable children: Machine learning analysis of speech detects anxiety and depression in early childhood. IEEE Journal of Biomedical and Health Informatics, 23: 2294-2301. https://doi.org/10.1109/JBHI.2019.2913590.
  • McShane, M., Beale, S., Nirenburg, S., Jarrel, B. & Fantry, G. (2012). Inconsistency as a diagnostic tool in a society of intelligent agents. Artificial Intellicence in Medicine, 55(3), 137-48. https://doi.org/10.1016/j. artmed.2012.04.005.
  • Menon, V., Rajan, T. M. & Sarkar, S. (2017). Psychotherapeutic applications of mobile phone-based technologies: A systematic review of current research and trends. Indian Journal of Psychological Medicine, 39(1), 4-11. https://doi.org/10.4103/0253-7176.198956
  • Miner, A. S., Shah, N., Bullock, K. D., Arnow, B. A., Bailenson, J. & Hancock, J. (2019). Key considerations for incorporating conversational AI in psychotherapy. Frontiers in Psychiatry, 10, https://doi.org/10.3389/fpsyt.2019.00746
  • Minh, D., Wang, H. X., Li, Y. F., & Nguyen, T. Y. (2021). Explainable artificial intelligence: A comprehensive review. Artificial Intelligence Review, 6. https://doi.org/10.1007/s10462-021-10088-y
  • Muller, R. T. (2021). Is artificial intelligence the future of mental health? https://www.psychologytoday.com/ intl/blog/talking-about-trauma/202103/is-artificial-intelligence-the-future-mental-health adresinden 8.2.2022 tarihinde erişilmiştir.
  • Nilsson, N. J. (2019). Yapay zeka geçmişi ve geleceği. M. Doğan (Çev.). Boğaziçi Üniversitesi Yayınevi.
  • Özalp, E. (2020). Gençlerle baş başa yapay zekâ. Yordam Yayınları.
  • Özçelik, B. Ş. (2021). Yapay zekanın veri koruma, sorumluluk ve fikri mülkiyet açısından ortaya çıkardığı hukuki gereksinimler. Adalet Dergisi, 66, 87-116.
  • Öztürk, M. O. & Uluşahin, A. (2011). Ruh sağlığı ve bozuklukları. Nobel Tıp Kitapevleri.
  • Pinker, S. (2010). Boş sayfa insan doğasının modern inkarı. M. Doğan (Çev.). Boğaziçi Üniversitesi Yayınevi.
  • Plotnik, R. (2009). Psikolojiye giriş. T. Geniş (Çev.). Kaknüs Yayınları.
  • Powell, T. P. (2017). The ‘smart pill’ for schizophrenia and bipolar disorder raises tricky ethical questions. https:// www.statnews.com/2017/12/05/smart-pill-abilify-ethics/ adresinde 3.7.2020 tarihinde erişilmiştir.
  • Rabbi, M., Philyaw-Kotov, M., Lee, J., Mansour, A., Dent, L., Wang, X., Cunningham, R., Bonar, E., Nahum-Shani, I., Klasnja, P., Walton, M., & Murphy, S. (2017). SARA: A mobile app to engage users in health data collection. ACM International Joint Conference on Pervasive and Ubiquitous Computing sunulan bildiri (ss. 781-789). https://doi.org/10.1145/3123024.3125611
  • Ravens-Sieberer, U., Kaman, A., Erhart, M., Devine, J., Schlack, R. & Otto, C. (2021). Impact of the COVID-19pandemic on quality of life and mental health in children and adolescents in Germany. European Child & Adolescent Psychiatry, 25, 1-11. https://doi.org/10.1007/s00787-021-01726-5
  • Reese, B. (2020). Yapay zeka çağı dördüncü çağ: Akıllı robotlar, bilinçli bilgisayarlar ve insanlığın geleceği. M. Doğan (Çev.). Say Yayınları.
  • Rein, B. A., McNeil, D. W., Hayes, A. R., Hawkins, T. A., Ng, H. M. & Yura, C. A. (2018). Evaluation of an avatar-based training program to promote suicide prevention awareness in a college setting. Journal of
