Research Article
BibTex RIS Cite

PEA GRAINS IN DRYING: UNRAVELING THE KINETICS OF HOT-AIR DRYING AND EXPLORING MATHEMATICAL MODELS FOR MOISTURE DIFFUSION

Year 2024, Volume: 44 Issue: 1, 217 - 226, 03.06.2024
https://doi.org/10.47480/isibted.1494496

Abstract

Pea drying studies were assessed to learn more about the kinetics and properties of drying in a hot-air dryer. Research was done on impact of temperatures and pre-treatments on drying behaviours. The drying rate graphs demonstrated that the entire drying procedure took place when rates were declining. To properly understand the experimental data, four mathematical models (Henderson & Pabis, Page, Wang & Singh, and Aghbashlo et al.) were used. The Page model was discovered to be the ideal one to depict peas' curves of drying. The identification of the Page model as the most suitable for depicting pea drying curves underscored the applicability in modeling drying behaviors in similar agricultural products. With Fick's second law of diffusion, effective moisture diffusivity (Deff) sorted from 2.45x10-10 to 6.55x10-10 m2/s at given temperature. Deff was expressed as a function of temperature with an Arrhenius type equation. For samples from Potas, Blanch, and Control codes, the activation energy for moisture diffusion was computed as 21.48, 22.82, and 22.32 kJ/mol, respectively. The computation of activation energy for moisture diffusion for different samples offered practical information for optimizing drying processes under various conditions. The results showed the importance of pea drying kinetics and practical implications for industry on drying efficiency and product quality.

