BibTex RIS Cite

Ketamine- Induced Cell Dehydratıon as a Mechanism of It’s Analgesic and Anesthetic Effects

Year 2011, Volume: 4 Issue: 1, 42 - 49, 01.03.2011

Abstract

References

  • Kress HG. Wirkmechanismen von Ketamin. Anaesthesist 1997; 46: S8-s19.
  • Kohrs R, Durieux ME. Ketamine: teaching and old drug new tricks. Anesth.Analg 1998; 87: 1186-1193.
  • Davies SN, Alford ST, Coan EJ, Lester RA, Collingridge GL. Ketamine blocks an NMDA receptor- mediated component of synaptic transmission in rat hippocampus in a voltage-dependent manner. Neurosci Let 1988; 92: 213-7.
  • Reich DL, Silvay G. Ketamine: an update of the first twenty-five years of clinical experience. Canad. J. of Anaesthesa 1989; 36: 186-197.
  • Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia. Nature 1994; 367: 607–614.
  • Sakai F, Amaha K. Midazolam and ketamine inhibit glutamate release via a cloned human brain glutamate transporter. Canad. J. of Anesthesia 2000; 47: 800-6.
  • Franks NP. General anesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nature Reviews (Neuroscience) 2008; 9: 370-386.
  • Scheller M, Bufler J, Hertle I, et al. Ketamine blocks currents through mammalian nicotinic acetylcholine receptor channels by interaction with both the open and the closed state. Anesth. Analg 1996; 83: 830–6.
  • Sasaki T, Tomio A, Itaru W, et al. Nonstereoselective inhibition of neuronal nicotinic acetylcholine receptors by ketamine isomers. Anesth Analg 2000; 91: 741–8.
  • Hustveit O, Maurset A, Oye I. Interaction of the chiral forms of ketamine with opioid, phencyclidine, sigma and muscarinic receptors. Pharmacol. Toxicol. 1995; 77: 355–9.
  • Finck AD, Ngai SH. Opiate receptor mediation of ketamine analgesia. Anesthesiology 1982; 56: 291–297.
  • Smith DJ, Bouchal RL, Desanctis CA, et al. Properties of the interaction between ketamine and opiate binding sites in vivo and in vitro. Neuropharmacology 1987; 26: 1253–1260.
  • Schnoebel R, Wolff M, Peters SC, et al. Ketamine impairs excitability in superficial dorsal horn neurons by blocking sodium and voltage-gated potassium currents. Brit J. of Pharmacology 2005; 146: 826–833.
  • Brau ME, Sander F, Vogel W, Hempelmann G. Blocking mechanisms of ketamine and its enantiomers in enzymatically demyelinated peripheral nerve as revealed by single-channel experiments. Anesthesiology 1997; 86: 394–404.
  • Kawano TK, Oshita S, Takahashi A, et al. Molecular Mechanisms Sarcolemmal Channels. Anesthesiology 2005; 102: 93-101. Ketamine-mediated
  • Triphosphate-sensitive of Potassium
  • Hirota K, Lambert DG. Ketamine: its mechanism(s) of action and unusual clinical uses. Brit. J. of Anaesthesia 1996; 77: 441-4.
  • Akbaş L., Sarioğlu Y., Utkan T. Effect of ketamine on contractile performance of isolated frog myocardium and comparison of ketamine, thiopental and droperidol. Mater Med Pol. 1992;24 (1): 32-4
  • Abdalla SS, Laravuso RB, Will JA. Mechanisms of the Inhibitory Effect of Ketamine on Guinea Pig Isolated Main Pulmonary Artery. Anesth. Analg. 1994; 78: 17-22.
  • Kohjitani A, Shirakawa J, Okada S, Obara H. The Relaxing Effect of Ketamine on Isolated Rabbit Lower Esophageal Sphincter. Anesth Analg. 1997; 84: 433-7.
  • Han J, Kim N, Joo H, Kim E. Ketamine blocks Ca2+-activated K+ channels in rabbit cerebral arterial smooth muscle cells. Am J Physiol Heart Circ Physiol. 2003; 285: 1347-1355.
  • Chang Y, Chen TL, Wu GJ, et al. Mechanisms involved in the antiplatelet activity of ketamine in human platelets. Journal of Biomedical Science 2004; 11: 764-772.
  • Ayrapetyan SN, Rychkov GY, Suleymanyan MA. Effects of water flow on transmembrane ionic currents in neurons of Helix pomatia and in Squid giant axon. Comp. Biochem. Physiol. 1988; 89: 179-186.
  • Ayrapetyan SN, Arvanov VL. On the mechanism of the electrogenic sodium pump dependence of membrane chemosensitivity. Comp Biochem Physiol 1979; 64: 601-604.
  • Ayrapetyan SN, Suleymanyan MA, Sagian AA, Dadalyan SS. Autoregulation of Electrogenic Sodium Pump. Cell Mol Neurobiol. 1984; 4: 367- 384.
  • Ayrapetyan SN. On the physiological significance of pump- induced cell volume changes. Adv. Physiol. Sci. 1980; 23: 67-82.
  • Hoffman EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol. Rev. 2009; 89:193-277.
  • Ayrapetyan SN, Takenaka MA, Bakunts IS, Saghyan AA, Dadalyan SS. Reports of USSR Academy of Sciences 1986; 291:469-472.
  • Danielyan AA, Mirakian MM, Airapetyan SN. The dehydrating action of ketamine on malignant breast tumors. Voprosi Onkol. 1998; 44: 395-7.
  • Danielyan AA, Ayrapetian SN. Changes of hydration of rats’ tissues after in vivo exposure to 0.2 Tesla Steady Magnetic Field. Bioelectromagnetics 1999; 20: 123-128.
  • Takahashi R, Aprison MH. Acetylcholine content of discrete areas of the brain obtained by a near-freezing method. J. of Neurochemistry 1964; 11:887-892.
  • Adrian RH. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol 1956; 133: 631–658.
  • Ayrapetyan S, Musheghyan G, Deghoyan A. The brain tissue dehydration as a mechanism of analgesic effect of hypertonic physiological solution in rats. J Int Dent Med Res 2010; 3: 93-9.
  • Lazzaro V, Oliviero A, Profice P, et al. Ketamine increases motor cortex excitability to transcranial magnetic stimulation Physiol. 2003; 547: 485–496.
  • Azatian KV, White AR, Walker RJ, Ayrapetyan SN. Cellular and molecular mechanisms of nitric oxide-induced heart muscle relaxation. Gen. Pharmac. 1998; 30:543-553.
  • Saghyan AA, Hunanian Ash, Ayrapetyan SN. Effect of Locust Poison (LP) on Neuromembrane Functional Activity. General Pharmacology 1997; 29:587-590.
  • Tasaki I, Iwasa K. Rapid pressure changes and surface displacements in the squid giant axon associated with production of action potentials. Jpn J Physiol. 1982; 32:69-81.
  • Haussinger D. Regulation of Cell Function by Hydration, Biochem. J. 1996; 313:697-710.
  • Cooke KR. Ouabain and regulation of cellular volume in freshly prepared slices ofrabbit renal cortex. J Physiol. 1978; 279:361- 374.
  • Ayrapetyan SN, Suleymanyan MA. On The Pump-Induced Cell Volume Changes. Comp Biochem Physiol 1979; 64: 571-5.
  • Annunziato L, Pignataro G, Di Renzo GF. Pharmacology of Brain Na_/Ca2_ Exchanger: From Molecular Biology to Therapeutic Perspectives Pharmacol Rev 2004; 56: 633–654.
  • Saghyan AA, Dadalian SS, Takenaka T, Suleymanyan MA, Ayrapetyan SN. The effects of short-chain fatty acids on the neuronal membrane functions of helix pomatia. III 22 Na efflux from the cells. Cell. And Mol. Neourobiol. 1986; 6: 397-405.
  • Kandel ER, Schwartz JH. Molecular biology of learning: modulation of transmitter release. Science 1982; 218: 433-442.

