Research Article
BibTex RIS Cite

Metal Malzeme Yüzeylerine Atmosferik Basınçlı Plazma Uygulamasının Yapıştırma Bağlarına Etkisi

Year 2022, Volume: 3 Issue: 1, 1 - 15, 30.06.2022

Abstract

Vakum altında yapılan plazma uygulamasının etkileri uzun zamandır bilinmesine karşın nispeten daha yeni süreçler olan atmosferik basınçlı plazma (ABP) uygulamaları günümüzde birçok alanda ön plana çıkmaya başlamıştır. ABP uygulamaları hem hızlı hem de kolay-stabil şekilde malzeme yüzeylerine yapılabilmektedir. ABP ile malzemelerin yüzey enerjileri arttırılmakta ve yapıştırma, yüzey boyama, kaplama, hijyen sağlama gibi uygulamalar daha uygun ve yüksek dayanımlı olarak ortaya konulabilmektedir. Özellikle metal malzemelerin yapıştırılması işleminde daha detaylı araştırmalar yapılarak süreç parametrelerinin ortaya konulmasına ihtiyaç duyulmaktadır. Bu çalışmada da H300LAD (galvaniz kaplamalı) ve H300LA (kaplamasız)malzemeler üzerinde, yapışma dayanımının ABP uygulaması sonucundaki değişimi araştırılmıştır. Deneyler öncesinde metal yüzeylerin enerjilerinin değişimleri su damlası ve mürekkep denemeleri ile ortaya konulmuştur. Sonuçlar, ABP uygulamasının metal yapıştırma işleminde iyileşmeler sağlayabileceğini göstermektedir.