References

  • An, D., Arntfield, S. D., Beta, T. and Cenkowski, S., 2010, Hydration Properties of Different Varieties of Canadian Field Peas (Pisum Sativum) from Different Locations, Food Res. Int., 43, 520-525, doi.org/10.1016/j.foodres.2009.09.034
  • AOAC., 1990, Official Method of Analysis, 15th edn, Association of Official Analytical Chemists, Arlington, VA.
  • Brar, H. S., Kaur, P., Subramanian, J., Nair, G. R. and Singh, A., 2020, Effect of Chemical Pretreatment on Drying Kinetics and Physiochemical Characteristics of Yellow European Plums. Int. J. Fruit Sci., 20(Sup. 2), 252-279, doi.org/10.1080/15538362.2020.1717403
  • Burande, R. R., Kumbhar, B. K., Ghosh, P. K. and Jayas, D. S., 2008, Optimization of Fluidized Bed Drying Process of Green Peas Using Response Surface Methodology. Dry. Technol., 26, 920-930, dx.doi.org/10.1080/07373930802142739
  • Crank, J., 1975, The Mathematics of Diffusion. London: Oxford University Press.
  • Darvishi, H., 2017, Quality, Performance Analysis, Mass Transfer Parameters and Modeling of Drying Kinetics of Soybean. Brazilian J. Chem.Eng., 34, 143-148, doi.org/10.1590/0104-6632.20170341s20150509
  • Demirpolat, A. B., Aydoğmuş, E. and Arslanoğlu, H., 2022, Drying Behavior for Ocimum Basilicum Lamiaceae with the New System: Exergy Analysis and RSM Modeling. Biomass Convers. Biorefinery., 12, 515–526, doi.org/10.1007/s13399-021-02010-x
  • Doymaz, I., 2011, Drying of Pomegranate Arils and Selection of a Suitable Drying Model. Food Biophys., 6, 461-467, dx.doi.org/10.1007/s11483-011-9226-z
  • Doymaz, I. and Kocayigit, F., 2011, Drying and Rehydration Behaviors of Convection Drying of Green Peas. Dry. Technol., 29, 1273-1282, dx.doi.org/10.1080/07373937.2011.591713
  • Doymaz, I., 2013, Experimental Study on Drying of Pear Slices in a Convective Dryer. Int. J. Food Sci., Technol., 48, 1909-1915, dx.doi.org/10.1111/ijfs.12170
  • FAO, Food and Agricultural Organization Statistica Database (2020). Available at: http://faostat3.fao.org/download/Q/QC/E (Accessed March 04, 2020).
  • Honarvar, B., Mowla, D. and Safekori, A. A., 2011, Physical Properties of Green Pea in an Inert Medium FBD Dryer Assisted by IR Heating. Iranian J. Chem. Chem. Eng., 30(1), 107-118.
  • Jadhav, D. B., Visavale, G. L., Sutar, N., Annapure, U. S. and Thorat, B. N., 2010, Studies on Solar Cabinet Drying of Green Peas (Pisum Sativum). Dry. Technol., 28, 600-607, doi.org/10.1080/07373931003788064
  • Karacabey, E., Baltacioglu, C., Cevik, M. and Kalkan, H., 2016, Optimization of Microwave-Assisted Drying of Jerusalem Artichokes (Helianthus Tuberosus L.) by Response Surface Methodology and Genetic Algorithm. Italian J. Food Sci., 28, 121-130, dx.doi.org/10.14674/1120-1770/ijfs.v466
  • Kaur, H. and Bawa, A. S., 2002, Studies on Fluidized Bed Drying of Peas. J. Food Sci. Technol., 39, 272–275.
  • Kaveh, M., Abbaspour-Gilandeh, Y. and Nowacka, M., 2021, Comparison of Different Drying Techniques and Their Carbon Emissions in Green Peas. Chem. Eng. Process.: Process Intensif., 160, 108274, doi.org/10.1016/j.cep.2020.108274
  • Li, W., Yuan, L., Xiao, X. and Yang, X., 2016, Dehydration of Kiwifruit (Actinidia Deliciosa) Slices Using Heat Pipe Combined with Impingement Technology. Int. J. Food Eng., 12, 265-276, doi.org/10.1515/ijfe-2015-0165
  • Pandey, O. P., Mishra, B. K. and Misra, A., 2019, Comparative Study of Green Peas Using with Blanching & Without Blanching Techniques. Inf. Proces. Agric., 6, 285-296, doi.org/10.1016/j.inpa.2018.10.002
  • Pardeshi, I. L., Arora, S. and Borker, P. A., 2009, Thin-layer Drying of Green Peas and Selection of a Suitable Thin-Layer Drying Model. Dry. Technol., 27, 288-295, dx.doi.org/10.1080/07373930802606451
  • Ponkham, K., Meeso, N., Soponronnarit, S. and Siriamornpun, S., 2012, Modeling of Combined Far-Infrared Radiation and Air Drying of a Ring Shaped-Pineapple with/without Shrinkage. Food Bioprod. Proces., 90, 155-164, doi.org/10.1016/j.fbp.2011.02.008
  • Senadeera, W., Bhandari, B. R., Young, G. and Wijesinghe, B., 2003, Influence of Shapes of Selected Vegetable Materials on Drying Kinetics During Fluidized Bed Drying. J. Food Eng., 58, 277-283, doi.org/10.1016/S0260-8774(02)00386-2
  • Simal, S., Mulet, A., Tarrazo, J. and Rossello, C., 1996, Drying Models for Green Peas. Food Chem., 55, 121-128, doi.org/10.1016/0308-8146(95)00074-7
  • Skulinová, M., Kadlec, P., Kaasová, J., Dostálová, J., Zátopková, M., Hosnedl, V. and Hrachovinová, J., 2011, Microwave Treatment and Drying of Germinated Pea. Czech J. Food Sci., 20(1), 23–30, doi.org/10.17221/3505-cjfs
  • Tao, Z., Yang, Z., Yu, F. and Yang, Z., 2018, Effect of Ultrasound on Heat Pump Drying Characteristics of Pea Seeds. Int. J. Food Eng., 14(11-12), 20180204, doi.org/10.1515/ijfe-2018-0204
  • Taskin, O., Izli, N. and Vardar, A., 2016, Analysis on Photovoltaic Energy-Assisted Drying of Green Peas. Int. J. Photoenerg., 3814262, doi.org/10.1155/2016/3814262
  • Taşova, M., 2019, Effect on the Effective Diffusion and Activation Energy Values of Pea (Pisum sativum L.) Grains of Drying Temperature. ISVOS Journal, 3(1), 8–13.
  • Yang, Z., Li, X., Tao, Z., Luo, N. and Yu, F., 2018, Ultrasound Assisted Heat Pump Drying of Pea Seed. Dry. Technol., 36, 1958-1969, dx.doi.org/10.1080/07373937.2018.1430041
  • Zhu, A., 2018, The Convective Hot Air Drying of Lactuca Sative Slices. Int. J. Green Energ., 15, 201-207, dx.doi.org/10.1080/15435075.2018.1434523
  • Zogzas, N. P., Maroulis, Z. B. and Marinos-Kouris, D., 1996, Moisture Diffusivity Data Compilation in Foodstuffs. Dry. Technol., 14, 2225-2253, doi.org/10.1080/07373939608917205