Ketamine- Induced Cell Dehydratıon as a Mechanism of It’s Analgesic and Anesthetic Effects

Year 2011, Volume: 4 Issue: 1, 42 - 49, 01.03.2011

Abstract

References

  • Kress HG. Wirkmechanismen von Ketamin. Anaesthesist 1997; 46: S8-s19.
  • Kohrs R, Durieux ME. Ketamine: teaching and old drug new tricks. Anesth.Analg 1998; 87: 1186-1193.
  • Davies SN, Alford ST, Coan EJ, Lester RA, Collingridge GL. Ketamine blocks an NMDA receptor- mediated component of synaptic transmission in rat hippocampus in a voltage-dependent manner. Neurosci Let 1988; 92: 213-7.
  • Reich DL, Silvay G. Ketamine: an update of the first twenty-five years of clinical experience. Canad. J. of Anaesthesa 1989; 36: 186-197.
  • Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia. Nature 1994; 367: 607–614.
  • Sakai F, Amaha K. Midazolam and ketamine inhibit glutamate release via a cloned human brain glutamate transporter. Canad. J. of Anesthesia 2000; 47: 800-6.
  • Franks NP. General anesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nature Reviews (Neuroscience) 2008; 9: 370-386.
  • Scheller M, Bufler J, Hertle I, et al. Ketamine blocks currents through mammalian nicotinic acetylcholine receptor channels by interaction with both the open and the closed state. Anesth. Analg 1996; 83: 830–6.
  • Sasaki T, Tomio A, Itaru W, et al. Nonstereoselective inhibition of neuronal nicotinic acetylcholine receptors by ketamine isomers. Anesth Analg 2000; 91: 741–8.
  • Hustveit O, Maurset A, Oye I. Interaction of the chiral forms of ketamine with opioid, phencyclidine, sigma and muscarinic receptors. Pharmacol. Toxicol. 1995; 77: 355–9.
  • Finck AD, Ngai SH. Opiate receptor mediation of ketamine analgesia. Anesthesiology 1982; 56: 291–297.
  • Smith DJ, Bouchal RL, Desanctis CA, et al. Properties of the interaction between ketamine and opiate binding sites in vivo and in vitro. Neuropharmacology 1987; 26: 1253–1260.
  • Schnoebel R, Wolff M, Peters SC, et al. Ketamine impairs excitability in superficial dorsal horn neurons by blocking sodium and voltage-gated potassium currents. Brit J. of Pharmacology 2005; 146: 826–833.
  • Brau ME, Sander F, Vogel W, Hempelmann G. Blocking mechanisms of ketamine and its enantiomers in enzymatically demyelinated peripheral nerve as revealed by single-channel experiments. Anesthesiology 1997; 86: 394–404.
  • Kawano TK, Oshita S, Takahashi A, et al. Molecular Mechanisms Sarcolemmal Channels. Anesthesiology 2005; 102: 93-101. Ketamine-mediated
  • Triphosphate-sensitive of Potassium
  • Hirota K, Lambert DG. Ketamine: its mechanism(s) of action and unusual clinical uses. Brit. J. of Anaesthesia 1996; 77: 441-4.
  • Akbaş L., Sarioğlu Y., Utkan T. Effect of ketamine on contractile performance of isolated frog myocardium and comparison of ketamine, thiopental and droperidol. Mater Med Pol. 1992;24 (1): 32-4
  • Abdalla SS, Laravuso RB, Will JA. Mechanisms of the Inhibitory Effect of Ketamine on Guinea Pig Isolated Main Pulmonary Artery. Anesth. Analg. 1994; 78: 17-22.
  • Kohjitani A, Shirakawa J, Okada S, Obara H. The Relaxing Effect of Ketamine on Isolated Rabbit Lower Esophageal Sphincter. Anesth Analg. 1997; 84: 433-7.
  • Han J, Kim N, Joo H, Kim E. Ketamine blocks Ca2+-activated K+ channels in rabbit cerebral arterial smooth muscle cells. Am J Physiol Heart Circ Physiol. 2003; 285: 1347-1355.
