BibTex RIS Cite

High School Chemistry Students? and ProspectiveChemistry Teachers? Misconceptions about Ionic Bonding

Year 2011, Volume: 12 Issue: 1, 67 - 84, 01.02.2011

Abstract

Developing a sound understanding about the concept of ionic bond is fundamental to subsequent learning of various other topics related to this concept in chemistry Any misconception that students harbour about these concepts will impede their further learning The purpose of this study is to determine misconceptions held by high school chemistry students and prospective chemistry teachers about ionic bonding and to reveal that what kind of differences and similarities these misconceptions show according to the educational level and to present suggestions in the light of the findings obtained from the research With this aim a two tier true false diagnostic test is prepared making use of the literature and administered to a random sample of total of 120 students attending 1st 2nd and 3rd class of a regular high school in Malatya and 24 prospective chemistry teachers in the last year of their teacher education in a university in Turkey It was determined from the analysis of the results that high school students held similar misconceptions at all educational levels and surprisingly prospective chemistry teachers also held many misconceptions related to ionic bond concept Besides it was seen that most of these misconceptions were same or similar as to those held by high school students Based on these results some suggestions were made about teaching the concept of ionic bonding at secondary and undergraduate education level

References

  • Abimbola, I. O. (1988). The problem of terminology in the study of student conceptions in science. Science Education, 72 (2), 175-184.
  • Azizoğlu, N., Alkan, M. ve Geban, O. (2006). Undergraduate pre-service teachers’ understandings and misconceptions of phase equilibrium. Journal of Chemical Education, 83 (6), 947-953.
  • Barke, H-D., Hazari A. ve Yitbarek S. (2009). Misconceptions in chemistry: Addressing perceptions in chemical education by Springer-Verlag: Berlin, Germany, s.294.
  • Barnea, N. ve Dori, Y. J. (2000). Computerized molecular modeling: The new technology for enhance model perception among chemistry educators and learners. Chemistry Education: Research and Practice in Europe, 1, 109–120.
  • Butts, B. ve Smith, R.(1987). HSC chemistry students’understanding of the structure and properties of molecular and ionic compounds. Research in Science Education, 17, 192-201.
  • Canpolat, N., Pınarbaşı, T., Bayrakçeken, S. ve Geban Ö. (2004). Kimyadaki bazı yaygın yanlış kavramalar. Gazi Eğitim Fakültesi Dergisi, 24, 135-146.
  • Chang, J. Y. (1999). Teachers college students’ conceptions about evaporation, condensation, and boiling. Science Education, 83 (5), 511-526.
  • Coll, R. K. ve Taylor, N. (2001). Alternative conceptions of chemical bonding held by upper secondary and tertiary students, Research in Science ve Technological Education, 19 (2), 171-191.
  • Coll, R. K. ve Taylor, N. (2001b). Alternative conceptions of chemical bonding amongst senior secondary and tertiary students: Nature and origins. Teaching and Learning, 22, 48–60.
  • Coll, R. K. ve Treagust, D. F. (2001). Learner’s mental model of chemical bonding. Research in Science Education, 31, 357-382.
  • Çalik, M. ve Ayas, A. (2005).A comparison of level of understanding of eighth-grade students and science student teachers related to selected chemistry concepts, Journal of Research in Science Teaching, 42 (6), 638-667.
  • Demircioglu G., Ayas A. ve Demircioglu H. (2005). Conceptual change achieved through a new teaching program on acids and bases, Chemistry Education Research and Practice, 6 (1), 36-51.
  • Driver, R. ve Easley, J. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 61-84.
  • Duit, R. ve Treagust, D. F. (1995). Students’ conceptions and constructivist teaching approaches. In Fraser, B.J. ve Walberg, H.J. (Eds.), Improving Science Education (s. 46-69). Chicago: The University of Chicago Pres.