BEZELYE TANELERİNİN KURUTULMASI: SICAK HAVA KURUTMA KİNETİĞİNİN ÇÖZÜMLENMESİ VE NEM DİFÜZYONU İÇİN MATEMATİKSEL MODELLERİN İNCELENMESİ

Year 2024, Volume: 44 Issue: 1, 217 - 226, 03.06.2024
https://doi.org/10.47480/isibted.1494496

Abstract

Sıcak hava kurutucusunda kurutmanın kinetiği ve özellikleri hakkında daha fazla bilgi edinmek için bezelye kurutma çalışmaları değerlendirilmiştir. Sıcaklıkların ve ön işlemlerin kurutma davranışları üzerindeki etkisi üzerine araştırma yapılmıştır. Kurutma hızı grafikleri, kurutma prosedürünün tamamının hızlar düşerken gerçekleştiğini göstermiştir. Deneysel verileri doğru bir şekilde anlamak için dört matematiksel model (Henderson & Pabis, Page, Wang & Singh, ve Aghbashlo vd.) kullanılmıştır. Page modelinin, bezelyelerin kuruma eğrilerini tasvir etmek için ideal model olduğu keşfedilmiştir. Page modelinin bezelye kuruma eğrilerini tasvir etmek için en uygun model olarak tanımlanması, benzer tarım ürünlerinde kuruma davranışlarının modellenmesinde uygulanabilirliğin altını çizmiştir. Fick'in ikinci difüzyon yasasına göre, efektif nem difüzivitesi (Deff), belirli sıcaklıkta 2.45x10-10 to 6.55x10-10 m2/s arasında sıralanmıştır. Deff, Arrhenius tipi bir denklemle sıcaklığın bir fonksiyonu olarak ifade edilmiştir. Potas, Blanch ve Kontrol kodlarından alınan numuneler için nem difüzyonuna yönelik aktivasyon enerjisi sırasıyla 21.48, 22.82 ve 22.32 kJ/mol olarak hesaplanmıştır. Farklı numuneler için nem difüzyonuna yönelik aktivasyon enerjisinin hesaplanması, çeşitli koşullar altında kurutma proseslerinin optimize edilmesi için pratik bilgiler sunmuştur. Sonuçlar, bezelye kurutma kinetiğinin önemini ve endüstri için kurutma verimliliği ve ürün kalitesi üzerindeki pratik sonuçlarını göstermiştir.