  • American College Health, 66(5), 401-411. https://doi.org/10.1080/07448481. Rizvi, S. L., Dimeff, L. A., Skutch, J., Carroll D. & Linehan, M. M. (2011). A pilot study of the dbt coach: An interactive mobile phone application for individuals with borderline personality disorder and substance use disorder. Behavior Therapy, 42(4), 589-600. https://doi.org/10.1016/j.beth.2011.01.003
  • Rouhiainen, L. (2020). Yapay zekâ geceleceğimizle ilgili bugün bilmeniz gereken 101 şey. Toprak Deniz Odabaşı (Çev.) Pegasus Yayınları.
  • Russell, S. J. & Norvig, P. (1995). Artificial ıntelligence a modern approach. Prentice Hall, Inc. Sarker, S., Jamal, L., Ahmed, S.F. & Irtisam, N. (2021). Robotics and artificial intelligence in healthcare during COVID-19 pandemic: A systematic review. Robotics and Autonomous Systems, 146, 103902. https:// doi.org/10.1016/j.robot.2021.103902
  • Sattler, A. F., Whiteside, S. P. H., Bentley, J. P. & Young, J. (2018). Development and validation of a brief screening procedure for pediatric obsessive-compulsive disorder derived from the spence children’s anxiety scale. Journal of Obsessive-Compulsive and Related Disorders, 16, 29-35. https://doi.org/10.1016/j.jocrd.2017.12.004
  • Say, C. (2018). 50 soruda yapay zeka (3. Baskı). Bilim ve Gelecek Kitaplığı.
  • Scholten, M. R., Kelders, S. M. & Van Gemert-Pijnen, J. E. (2017). Self-guided web-based interventions: Scoping review on user needs and the potential of embodied conversational agents to address them. Journal of Medical Internet Research, 19(11). https://doi.org/10.2196/jmir.7351
  • Sebri, V., Pizzoli, S., Savioni, L. & Triberti, S. (2020). Artificial Intelligence in mental health: Professionals’ attitudes towards AI as a psychotherapist. Annual Review of CyberTherapy and Telemedicine, 18, 229-233.
  • Senders, J. T., Maher, N., Hulsbergen, A. F. C., Lamba, N., Bredenoord, A. L. & Broekman, M. L. D. (2019). The ethics of passive data and digital phenotyping in neurosurgery. M. L. D. Broekman (Ed.). Ethics of innovation in neurosurgery içinde (ss. 129-142). Springer. https://doi.org/10.1007/978-3-030-05502-8.
  • Shibata, T. & Wada, K. (2010). Robot therapy: A new approach for mental healthcare of the elderly-a mini-review. Gerontology, 57(4), 378-386. https://doi.org/10.1159/000319015
  • Shortliffe, E. H., Davis, R., Axline, S. G., Buchanan, B. G., Green, C. C. & Cohen, S. N. (1975). Computer-base consultations in clinical therapeutics:Eexplanation and rule acquisition capabilities of the MYCIN system. Computers and Biomedical Research, 8(4), 303-320. https://doi.org/10.1016/0010-4809(75)90009-9 Valenti Soler, M., Agüera-Ortiz, L., Rodriguez, J. O., Rebolledo, C. M., Munoz, A. P., Perez, I. R. Osa Ruiz, E., Barrios Sánchez, A., Herrero Cano, V., Carrasco Chillón, L., Felipe Ruiz, S., López Alvarez, J., León Salas, B., Cañas Plaza, J. M. , Martín Rico, F., Abella Dago, G. & Martínez Martín, P. (2015).
  • Social robots in advanced dementia. Frontiers in Aging Neuroscience, 7(133). https://doi.org/10.3389/fnagi.2015.00133
  • Sparrow, R. & Sparrow, L. (2006). In the hands of machines? The future of aged care. Minds and Machines, 16, 141-161. https://doi.org/10.1007/s11023-006-9030-6
  • Taylor, J. E. T. & Taylor, G. W. (2021). Artificial cognition: How experimental psychology can help generate explainable artificial intelligence. Psychonomic Bulletin & Review, 28, 454-475. https://doi.org/10.3758/ s13423-020-01825-5
  • Tegmark, M. (2019). Yaşam 3.0 yapay zeka çağında insan olmak. E. C. Göksoy (Çev.). Pegasus Yayınları.