  • Frailich M., Kesner M. ve Hofstein A. (2009). Enhancing students’ understanding of the concept of chemical bonding by using activities provided on an interactive website, Journal of Research in Science Teaching, 46 (3), 289–310.
  • Gilbert, J. K. ve Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10, 61-98.
  • Harrison, A. G. ve Treagust, D. F. (1998). Modelling in science lessons: Are there better ways to learn with models? School Science and Mathematics, 98, 420–429.
  • Hewson, P. (1981). A conceptual change approach to learning science. European Journal of Science Education, 3 (4), 383-396.
  • Huck, S. W. ve Cornier, W. H. (1996). Reading statistics and research (2nd Ed.). New York: Harper Collins.
  • Justi, R. ve Gilbert, J. (2002). Models and modeling in chemical education. In: J.K. Gilbert, O.D. Jong, R. Justy, D.F. Treagust, ve J. H. Van Dreil (Eds.), Chemical education: Towards research-based practice. (s. 47–68). Dordrecht: Kluwer.
  • Kabapınar, F. (2003). Kavram yanılgılarının ölçülmesinde kullanılabilecek bir ölçeğin bilgi- kavrama düzeyini ölçmeyi amaçlayan ölçekten farklılıkları. Kuram ve Uygulamada Eğitim Yönetimi, 35, 398-417.
  • Levy Nahum, T., Hofstein, A., Mamlok-Naaman, R. ve Bar-Dov, Z. (2004). Can final examinations amplify students’ misconceptions in chemistry? Chemistry Education: Research and Practice in Europe, 5 (3), 301 –325.
  • Lin, H.S., Cheng, H. J. ve Lawrenz, F. (2000). The Assessment of students and teachers’ understanding of gas laws. Journal of Chemical Education, 77 (2), 235-238.
  • McCloskey, M. (1983). Intuitive physics. Scientific American, 248, 122-130.
  • Mendonça P. C. C. ve Justi R. (2011). Contributions of the model of modelling diagram to the learning of ionic bonding: Analysis of a case study, Resarch in Science Education 41 (4), 479–503.
  • Nakiboğlu, C. (2003). Instructional misconceptions of Turkish prospective chemistry teachers about atomic orbitals and hybridization. Chemistry Education: Research and Practice, 4 (2), 171-188.
  • Osborne, R. J., Bell, B. F. ve Gilbert, J. K. (1983). Science teaching and children’s view of the world. European Journal of Science Education, 5 (1), 1-14.
  • Özmen, H., Ayas, A. ve Coştu, B. (2002). Fen bilgisi öğretmen adaylarının maddenin tanecikli yapısı hakkındaki anlama seviyelerinin ve yanılgılarının belirlenmesi, Kuram ve Uygulamada Eğitim Bilimleri Dergisi, 2 (2), 507-529.
  • Pabucu, A. ve Geban Ö. (2006). Remediating misconceptions concerning chemical bonding through conceptual change text. Hacettepe University Journal of Education, 30, 184- 192.
  • Robinson W. R. (1998). An alternative framework for chemical bonding. Journal of Chemical Education. 75: 1074-1075.
  • Taber, K. S. (1994). Misunderstanding the ionic bond, Education in Chemistry, 31 (4), 100 103.
  • Taber, K. S. (1997). Student understanding of ionic bonding: molecular versus electrostatic thinking? School Science Review. 78 (285): 85-95.
  • Taber, K. S. (1998). An alternative conceptual framework from chemistry education. International Journal of Science Education, 20 (5), 597-608.
  • Taber, K. S. (1999b). Alternative frameworks in chemistry. Education in Chemistry, 36 (5), 135-137.
  • Taber, K. S. (2002). Chemical misconceptions-prevention, diagnosis and cure: Classroom resources, part 2 (Spiral-bound), London: Royal Society of Chemistry. s.85-90.
  • Taber, K. S. ve Coll, R. (2002). Chemical Bonding, in Gilbert, J. K. et al., (editors) Chemical education: Research-based practice, Dordrecht: Kluwer Academic Publishers BV, s.213-234.
  • Tan, K.-C.D. ve Treagust, D. F. (1999). Evaluating students’ understanding of chemical bonding. School Science Review, 81 (294), 75-83.
  • Van Driel, J. H. ve Verloop, N. (1999). Teachers’ knowledge of models and modelling in science. International Journal of Science Education, 21, 1141–1153.