  • Chang Y, Chen TL, Wu GJ, et al. Mechanisms involved in the antiplatelet activity of ketamine in human platelets. Journal of Biomedical Science 2004; 11: 764-772.
  • Ayrapetyan SN, Rychkov GY, Suleymanyan MA. Effects of water flow on transmembrane ionic currents in neurons of Helix pomatia and in Squid giant axon. Comp. Biochem. Physiol. 1988; 89: 179-186.
  • Ayrapetyan SN, Arvanov VL. On the mechanism of the electrogenic sodium pump dependence of membrane chemosensitivity. Comp Biochem Physiol 1979; 64: 601-604.
  • Ayrapetyan SN, Suleymanyan MA, Sagian AA, Dadalyan SS. Autoregulation of Electrogenic Sodium Pump. Cell Mol Neurobiol. 1984; 4: 367- 384.
  • Ayrapetyan SN. On the physiological significance of pump- induced cell volume changes. Adv. Physiol. Sci. 1980; 23: 67-82.
  • Hoffman EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol. Rev. 2009; 89:193-277.
  • Ayrapetyan SN, Takenaka MA, Bakunts IS, Saghyan AA, Dadalyan SS. Reports of USSR Academy of Sciences 1986; 291:469-472.
  • Danielyan AA, Mirakian MM, Airapetyan SN. The dehydrating action of ketamine on malignant breast tumors. Voprosi Onkol. 1998; 44: 395-7.
  • Danielyan AA, Ayrapetian SN. Changes of hydration of rats’ tissues after in vivo exposure to 0.2 Tesla Steady Magnetic Field. Bioelectromagnetics 1999; 20: 123-128.
  • Takahashi R, Aprison MH. Acetylcholine content of discrete areas of the brain obtained by a near-freezing method. J. of Neurochemistry 1964; 11:887-892.
  • Adrian RH. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol 1956; 133: 631–658.
  • Ayrapetyan S, Musheghyan G, Deghoyan A. The brain tissue dehydration as a mechanism of analgesic effect of hypertonic physiological solution in rats. J Int Dent Med Res 2010; 3: 93-9.
  • Lazzaro V, Oliviero A, Profice P, et al. Ketamine increases motor cortex excitability to transcranial magnetic stimulation Physiol. 2003; 547: 485–496.
  • Azatian KV, White AR, Walker RJ, Ayrapetyan SN. Cellular and molecular mechanisms of nitric oxide-induced heart muscle relaxation. Gen. Pharmac. 1998; 30:543-553.
  • Saghyan AA, Hunanian Ash, Ayrapetyan SN. Effect of Locust Poison (LP) on Neuromembrane Functional Activity. General Pharmacology 1997; 29:587-590.
  • Tasaki I, Iwasa K. Rapid pressure changes and surface displacements in the squid giant axon associated with production of action potentials. Jpn J Physiol. 1982; 32:69-81.
  • Haussinger D. Regulation of Cell Function by Hydration, Biochem. J. 1996; 313:697-710.
  • Cooke KR. Ouabain and regulation of cellular volume in freshly prepared slices ofrabbit renal cortex. J Physiol. 1978; 279:361- 374.
  • Ayrapetyan SN, Suleymanyan MA. On The Pump-Induced Cell Volume Changes. Comp Biochem Physiol 1979; 64: 571-5.
  • Annunziato L, Pignataro G, Di Renzo GF. Pharmacology of Brain Na_/Ca2_ Exchanger: From Molecular Biology to Therapeutic Perspectives Pharmacol Rev 2004; 56: 633–654.
  • Saghyan AA, Dadalian SS, Takenaka T, Suleymanyan MA, Ayrapetyan SN. The effects of short-chain fatty acids on the neuronal membrane functions of helix pomatia. III 22 Na efflux from the cells. Cell. And Mol. Neourobiol. 1986; 6: 397-405.
  • Kandel ER, Schwartz JH. Molecular biology of learning: modulation of transmitter release. Science 1982; 218: 433-442.
There are 43 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Armenuhi Heqimyan This is me

