Research Article
BibTex RIS Cite

Effects of gilaburu fruit extract on cardiomyopathy in diabetic rats

Year 2025, Volume: 16 Issue: 56, 205 - 212, 16.12.2025
https://doi.org/10.17944/interdiscip.1739640

Abstract

Objective: The effects of diabetes on cardiomyopathy have been well documented in the literature. However, the effects of gilaburu fruit, which possesses antioxidant and anti-inflammatory properties, on diabetic cardiomyopathy (DCM) have not been adequately investigated. This study aimed to investigate the effects of gilaburu extract on DCM in diabetic rats.
Method: Twenty-one male Wistar rats were divided into three groups. Diabetes was induced in the diabetic group with a single intraperitoneal (i.p.) injection of streptozotocin (STZ) at a dose of 50 mg/kg. The treatment group received gilaburu extract (200 mg/kg, i.p.) dissolved in phosphate buffer saline (PBS) for 37 days, starting one week before diabetes induction. Serum CK-MB and CRP levels, cardiac tissue MDA, SOD, and IL-1ß levels, as well as histopathological changes such as hypertrophy, vacuolization, and fiber disarray, were evaluated.
Results: Serum CK-MB and CRP levels were significantly higher in the diabetic group compared to the control group. The diabetic group also exhibited marked myocardial hypertrophy, vacuolization, and fiber disarray, along with increased MDA and IL-1ß levels and decreased SODactivity. In the treatment group, CK-MB and CRP levels were significantly reduced, histopathological alterations were markedly attenuated, and MDA, IL-1ß, and SOD levels improved to values close to those of the control group.
Conclusion: Gilaburu extract exhibits both biochemical and morphological protective effects against diabetic cardiomyopathy. These findings suggest that gilaburu may be a promising therapeutic agent for the management of diabetic cardiomyopathy.