Lise Öğrencileri ve Kimya Öğretmen Adaylarının İyonik Bağ Kavramına İlişkin Yanılgıları

Year 2011, Volume: 12 Issue: 1, 67 - 84, 01.02.2011

Abstract

İyonik bağ kavramının doğru anlaşılması, kimyada bu kavramla ilişkili çeşitli diğer konuları öğrenmede
önemlidir. Öğrencilerin bu kavramla ilgili taşıdıkları herhangi bir kavram yanılgısı sonraki öğrenmelerini
olumsuz etkileyecektir. Bu araştırmanın amacı, lise öğrencilerinin ve kimya öğretmen adaylarının iyonik bağ
kavramına ilişkin yanılgılarını saptamak ve bu yanılgıların öğrenim düzeylerine göre ne gibi farklılıklar ve
benzerlikler gösterdiğini ortaya çıkararak elde edilen bulgular doğrultusunda öneriler geliştirmektir. Bu
amaçla, hazırlanan iki aşamalı bir Doğru-Yanlış Tanı Testi Malatya’daki bir düz lisenin 1., 2. ve 3. sınıflarına
devam eden toplam 120 öğrenciye ve bir üniversitenin 24 kimya öğretmenliği son sınıf öğrencisine
uygulanmıştır. Araştırma sonucu elde edilen bulguların analizinden, lise öğrencilerinin hemen her düzeyde
benzer yanılgılara sahip olduğu ve şaşırtıcı bir şekilde kimya öğretmeni adaylarının da çok sayıda yanılgıya
sahip olduğu belirlenmiştir. Ayrıca bu yanılgıların birçoğunun lise öğrencilerinde tespit edilen yanılgılarla
aynı veya onlarla benzer olduğu da görülmüştür. Bu sonuçlara dayalı olarak iyonik bağ kavramının
ortaöğretimde ve lisans düzeyinde öğretimine ilişkin bazı önerilerde bulunulmuştur.