References

  • An, D., Arntfield, S. D., Beta, T. and Cenkowski, S., 2010, Hydration Properties of Different Varieties of Canadian Field Peas (Pisum Sativum) from Different Locations, Food Res. Int., 43, 520-525, doi.org/10.1016/j.foodres.2009.09.034
  • AOAC., 1990, Official Method of Analysis, 15th edn, Association of Official Analytical Chemists, Arlington, VA.
  • Brar, H. S., Kaur, P., Subramanian, J., Nair, G. R. and Singh, A., 2020, Effect of Chemical Pretreatment on Drying Kinetics and Physiochemical Characteristics of Yellow European Plums. Int. J. Fruit Sci., 20(Sup. 2), 252-279, doi.org/10.1080/15538362.2020.1717403
  • Burande, R. R., Kumbhar, B. K., Ghosh, P. K. and Jayas, D. S., 2008, Optimization of Fluidized Bed Drying Process of Green Peas Using Response Surface Methodology. Dry. Technol., 26, 920-930, dx.doi.org/10.1080/07373930802142739
  • Crank, J., 1975, The Mathematics of Diffusion. London: Oxford University Press.
  • Darvishi, H., 2017, Quality, Performance Analysis, Mass Transfer Parameters and Modeling of Drying Kinetics of Soybean. Brazilian J. Chem.Eng., 34, 143-148, doi.org/10.1590/0104-6632.20170341s20150509
  • Demirpolat, A. B., Aydoğmuş, E. and Arslanoğlu, H., 2022, Drying Behavior for Ocimum Basilicum Lamiaceae with the New System: Exergy Analysis and RSM Modeling. Biomass Convers. Biorefinery., 12, 515–526, doi.org/10.1007/s13399-021-02010-x
  • Doymaz, I., 2011, Drying of Pomegranate Arils and Selection of a Suitable Drying Model. Food Biophys., 6, 461-467, dx.doi.org/10.1007/s11483-011-9226-z
  • Doymaz, I. and Kocayigit, F., 2011, Drying and Rehydration Behaviors of Convection Drying of Green Peas. Dry. Technol., 29, 1273-1282, dx.doi.org/10.1080/07373937.2011.591713
  • Doymaz, I., 2013, Experimental Study on Drying of Pear Slices in a Convective Dryer. Int. J. Food Sci., Technol., 48, 1909-1915, dx.doi.org/10.1111/ijfs.12170
  • FAO, Food and Agricultural Organization Statistica Database (2020). Available at: http://faostat3.fao.org/download/Q/QC/E (Accessed March 04, 2020).
  • Honarvar, B., Mowla, D. and Safekori, A. A., 2011, Physical Properties of Green Pea in an Inert Medium FBD Dryer Assisted by IR Heating. Iranian J. Chem. Chem. Eng., 30(1), 107-118.
  • Jadhav, D. B., Visavale, G. L., Sutar, N., Annapure, U. S. and Thorat, B. N., 2010, Studies on Solar Cabinet Drying of Green Peas (Pisum Sativum). Dry. Technol., 28, 600-607, doi.org/10.1080/07373931003788064
  • Karacabey, E., Baltacioglu, C., Cevik, M. and Kalkan, H., 2016, Optimization of Microwave-Assisted Drying of Jerusalem Artichokes (Helianthus Tuberosus L.) by Response Surface Methodology and Genetic Algorithm. Italian J. Food Sci., 28, 121-130, dx.doi.org/10.14674/1120-1770/ijfs.v466
  • Kaur, H. and Bawa, A. S., 2002, Studies on Fluidized Bed Drying of Peas. J. Food Sci. Technol., 39, 272–275.
  • Kaveh, M., Abbaspour-Gilandeh, Y. and Nowacka, M., 2021, Comparison of Different Drying Techniques and Their Carbon Emissions in Green Peas. Chem. Eng. Process.: Process Intensif., 160, 108274, doi.org/10.1016/j.cep.2020.108274