References

  • Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. https://doi.org/10.1016/j.diabres.2021.109119
  • Demirtaş S, Ersoy O, Kızılay G. Role of KU70, SIRT1, and SIRT6 Proteins in Diabetic Rat Testis Tissue. Tr J Nature Sci. 2024;13(3):82-91. https://doi.org/10.46810/tdfd.1483328
  • Jia G, Whaley-Connell A, Sowers JR. Diabetic Cardiomyopathy: a Hyperglycaemia-and Insulin-Resistance-Induced Heart Disease. Diabetologia. 2018;61(1):21-8. https://doi.org/10.1007/s00125-017-4390-4
  • Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. Cellular Death, Reactive Oxygen Species (ROS) and Diabetic Complications. Cell Death Dis. 2018;9(2):119. https://doi.org/10.1038/s41419-017-0135-z
  • Gökdemir GS, Çakmak S, Demirtas B, Gökdemir MT, Sogut O, Canpolat-Erkan RE, et al. The Effect of Acute Carbon Monoxide Intoxication on Cardiac Necrosis In Rats: In Relation To Adiponectin Levels. Rev Cıent-Fac Cıen V. 2025;35(1). https://doi.org/10.52973/rcfcv-e35532
  • Anwar A, Khan HA, Hafeez S, Firdous K. A Comparative Study of Creatine Kinase-MB and Troponin Levels Among Diabetic and Non Diabetic Patients with Acute MI. Pak J Med Health Sci. 2016;10(1):296-7.
  • Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New Type of Cardiomyopathy Associated with Diabetic Glomerulosclerosis. Am J Cardiol. 1972;30(6):595-602. https://doi.org/10.1016/0002-9149(72)90595-4
  • Salvatore T, Pafundi PC, Galiero R, Albanese G, Di Martino A, Caturano A, et al. The Diabetic Cardiomyopathy: The Contributing Pathophysiological Mechanisms. Front Med. 2021;8:695792. https://doi.org/10.3389/fmed.2021.695792
  • Frati G, Schirone L, Chimenti I, Yee D, Biondi-Zoccai G, Volpe M, et al. An Overview of The İnflammatory Signalling Mechanisms In The Myocardium Underlying The Development of Diabetic Cardiomyopathy. Cardiovasc Res. 2017;113(4):378-88. https://doi.org/10.1093/cvr/cvx011
  • Lorenzo-Almorós A, Tuñón J, Orejas M, Cortés M, Egido J, Lorenzo Ó. Diagnostic Approaches for Diabetic Cardiomyopathy. Cardiovasc Diabetol. 2017;16:1-14. https://doi.org/10.1186/s12933-017-0506-x
  • Koşar M, Orakçı E, Karatoprak GŞ. Antioxidant Properties and Phenolic Composition of Viburnum Opulus from Turkey. 59th International Congress and. Annual Meeting of the Society for Medicinal Plant and Natural; 2011 Sep 04-09; Antalya, Türkiye.
  • Yıldız R, Ekici H, Yarsan E. Antioxidant Effects of Viburnum Opulus on Streptozotocin-Induced Experimental Diabetic Rats. JABS. 2020;14(2):124-35.
  • Gedik PU, Aydin E, Ozkan G, Ozcelik MM. Production of Encapsulated Hydrogel Beads and Sugar-Free Beverage from Gilaburu Fruit Rich in Antioxidants, Antidiabetic Bioactives, and its Microwave-Assisted Extraction Optimization. Braz Arch Biol Technol. 2024;67:e24230018. https://doi.org/10.1590/1678-4324-2024230018 Erdal B, Yıkmış S, Demirok NT, Bozgeyik E, Levent O. Effects of Non-thermal Treatment on Gilaburu Vinegar (Viburnum opulus L.): Polyphenols, Amino Acid, Antimicrobial, and Anticancer Properties. Biology. 2022;11(6):926. https://doi.org/10.3390/biology11060926
  • Gülada BÖ, Cam ME, Yüksel M, Akakın D, Taşkın T, Emre G, et al. Gilaburu (Viburnum opulus L.) Fruit Extract has Potential Therapeutic and Prophylactic Role in a rat Model of Acetic Acid-Induced Oxidant Colonic Damage. J Ethnopharmacol. 2024;322:117624. https://doi.org/10.1016/j.jep.2023.117624
  • Saltan G, Süntar I, Ozbilgin S, Ilhan M, Demirel MA, Oz BE, et al. Viburnum opulus L.: A Remedy for The Treatment of Endometriosis Demonstrated by Rat Model of Surgically-Induced Endometriosis. J. Ethnopharmacol. 2016;193:450-455. https://doi.org/10.1016/j.jep.2016.09.029
  • Sarıözkan S, Türk G, Eken A, Bayram LÇ, Baldemir A, Doğan G. Gilaburu (Viburnum Opulus L.) Fruit Extract Alleviates Testis and Sperm Damages Induced By Taxane-Based Chemotherapeutics. Biomed Pharmacother, 2017;95, 1284-1294. https://doi.org/10.1016/j.biopha.2017.09.057
  • Ilhan M, Ergene B, Süntar I, Özbilgin S, Saltan ÇG, Demirel MA, et al. Preclinical Evaluation of Antiurolithiatic Activity of Viburnum Opulus L. on Sodium Oxalate-Induced Urolithiasis Rat Model. eCAM. 2014;2014(1):578103. https://doi.org/10.1155/2014/578103
  • Akinlade OM, Owoyele BV, Soladoye AO. Streptozotocin-Induced Type 1 and 2 Diabetes in Rodents: A Model for Studying Diabetic Cardiac Autonomic Neuropathy. Afr Health Sci. 2021;21(2):719–727. https://doi.org/doi: 10.4314/ahs.v21i2.30
  • Ömerli A, Ülger H, Nisari M, Yay A, Karatoprak GŞ. Could Juice from Viburnum Opulus Potentially Prevent The Formation of Kidney Stones?(An Anımal Study). Natr Resour Human Health. 2023;3(3):379-386. https://doi.org/10.53365/nrfhh/170923
  • Eken A, Yücel O, Boşgelmez İİ, Baldemır A, Cubuk S, Cermik AH, et al. An Investigation on Protective Effect of Viburnum opulus L. Fruit Extract Against İschemia/Reperfusion-İnduced Oxidative Stress After Lung Transplantation in Rats. Kafkas Univ Vet Fak Derg. 2017;23(3):437-444. https://doi.org/10.9775/kvfd.2016.16964