References

  • Abimbola, I. O. (1988). The problem of terminology in the study of student conceptions in science. Science Education, 72 (2), 175-184.
  • Azizoğlu, N., Alkan, M. ve Geban, O. (2006). Undergraduate pre-service teachers’ understandings and misconceptions of phase equilibrium. Journal of Chemical Education, 83 (6), 947-953.
  • Barke, H-D., Hazari A. ve Yitbarek S. (2009). Misconceptions in chemistry: Addressing perceptions in chemical education by Springer-Verlag: Berlin, Germany, s.294.
  • Barnea, N. ve Dori, Y. J. (2000). Computerized molecular modeling: The new technology for enhance model perception among chemistry educators and learners. Chemistry Education: Research and Practice in Europe, 1, 109–120.
  • Butts, B. ve Smith, R.(1987). HSC chemistry students’understanding of the structure and properties of molecular and ionic compounds. Research in Science Education, 17, 192-201.
  • Canpolat, N., Pınarbaşı, T., Bayrakçeken, S. ve Geban Ö. (2004). Kimyadaki bazı yaygın yanlış kavramalar. Gazi Eğitim Fakültesi Dergisi, 24, 135-146.
  • Chang, J. Y. (1999). Teachers college students’ conceptions about evaporation, condensation, and boiling. Science Education, 83 (5), 511-526.
  • Coll, R. K. ve Taylor, N. (2001). Alternative conceptions of chemical bonding held by upper secondary and tertiary students, Research in Science ve Technological Education, 19 (2), 171-191.
  • Coll, R. K. ve Taylor, N. (2001b). Alternative conceptions of chemical bonding amongst senior secondary and tertiary students: Nature and origins. Teaching and Learning, 22, 48–60.
  • Coll, R. K. ve Treagust, D. F. (2001). Learner’s mental model of chemical bonding. Research in Science Education, 31, 357-382.
  • Çalik, M. ve Ayas, A. (2005).A comparison of level of understanding of eighth-grade students and science student teachers related to selected chemistry concepts, Journal of Research in Science Teaching, 42 (6), 638-667.
  • Demircioglu G., Ayas A. ve Demircioglu H. (2005). Conceptual change achieved through a new teaching program on acids and bases, Chemistry Education Research and Practice, 6 (1), 36-51.
  • Driver, R. ve Easley, J. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 61-84.
  • Duit, R. ve Treagust, D. F. (1995). Students’ conceptions and constructivist teaching approaches. In Fraser, B.J. ve Walberg, H.J. (Eds.), Improving Science Education (s. 46-69). Chicago: The University of Chicago Pres.
  • Frailich M., Kesner M. ve Hofstein A. (2009). Enhancing students’ understanding of the concept of chemical bonding by using activities provided on an interactive website, Journal of Research in Science Teaching, 46 (3), 289–310.
  • Gilbert, J. K. ve Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10, 61-98.
  • Harrison, A. G. ve Treagust, D. F. (1998). Modelling in science lessons: Are there better ways to learn with models? School Science and Mathematics, 98, 420–429.
  • Hewson, P. (1981). A conceptual change approach to learning science. European Journal of Science Education, 3 (4), 383-396.
  • Huck, S. W. ve Cornier, W. H. (1996). Reading statistics and research (2nd Ed.). New York: Harper Collins.
  • Justi, R. ve Gilbert, J. (2002). Models and modeling in chemical education. In: J.K. Gilbert, O.D. Jong, R. Justy, D.F. Treagust, ve J. H. Van Dreil (Eds.), Chemical education: Towards research-based practice. (s. 47–68). Dordrecht: Kluwer.
  • Kabapınar, F. (2003). Kavram yanılgılarının ölçülmesinde kullanılabilecek bir ölçeğin bilgi- kavrama düzeyini ölçmeyi amaçlayan ölçekten farklılıkları. Kuram ve Uygulamada Eğitim Yönetimi, 35, 398-417.
  • Levy Nahum, T., Hofstein, A., Mamlok-Naaman, R. ve Bar-Dov, Z. (2004). Can final examinations amplify students’ misconceptions in chemistry? Chemistry Education: Research and Practice in Europe, 5 (3), 301 –325.
  • Lin, H.S., Cheng, H. J. ve Lawrenz, F. (2000). The Assessment of students and teachers’ understanding of gas laws. Journal of Chemical Education, 77 (2), 235-238.
  • McCloskey, M. (1983). Intuitive physics. Scientific American, 248, 122-130.
  • Mendonça P. C. C. ve Justi R. (2011). Contributions of the model of modelling diagram to the learning of ionic bonding: Analysis of a case study, Resarch in Science Education 41 (4), 479–503.
  • Nakiboğlu, C. (2003). Instructional misconceptions of Turkish prospective chemistry teachers about atomic orbitals and hybridization. Chemistry Education: Research and Practice, 4 (2), 171-188.
  • Osborne, R. J., Bell, B. F. ve Gilbert, J. K. (1983). Science teaching and children’s view of the world. European Journal of Science Education, 5 (1), 1-14.
  • Özmen, H., Ayas, A. ve Coştu, B. (2002). Fen bilgisi öğretmen adaylarının maddenin tanecikli yapısı hakkındaki anlama seviyelerinin ve yanılgılarının belirlenmesi, Kuram ve Uygulamada Eğitim Bilimleri Dergisi, 2 (2), 507-529.
  • Pabucu, A. ve Geban Ö. (2006). Remediating misconceptions concerning chemical bonding through conceptual change text. Hacettepe University Journal of Education, 30, 184- 192.
  • Robinson W. R. (1998). An alternative framework for chemical bonding. Journal of Chemical Education. 75: 1074-1075.
  • Taber, K. S. (1994). Misunderstanding the ionic bond, Education in Chemistry, 31 (4), 100 103.
  • Taber, K. S. (1997). Student understanding of ionic bonding: molecular versus electrostatic thinking? School Science Review. 78 (285): 85-95.
  • Taber, K. S. (1998). An alternative conceptual framework from chemistry education. International Journal of Science Education, 20 (5), 597-608.
  • Taber, K. S. (1999b). Alternative frameworks in chemistry. Education in Chemistry, 36 (5), 135-137.
  • Taber, K. S. (2002). Chemical misconceptions-prevention, diagnosis and cure: Classroom resources, part 2 (Spiral-bound), London: Royal Society of Chemistry. s.85-90.
  • Taber, K. S. ve Coll, R. (2002). Chemical Bonding, in Gilbert, J. K. et al., (editors) Chemical education: Research-based practice, Dordrecht: Kluwer Academic Publishers BV, s.213-234.
  • Tan, K.-C.D. ve Treagust, D. F. (1999). Evaluating students’ understanding of chemical bonding. School Science Review, 81 (294), 75-83.
  • Van Driel, J. H. ve Verloop, N. (1999). Teachers’ knowledge of models and modelling in science. International Journal of Science Education, 21, 1141–1153.
There are 38 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Doğan Doğan This is me