  • Torous, J., Staples, P. & Onnela, J. P. (2015). Realizing the potential of mobile mental health: New methods for new data in psychiatry. Current Psychiatry Report, 17(8). https://doi.org/10.1007/s11920-015-0602-0
  • Turkle, S. (2010). In good company? Y. Wilks (Ed.). Close engagements with artificial companions içinde (ss. 3-10). Benjamins.
  • Twomey, C., O’Reilly, G. & Meyer, B. (2017). Effectiveness of an individually-tailored computerised CBT programme (Deprexis) for depression: A meta-analysis. Psychiatry Research, 256, 371-377. https://doi. org/10.1016/j.psychres.2017.06.081
  • Ucuz, İ., Özcan, Ö., Mete, B., Ari, A., Kayhan-Tetik, B. & Yıldırım, K. (2020). Evaluation of inflammatory markers in childhood-onset psychiatric disorders by using artificial intelligence architectures. Anadolu Psikiyatri Dergisi, 21(3), 301-309. https://doi.org/10.5455/apd.56153.
  • Usta, M. B., Karabekiroğlu, K., Say, G. N., Gumus, Y. Y., Aydon, M., Sahin, B., Bozkurt, A., Karaosman, T., Aral, A., Çobanoğlu Osmanlı, C., Duman Kurt, A., Kesim, N. & Sahin, I. (2020). Can we predict psychiatric disorders at the adolescence period in toddlers? A machine learning approach. Psychiatry and Behavioral Sciences, 10(1-1), 7-12. https://doi.org/10.5455/PBS.20190806125540
  • Wada, K. & Shibata, T. (2007). Living with seal robots-its sociopsychological and physiological influences on the elderly at a care house. IEEE Transactions on Robotics, 23(5), 972-980. https://doi.org/10.1109/ TRO.2007.906261
  • Waldrop, M. M. (1987). A question of responsibility. AI Magazine, 8, 29-39. https://doi.org/10.1609/aimag. v8i1.572
  • Walsh, C.G., Riberio, J. D. & Franklin, J. C. (2017). Predicting risk of suicide attempts over time through machine learning. Clinical Psychological Science, 5(3), 457-469. https://doi.org/10.1177/2167702617691560
  • Weizenbaum, J. (1966). ELIZA-A computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36-45. https://doi.org/10.1145/365153.365168
  • Whitby, B. (2005). Yapay zekâ. Ç. Karabağlı (Çev.). İletişim Yayınları.
  • Wood, L. J., Zaraki, A., Robins, B. & Dautenhahn, K. (2019, Temmuz 8). Developing kaspar: A humanoid robot for children with autism. International Journal of Social Robotics, 13, 491-508. https://doi. org/10.1007/s12369-019-00563-6
  • Yonck, R. (2019). Makinenin kalbi yapay duygusal zekâ dünyasında geleceğimiz. T. Gönekçin (Çev.). Paloma Yayınları.
  • Yu, R., Hui, E., Lee, J., Poon, D., Ng, A., Sit, K., Ip, K., Yeung, F., Wong, M., Shibata, T. & Woo, J. (2015). Use of a therapeutic, socially assistive pet robot (paro) in improving mood and stimulating social interaction and communication for people with dementia: Study protocol for a randomized controlled trial. JMIR Research Protocols, 4(2). https://doi.org/10.2196/resprot.4189 Zhang, X., Wang, R., Sharma, A. & Deverajand, G. G. (2021). Artificial intelligence in cognitive psychology-Influence of literature based on artificial intelligence on children’s men
There are 152 citations in total.

Details

Primary Language Turkish
Subjects Psychology
Journal Section Research Articles
Authors

Mücahit Gültekin 0000-0003-2697-0956

Publication Date September 18, 2022
Published in Issue Year 2022 Volume: 12 Issue: 3

Cite

APA Gültekin, M. (2022). Yapay Zekânın Ruh Sağlığı Hizmetlerinde Kullanımına İlişkin Fırsatlar ve Sorunlar. İnsan Ve Toplum, 12(3), 121-158. https://doi.org/10.12658/M0664