  • Ceylan D, Aksoy A, Ertekin T, Yay AH, Nisari M, Karatoprak GŞ, et al. The Effects of Gilaburu (Viburnum opulus) Juice on Experimentally Induced Ehrlich Ascites Tumor in Mice. J Cancer Res Ther. 2018;14(2):314-320. doi: 10.4103/0973-1482.181173.
  • Nasirian F, Sarir H, Moradi-kor N. Antihyperglycemic and Antihyperlipidemic Activities of Nannochloropsis Oculata Microalgae in Streptozotocin-Induced Diabetic Rats. Biomol Concepts. 2019;10(1):37-43. https://doi.org/10.1515/bmc-2019-0004
  • Jadam S, Gaballa A, Alashi A, Xu B, Thamilarasan M, Rodriguez E R, et al. Association of Histologic Findings with Long-Term Outcomes in Symptomatic Obstructive Hypertrophic Cardiomyopathy Patients Undergoing Surgical Myectomy. Heart Failure. 2025;13(4):631-640. https://doi.org/10.1016/j.jchf.2024.10.006
  • Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of Diabetic Cardiomyopathy and Potential Therapeutic Strategies: Preclinical and Clinical Evidence. Nat Rev Cardiol. 2020;17(9):585-607. https://doi.org/10.1038/s41569-020-0339-2
  • Huo J-L, Feng Q, Pan S, Fu W-J, Liu Z, Liu Z. Diabetic Cardiomyopathy: Early Diagnostic Biomarkers, Pathogenetic Mechanisms, and Therapeutic Interventions. Cell Death Dis 2023;9(1):256. https://doi.org/10.1038/s41420-023-01553-4
  • Yaluri N, Stančáková Yaluri A, Žeňuch P, Žeňuchová Z, Tóth Š, et al. Cardiac Biomarkers and Their Role in Identifying Increased Risk Of Cardiovascular Complications in COVID-19 Patients. Diagnostics. 2023;13(15):2508. https://doi.org/10.3390/diagnostics13152508
  • Xu N, Liu S, Zhang Y, Chen Y, Zuo Y, Tan X, et al. Oxidative Stress Signaling in The Pathogenesis of Diabetic Cardiomyopathy and The Potential Therapeutic Role of Antioxidant Naringenin. Redox Rep. 2023;28(1):2246720. https://doi.org/10.1080/13510002.2023.2246720
  • Pfützner A, Schöndorf T, Hanefeld M, Forst T. High-Sensitivity C-Reactive Protein Predicts Cardiovascular Risk in Diabetic and Nondiabetic Patients: Effects of Insulin-Sensitizing Treatment with Pioglitazone. J Diabetes Sci Technol. 2010;4(3):706-16. https://doi.org/10.1177/193229681000400326
  • Pfützner A, Forst T. High-Sensitivity C-Reactive Protein As Cardiovascular Risk Marker in Patients with Diabetes Mellitus. Diabetes Technol. 2006;8(1):28-36. https://doi.org/10.1089/dia.2006.8.28
  • Ridker PM, Buring JE, Cook NR, Rifai N. C-Reactive Protein, The Metabolic Syndrome, and Risk of Incident Cardiovascular Events: An 8-Year Follow-Up of 14 719 Initially Healthy American Women. Circulation. 2003;107(3):391-7. https://doi.org/10.1161/01.CIR.0000055014.62083.05
  • Kajszczak D, Zakłos-Szyda M, Podsędek A. Viburnum opulus L.—A Review of Phytochemistry and Biological Effects. Nutrients. 2020;12(11):3398. https://doi.org/10.3390/nu12113398 Bidian C, Filip GA, David L, Moldovanm B, Baldea I, Olteanu D, et al. Viburnum opulus Fruit Extract-Capped Gold Nanoparticles Attenuated Oxidative Stress and Acute İnflammation in Carrageenan-Induced Paw Edema Model. Green Chem Lett Rev. 2022;15(2), 320–336. https://doi.org/10.1080/17518253.2022.2061872
  • Asghari AA, Mahmoudabady M, Mousavi Emadi Z, Hosseini SJ, Salmani H. Cardiac Hypertrophy and Fibrosis were Attenuated by Olive Leaf Extract Treatment in A Rat Model of Diabetes. J Food Biochem. 2022;46(12):e14494. https://doi.org/10.1111/jfbc.14494
  • Chen Y-F, Shibu MA, Fan M-J, Chen M-C, Viswanadha VP, Lin Y-L, et al. Purple Rice Anthocyanin Extract Protects Cardiac Function in STZ-Induced Diabetes Rat Hearts By Inhibiting Cardiac Hypertrophy and Fibrosis. J Nutr Biochem. 2016;31:98-105. https://doi.org/10.1016/j.jnutbio.2015.12.020
  • Ilkhanizadeh B, Shirpoor A, Nemati S, Rasmi Y. Protective Effects of Ginger (Zingiber Officinale) Extract Against Diabetes-Induced Heart Abnormality In Rats. Diabetes Metab J. 2016;40(1):46-53. https://doi.org/10.4093/dmj.2016.40.1.46
  • Yilmaz A, Yalta K, Turgut OO, Yilmaz MB, Ozyol A, Kendirlioglu O, et al. Clinical Importance of Elevated CK-MB and Troponin I Levels in Congestive Heart Failure. Adv Ther. 2006;23(6), 1060–1067. https://doi.org/10.1007/BF02850226
  • Mitsis A, Sokratous S, Karmioti G, Kyriakou M, Drakomathioulakis M, Myrianthefs MM, et al. The Role of C-Reactive Protein in Acute Myocardial Infarction: Unmasking Diagnostic, Prognostic, and Therapeutic Insights. J Clin Med. 2025;14(13):4795. https://doi.org/10.3390/jcm14134795
There are 36 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Chemistry, Pharmacology and Pharmaceutical Sciences (Other), Cardiology
Journal Section Research Article
Authors

Selim Demirtaş 0000-0001-7249-3092

Gül Şahika Gökdemir 0000-0002-8691-1504

Uğur Şeker 0000-0002-1693-6378

Submission Date July 10, 2025
Acceptance Date November 6, 2025
Publication Date December 16, 2025
Published in Issue Year 2025 Volume: 16 Issue: 56

Cite

Vancouver Demirtaş S, Gökdemir GŞ, Şeker U. Effects of gilaburu fruit extract on cardiomyopathy in diabetic rats. Interdiscip Med J. 2025;16(56):205-12.