References

  • Acero, M.A.C., Lopez, L.C. (2017). Effect of plasma treatment in Aluminum and composites bonding joints: Shear load tests results, Procedia Manufacturing 13, 183–189.
  • Adamson, A.W. (1990). Physical Chemistry of Surfaces 5th Edition; Wiley Interscience; New York, 777.
  • Aydar, A.Y. (2012). Determination of Contact Angle of Olive oil and Canola Oil on a PTFE surface at Elevated Temperatures. Master of Science Thesis, NCSU.
  • Bonitz, M. (2016). Contribution to Plasma Physics, WILEY-VCH Verlag GmbH and Co. KGaA, 56:2, 47-53, Weinheim.
  • Boudou, J.P., Paredes, J.I., Cuesta, A., Martinez-Alonso, A., Tascon, J.M.D. (2003). Oxygen plasma modification of pitch-based isotropic carbon fibres, Carbon 41, 41-56.
  • Brzhozovskii, B., Brovkova, M., Gots, I., Zinina, H., Martynov, V. (2019). Study of the low-temperature plasma treatment effect on the structure, physical and chemical surface characteristics of 40X13 steel, Heliyon 5, e02388.
  • Dallı, E. (2013). Atmosferik Basınç Soğuk Plazma Jetler. Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi, Eskişehir.
  • Erde G-Force. (2021, 18 Ağustos). Erişim adresi: http://erdesi.com.tr/wp-content/uploads/2017/11/erde-g-force-TDS.pdf
  • Kim, J.-S., Kim, Y.-E., Lee, K.-H. (2004). Effects of atmospheric plasma treatment on the interfacial characteristics of ethylene–vinyl acetate/polyurethane composites, Journal of Colloid and Interface Science, 271(1), 187-191.
  • Kim, M.C., Song, D.K., Shin, H.S., Baeg, S.-H., Kim, G.S., Boo, J.-H., Han, J.G., Yang, S.H. (2003). Surface modification for hydrophilic property of stainless steel treated by atmospheric-pressure plasma jet, Surface and Coatings Technology 171, 312–316.
  • Ku, J.H., Jung, I.H., Rhee, K.Y., Park, S.J. (2013). Atmospheric pressure plasma treatment of polypropylene to improve the bonding strength of polypropylene/aluminum composites, Composites: Part B 45, 1282–1287.
  • Küçük, D., Ercan, U. K., Köseoğlu, S. (2018). The fourth state of matter: Plasma and applications of atmospheric pressure cold plasmas ın dentistry. Yeditepe Dental Journal, 14(3), 125–136.
  • Latifi, A., Imani, M., Khorasani, M.T., Joupari, M.D. (2014). Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate, Applied Surface Science 320, 471–481.
  • Lin, J.-W., Chang, H.-C. (2011). Surface modification of SUS304 stainless steel by atmospheric pressure Ar/N2/O2 plasma, Nuclear Instruments and Methods in Physics Research B 269, 1801–1808.
  • Lynch, J.B., Spence, P.D., Baker, D.E., Postlethwaite, T.A. (1999). Atmospheric pressure plasma treatment of polyethylene via a pulse dielectric barrier discharge: Comparison using various gas compositions versus corona discharge in air, Journal of Applied Polymer Science 71, 319-331.
  • Marocol. (2021, 18 Ağustos). Erişim adresi: https://www.bostik.com/uk/en/catalog/product/construction/emea/uk/product-marocol-18576/
  • Maroofi, A., Safa, N.N., Ghomi, H. (2020). Atmospheric air plasma jet for improvement of paint adhesion to aluminium surface in industrial applications, Internacional Journal of Adhesion & Adhesives 98, 102554.
  • Mirsasaani, S.S., Manjili, H.M., Baheiraei, N. (2011). Dental Nanocomposites, Advances in Diverse Industrial Applications of Nanocomposites Eds.; Boreddy Reddy: InTech, Chapter 19.
  • Mui, T.S.M., Silva, L.L.G., Prysiazhnyi, V., Kostov, K.G. (2017). Surface modification of aluminium alloys by atmospheric pressure plasma treatments for enhancement of their adhesion properties, Surface & Coatings Technology 312, 32–36.
  • Øiseth, S.K., Krozer, A., Kasemo, B., Lausmaa, J. (2002). Surface modification of spin-coated high-density polyethylene films by argon and oxygen glow discharge plasma treatments, Applied Surface Science 202, 92-103.
  • Park, S.-J., Kim, B.-J. (2004). Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers, Journal of Colloid and Interface Science, 275(2), 590-595.
  • Polini, W., Sorrentino, L. (2003). Improving the wettability of 2024 aluminium alloy by means of cold plasma treatment, Applied Surface Science 21 232–242.
  • Preedy, E.C., Brousseau, E., Evans, S.L., Perni, S., Prokopovich, P. (2014). Adhesive forces and surface properties of cold gas plasma treated UHMWPE, Colloids and Surfaces A: Physicochem. Eng. Aspects 460, 83–89.
  • Prysiazhnyi, V., Svoboda, T., Dvorak, M., Klima, M. (2012). Aluminum surface treatment by the RF plasma pencil, Surface & Coatings Technology 206, 4140–4145.
  • Shenton, M.J., Stevens, G.C., Wright, N.P., Duan, X. J. (2002). Chemical-surface modification of polymers using atmospheric pressure nonequilibrium plasmas and comparisons with vacuum plasmas, Journal of Polymer Science Part A Polymer Chemistry 40, 95-109.
  • Tang, S., Lu, N., Myung, S.-W., Choi, H.-S. (2006). Enhancement of adhesion strength between two AISI 316 L stainless steel plates through atmospheric pressure plasma treatment, Surface & Coatings Technology 200, 5220 – 5228.
  • Williams, D.F., Kellar, E.J.C., Jesson, D.A., Watts, J.F. (2017). Surface analysis of 316 stainless steel treated with cold atmospheric plasma, Applied Surface Science 403, 240–247.
Year 2022, Volume: 3 Issue: 1, 1 - 15, 30.06.2022