Bayram Demirci This is me

Publication Date February 1, 2011
Published in Issue Year 2011 Volume: 12 Issue: 1

Cite

APA Doğan, D., & Demirci, B. (2011). Lise Öğrencileri ve Kimya Öğretmen Adaylarının İyonik Bağ Kavramına İlişkin Yanılgıları. İnönü Üniversitesi Eğitim Fakültesi Dergisi, 12(1), 67-84.
AMA Doğan D, Demirci B. Lise Öğrencileri ve Kimya Öğretmen Adaylarının İyonik Bağ Kavramına İlişkin Yanılgıları. INUJFE. February 2011;12(1):67-84.
Chicago Doğan, Doğan, and Bayram Demirci. “Lise Öğrencileri Ve Kimya Öğretmen Adaylarının İyonik Bağ Kavramına İlişkin Yanılgıları”. İnönü Üniversitesi Eğitim Fakültesi Dergisi 12, no. 1 (February 2011): 67-84.
EndNote Doğan D, Demirci B (February 1, 2011) Lise Öğrencileri ve Kimya Öğretmen Adaylarının İyonik Bağ Kavramına İlişkin Yanılgıları. İnönü Üniversitesi Eğitim Fakültesi Dergisi 12 1 67–84.
IEEE D. Doğan and B. Demirci, “Lise Öğrencileri ve Kimya Öğretmen Adaylarının İyonik Bağ Kavramına İlişkin Yanılgıları”, INUJFE, vol. 12, no. 1, pp. 67–84, 2011.
ISNAD Doğan, Doğan - Demirci, Bayram. “Lise Öğrencileri Ve Kimya Öğretmen Adaylarının İyonik Bağ Kavramına İlişkin Yanılgıları”. İnönü Üniversitesi Eğitim Fakültesi Dergisi 12/1 (February 2011), 67-84.
JAMA Doğan D, Demirci B. Lise Öğrencileri ve Kimya Öğretmen Adaylarının İyonik Bağ Kavramına İlişkin Yanılgıları. INUJFE. 2011;12:67–84.
MLA Doğan, Doğan and Bayram Demirci. “Lise Öğrencileri Ve Kimya Öğretmen Adaylarının İyonik Bağ Kavramına İlişkin Yanılgıları”. İnönü Üniversitesi Eğitim Fakültesi Dergisi, vol. 12, no. 1, 2011, pp. 67-84.
Vancouver Doğan D, Demirci B. Lise Öğrencileri ve Kimya Öğretmen Adaylarının İyonik Bağ Kavramına İlişkin Yanılgıları. INUJFE. 2011;12(1):67-84.

2017 INUEFD  Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.