  • Li, W., Yuan, L., Xiao, X. and Yang, X., 2016, Dehydration of Kiwifruit (Actinidia Deliciosa) Slices Using Heat Pipe Combined with Impingement Technology. Int. J. Food Eng., 12, 265-276, doi.org/10.1515/ijfe-2015-0165
  • Pandey, O. P., Mishra, B. K. and Misra, A., 2019, Comparative Study of Green Peas Using with Blanching & Without Blanching Techniques. Inf. Proces. Agric., 6, 285-296, doi.org/10.1016/j.inpa.2018.10.002
  • Pardeshi, I. L., Arora, S. and Borker, P. A., 2009, Thin-layer Drying of Green Peas and Selection of a Suitable Thin-Layer Drying Model. Dry. Technol., 27, 288-295, dx.doi.org/10.1080/07373930802606451
  • Ponkham, K., Meeso, N., Soponronnarit, S. and Siriamornpun, S., 2012, Modeling of Combined Far-Infrared Radiation and Air Drying of a Ring Shaped-Pineapple with/without Shrinkage. Food Bioprod. Proces., 90, 155-164, doi.org/10.1016/j.fbp.2011.02.008
  • Senadeera, W., Bhandari, B. R., Young, G. and Wijesinghe, B., 2003, Influence of Shapes of Selected Vegetable Materials on Drying Kinetics During Fluidized Bed Drying. J. Food Eng., 58, 277-283, doi.org/10.1016/S0260-8774(02)00386-2
  • Simal, S., Mulet, A., Tarrazo, J. and Rossello, C., 1996, Drying Models for Green Peas. Food Chem., 55, 121-128, doi.org/10.1016/0308-8146(95)00074-7
  • Skulinová, M., Kadlec, P., Kaasová, J., Dostálová, J., Zátopková, M., Hosnedl, V. and Hrachovinová, J., 2011, Microwave Treatment and Drying of Germinated Pea. Czech J. Food Sci., 20(1), 23–30, doi.org/10.17221/3505-cjfs
  • Tao, Z., Yang, Z., Yu, F. and Yang, Z., 2018, Effect of Ultrasound on Heat Pump Drying Characteristics of Pea Seeds. Int. J. Food Eng., 14(11-12), 20180204, doi.org/10.1515/ijfe-2018-0204
  • Taskin, O., Izli, N. and Vardar, A., 2016, Analysis on Photovoltaic Energy-Assisted Drying of Green Peas. Int. J. Photoenerg., 3814262, doi.org/10.1155/2016/3814262
  • Taşova, M., 2019, Effect on the Effective Diffusion and Activation Energy Values of Pea (Pisum sativum L.) Grains of Drying Temperature. ISVOS Journal, 3(1), 8–13.
  • Yang, Z., Li, X., Tao, Z., Luo, N. and Yu, F., 2018, Ultrasound Assisted Heat Pump Drying of Pea Seed. Dry. Technol., 36, 1958-1969, dx.doi.org/10.1080/07373937.2018.1430041
  • Zhu, A., 2018, The Convective Hot Air Drying of Lactuca Sative Slices. Int. J. Green Energ., 15, 201-207, dx.doi.org/10.1080/15435075.2018.1434523
  • Zogzas, N. P., Maroulis, Z. B. and Marinos-Kouris, D., 1996, Moisture Diffusivity Data Compilation in Foodstuffs. Dry. Technol., 14, 2225-2253, doi.org/10.1080/07373939608917205
There are 29 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Article
Authors

İbrahim Doymaz 0000-0002-4429-6443

Nil Acaralı 0000-0003-4618-1540

Publication Date June 3, 2024
Submission Date October 11, 2023
Acceptance Date April 21, 2024
Published in Issue Year 2024 Volume: 44 Issue: 1

Cite

APA Doymaz, İ., & Acaralı, N. (2024). PEA GRAINS IN DRYING: UNRAVELING THE KINETICS OF HOT-AIR DRYING AND EXPLORING MATHEMATICAL MODELS FOR MOISTURE DIFFUSION. Isı Bilimi Ve Tekniği Dergisi, 44(1), 217-226. https://doi.org/10.47480/isibted.1494496