Abstract

References

  • Acero, M.A.C., Lopez, L.C. (2017). Effect of plasma treatment in Aluminum and composites bonding joints: Shear load tests results, Procedia Manufacturing 13, 183–189.
  • Adamson, A.W. (1990). Physical Chemistry of Surfaces 5th Edition; Wiley Interscience; New York, 777.
  • Aydar, A.Y. (2012). Determination of Contact Angle of Olive oil and Canola Oil on a PTFE surface at Elevated Temperatures. Master of Science Thesis, NCSU.
  • Bonitz, M. (2016). Contribution to Plasma Physics, WILEY-VCH Verlag GmbH and Co. KGaA, 56:2, 47-53, Weinheim.
  • Boudou, J.P., Paredes, J.I., Cuesta, A., Martinez-Alonso, A., Tascon, J.M.D. (2003). Oxygen plasma modification of pitch-based isotropic carbon fibres, Carbon 41, 41-56.
  • Brzhozovskii, B., Brovkova, M., Gots, I., Zinina, H., Martynov, V. (2019). Study of the low-temperature plasma treatment effect on the structure, physical and chemical surface characteristics of 40X13 steel, Heliyon 5, e02388.
  • Dallı, E. (2013). Atmosferik Basınç Soğuk Plazma Jetler. Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi, Eskişehir.
  • Erde G-Force. (2021, 18 Ağustos). Erişim adresi: http://erdesi.com.tr/wp-content/uploads/2017/11/erde-g-force-TDS.pdf
  • Kim, J.-S., Kim, Y.-E., Lee, K.-H. (2004). Effects of atmospheric plasma treatment on the interfacial characteristics of ethylene–vinyl acetate/polyurethane composites, Journal of Colloid and Interface Science, 271(1), 187-191.
  • Kim, M.C., Song, D.K., Shin, H.S., Baeg, S.-H., Kim, G.S., Boo, J.-H., Han, J.G., Yang, S.H. (2003). Surface modification for hydrophilic property of stainless steel treated by atmospheric-pressure plasma jet, Surface and Coatings Technology 171, 312–316.
  • Ku, J.H., Jung, I.H., Rhee, K.Y., Park, S.J. (2013). Atmospheric pressure plasma treatment of polypropylene to improve the bonding strength of polypropylene/aluminum composites, Composites: Part B 45, 1282–1287.
  • Küçük, D., Ercan, U. K., Köseoğlu, S. (2018). The fourth state of matter: Plasma and applications of atmospheric pressure cold plasmas ın dentistry. Yeditepe Dental Journal, 14(3), 125–136.
  • Latifi, A., Imani, M., Khorasani, M.T., Joupari, M.D. (2014). Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate, Applied Surface Science 320, 471–481.
  • Lin, J.-W., Chang, H.-C. (2011). Surface modification of SUS304 stainless steel by atmospheric pressure Ar/N2/O2 plasma, Nuclear Instruments and Methods in Physics Research B 269, 1801–1808.
  • Lynch, J.B., Spence, P.D., Baker, D.E., Postlethwaite, T.A. (1999). Atmospheric pressure plasma treatment of polyethylene via a pulse dielectric barrier discharge: Comparison using various gas compositions versus corona discharge in air, Journal of Applied Polymer Science 71, 319-331.
  • Marocol. (2021, 18 Ağustos). Erişim adresi: https://www.bostik.com/uk/en/catalog/product/construction/emea/uk/product-marocol-18576/
  • Maroofi, A., Safa, N.N., Ghomi, H. (2020). Atmospheric air plasma jet for improvement of paint adhesion to aluminium surface in industrial applications, Internacional Journal of Adhesion & Adhesives 98, 102554.
  • Mirsasaani, S.S., Manjili, H.M., Baheiraei, N. (2011). Dental Nanocomposites, Advances in Diverse Industrial Applications of Nanocomposites Eds.; Boreddy Reddy: InTech, Chapter 19.
  • Mui, T.S.M., Silva, L.L.G., Prysiazhnyi, V., Kostov, K.G. (2017). Surface modification of aluminium alloys by atmospheric pressure plasma treatments for enhancement of their adhesion properties, Surface & Coatings Technology 312, 32–36.
  • Øiseth, S.K., Krozer, A., Kasemo, B., Lausmaa, J. (2002). Surface modification of spin-coated high-density polyethylene films by argon and oxygen glow discharge plasma treatments, Applied Surface Science 202, 92-103.
  • Park, S.-J., Kim, B.-J. (2004). Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers, Journal of Colloid and Interface Science, 275(2), 590-595.
  • Polini, W., Sorrentino, L. (2003). Improving the wettability of 2024 aluminium alloy by means of cold plasma treatment, Applied Surface Science 21 232–242.
  • Preedy, E.C., Brousseau, E., Evans, S.L., Perni, S., Prokopovich, P. (2014). Adhesive forces and surface properties of cold gas plasma treated UHMWPE, Colloids and Surfaces A: Physicochem. Eng. Aspects 460, 83–89.
  • Prysiazhnyi, V., Svoboda, T., Dvorak, M., Klima, M. (2012). Aluminum surface treatment by the RF plasma pencil, Surface & Coatings Technology 206, 4140–4145.
  • Shenton, M.J., Stevens, G.C., Wright, N.P., Duan, X. J. (2002). Chemical-surface modification of polymers using atmospheric pressure nonequilibrium plasmas and comparisons with vacuum plasmas, Journal of Polymer Science Part A Polymer Chemistry 40, 95-109.
  • Tang, S., Lu, N., Myung, S.-W., Choi, H.-S. (2006). Enhancement of adhesion strength between two AISI 316 L stainless steel plates through atmospheric pressure plasma treatment, Surface & Coatings Technology 200, 5220 – 5228.
  • Williams, D.F., Kellar, E.J.C., Jesson, D.A., Watts, J.F. (2017). Surface analysis of 316 stainless steel treated with cold atmospheric plasma, Applied Surface Science 403, 240–247.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Öyküm Kanbir 0000-0002-1492-4736