Anush Deghoyan This is me

Sinerik Ayrapetyan This is me

Publication Date March 1, 2011
Published in Issue Year 2011 Volume: 4 Issue: 1

Cite

APA Heqimyan, A., Deghoyan, A., & Ayrapetyan, S. (2011). Ketamine- Induced Cell Dehydratıon as a Mechanism of It’s Analgesic and Anesthetic Effects. Journal Of International Dental And Medical Research, 4(1), 42-49.
AMA Heqimyan A, Deghoyan A, Ayrapetyan S. Ketamine- Induced Cell Dehydratıon as a Mechanism of It’s Analgesic and Anesthetic Effects. JIDMR. March 2011;4(1):42-49.
Chicago Heqimyan, Armenuhi, Anush Deghoyan, and Sinerik Ayrapetyan. “Ketamine- Induced Cell Dehydratıon As a Mechanism of It’s Analgesic and Anesthetic Effects”. Journal Of International Dental And Medical Research 4, no. 1 (March 2011): 42-49.
EndNote Heqimyan A, Deghoyan A, Ayrapetyan S (March 1, 2011) Ketamine- Induced Cell Dehydratıon as a Mechanism of It’s Analgesic and Anesthetic Effects. Journal Of International Dental And Medical Research 4 1 42–49.
IEEE A. Heqimyan, A. Deghoyan, and S. Ayrapetyan, “Ketamine- Induced Cell Dehydratıon as a Mechanism of It’s Analgesic and Anesthetic Effects”, JIDMR, vol. 4, no. 1, pp. 42–49, 2011.
ISNAD Heqimyan, Armenuhi et al. “Ketamine- Induced Cell Dehydratıon As a Mechanism of It’s Analgesic and Anesthetic Effects”. Journal Of International Dental And Medical Research 4/1 (March 2011), 42-49.
JAMA Heqimyan A, Deghoyan A, Ayrapetyan S. Ketamine- Induced Cell Dehydratıon as a Mechanism of It’s Analgesic and Anesthetic Effects. JIDMR. 2011;4:42–49.
MLA Heqimyan, Armenuhi et al. “Ketamine- Induced Cell Dehydratıon As a Mechanism of It’s Analgesic and Anesthetic Effects”. Journal Of International Dental And Medical Research, vol. 4, no. 1, 2011, pp. 42-49.
Vancouver Heqimyan A, Deghoyan A, Ayrapetyan S. Ketamine- Induced Cell Dehydratıon as a Mechanism of It’s Analgesic and Anesthetic Effects. JIDMR. 2011;4(1):42-9.