Emel Taşyakan 0000-0002-3548-8742

Kadir Çavdar 0000-0001-9126-0315

Publication Date June 30, 2022
Published in Issue Year 2022 Volume: 3 Issue: 1

Cite

APA Kanbir, Ö., Taşyakan, E., & Çavdar, K. (2022). Metal Malzeme Yüzeylerine Atmosferik Basınçlı Plazma Uygulamasının Yapıştırma Bağlarına Etkisi. Uluslararası Bilim Teknoloji Ve Tasarım Dergisi, 3(1), 1-15.
AMA Kanbir Ö, Taşyakan E, Çavdar K. Metal Malzeme Yüzeylerine Atmosferik Basınçlı Plazma Uygulamasının Yapıştırma Bağlarına Etkisi. Uluslararası Bilim Teknoloji ve Tasarım Dergisi. June 2022;3(1):1-15.
Chicago Kanbir, Öyküm, Emel Taşyakan, and Kadir Çavdar. “Metal Malzeme Yüzeylerine Atmosferik Basınçlı Plazma Uygulamasının Yapıştırma Bağlarına Etkisi”. Uluslararası Bilim Teknoloji Ve Tasarım Dergisi 3, no. 1 (June 2022): 1-15.
EndNote Kanbir Ö, Taşyakan E, Çavdar K (June 1, 2022) Metal Malzeme Yüzeylerine Atmosferik Basınçlı Plazma Uygulamasının Yapıştırma Bağlarına Etkisi. Uluslararası Bilim Teknoloji ve Tasarım Dergisi 3 1 1–15.
IEEE Ö. Kanbir, E. Taşyakan, and K. Çavdar, “Metal Malzeme Yüzeylerine Atmosferik Basınçlı Plazma Uygulamasının Yapıştırma Bağlarına Etkisi”, Uluslararası Bilim Teknoloji ve Tasarım Dergisi, vol. 3, no. 1, pp. 1–15, 2022.
ISNAD Kanbir, Öyküm et al. “Metal Malzeme Yüzeylerine Atmosferik Basınçlı Plazma Uygulamasının Yapıştırma Bağlarına Etkisi”. Uluslararası Bilim Teknoloji ve Tasarım Dergisi 3/1 (June 2022), 1-15.
JAMA Kanbir Ö, Taşyakan E, Çavdar K. Metal Malzeme Yüzeylerine Atmosferik Basınçlı Plazma Uygulamasının Yapıştırma Bağlarına Etkisi. Uluslararası Bilim Teknoloji ve Tasarım Dergisi. 2022;3:1–15.
MLA Kanbir, Öyküm et al. “Metal Malzeme Yüzeylerine Atmosferik Basınçlı Plazma Uygulamasının Yapıştırma Bağlarına Etkisi”. Uluslararası Bilim Teknoloji Ve Tasarım Dergisi, vol. 3, no. 1, 2022, pp. 1-15.
Vancouver Kanbir Ö, Taşyakan E, Çavdar K. Metal Malzeme Yüzeylerine Atmosferik Basınçlı Plazma Uygulamasının Yapıştırma Bağlarına Etkisi. Uluslararası Bilim Teknoloji ve Tasarım Dergisi. 2022;3(1):1-15.