Research Article
BibTex RIS Cite

Matematik Öğretmen Adaylarının Gözünden Öğretme ve Öğrenme Süreci: Cebirsel Eşitsizlikler Örneği

Year 2024, Volume: 5 Issue: 2, 67 - 87
https://doi.org/10.52911/itall.1552703

Abstract

Bu çalışma, matematik öğretmeni adaylarının eşitsizlikleri öğrenme ve öğretme sürecine ilişkin görüşlerini araştırmaktadır. Çalışmada nitel araştırma yöntemlerinden fenomenoloji kullanılmıştır. Çalışmanın katılımcılarını 2021-2022 eğitim-öğretim yılı bahar döneminde Türkiye'nin İç Anadolu Bölgesi'ndeki bir üniversitenin İlköğretim Matematik Öğretmenliği Programı son sınıfında öğrenim gören 6 ortaokul matematik öğretmeni adayı oluşturmaktadır. Veriler yarı yapılandırılmış görüşmeler yoluyla toplanmıştır. Elde edilen veriler nitel analiz yöntemlerinden biri olan içerik analizi kullanılarak analiz edilmiştir. Ortaokul matematik öğretmeni adayları ile yapılan görüşmelerin analizi sonucunda üç ana tema elde edilmiştir. Eşitsizliklerin öğretimi, öğrencilerin eşitsizlikler konusunda yaşayabilecekleri zorluklar ve zorlukların üstesinden gelmek için kullanılabilecek yöntemler ortaya çıkan ana kategoriler olmuştur. Bulguların sunumunda öğretmen adaylarının görüşlerinden doğrudan alıntılara da yer verilmiştir. Çalışma sonucunda, matematik öğretmeni adaylarının anlamlı öğrenme ve zorlukların üstesinden gelme konusundaki bilgi ve deneyimlerini geliştirmek için öğretmen eğitimi programlarında daha fazla uygulamaya yer verilmesi önerilmektedir.

References

  • Abu Mokh, R., Othman, A., & Shahbari, J. A. (2019). Mistakes made by students with logical connectives when solving equations and inequalities, and how teachers assess these mistakes. International Journal of Research in Education and Science, 5(2), 421–428.
  • Altun, M. (2001). İlköğretim ikinci kademede (6, 7 ve 8. sınıflarda) Matematik öğretimi. [Mathematics teaching in the second level of elementary education (6th, 7th and 8th grades)]. Alfa Yayınları.
  • Argün, Z., & Arıkan, A., Bulut, S., Halıcıoğlu, S. (2014). Temel matematik kavramların künyesi [A vocabulary of basic mathematical concepts]. Gazi Kitabevi.
  • Baki, A. (2008). Kuramdan uygulamaya matematik eğitimi [Mathematics education from theory to practice]. Harf Eğitim Yayınları.
  • Baki, A. (2014). Matematik tarihi ve felsefesi [History and philosophy of mathematics]. Pegem Akademi.
  • Blanco, L. J., & Garrote, M. (2007). Difficulties in learning inequalities in students of the first year of pre-university education in Spain. Eurasia Journal of Mathematics, Science and Technology Education, 3(3), 22–229.
  • Clements, D. H. (1999). ‘Concrete’ manipulatives, concrete ideas. Contemporary Issues in Early Childhood, 1(1), 45–60.
  • Clements, D. H., & McMillen, S. (1996). Rethinking concrete manipulatives. Teaching Children Mathematics, 2(85), 270–279.
  • Creswell, J. W. (2013). Qualitative inquiry and research design: Choosing among five approaches (Third Ed.). Sage Publications.
  • Çoban, K., & Yenilmez, K. (2020). Sekizinci sınıf öğrencilerinin eşitsizlikler konusunda karşılaştıkları güçlüklerin incelenmesi [Investigation of the difficulties encountered by eighth grade students on inequalities]. Eskişehir Osmangazi Üniversitesi Türk Dünyası Uygulama ve Araştırma Merkezi Estüdam Eğitim Dergisi, 5(1), 40–56.
  • Dede, Y., & Argün, Z. (2003). Cebir, öğrencilere niçin zor gelmektedir? [Why do students have difficulty with algebra?]. Hacettepe University Journal of Education, 24, 180–185.
  • Dede, Y., & Peker, M. (2007). Öğrencilerin cebire yönelik hata ve yanlış anlamaları: Matematik öğretmen adayları’nın bunları tahmin becerileri ve çözüm önerileri [Students’ errors and misunderstanding towards algebra: Pre-service mathematics teachers’ prediction skills of error and misunderstanding and solution suggestions]. Elementary Education Online, 6(1), 35–49.
  • Erbaş, A. K., Çetinkaya, B., & Ersoy, Y. (2009). Öğrencilerin basit doğrusal denklemlerin çözümünde karşılaştıkları güçlükler ve kavram yanılgıları [Student difficulties and misconceptions in solving simple linear equations]. Education and Science, 34(152), 44–59.
  • Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1–4.
  • Kelly, A. C. (2006). Using manipulatives in mathematical problem solving: A performance-based analysis. The Montana Mathematics Enthusiast, 3(2), 184–193.
  • Kieran, C. (1992). The learning and teaching of school algebra. In D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 390–419). New York: Macmillan Publishing Company.
  • Knuth, E. J., Alibali, M. W., McNeil, N. M., Weinberg, A., & Stephens, A. C. (2005). Middle school students’ understanding of core algebraic concepts: Equality and variable. International Reviews on Mathematical Education, 37, 1–9.
  • MacGregor, M., & Stacey, K. (1997). Ideas about symbolism that students bring to algebra. The Mathematics Teacher, 90(2), 110–113.
  • McCarthy, P. J. (1998). Teacher attitudes towards computers and the relationship between attitudes towards computers and level of involvement with computers among New York City Special Education teachers [Doctoral dissertation]. Columbia University.
  • Ministry of National Education (2018). Matematik Dersi Öğretim Programı (İlkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. sınıflar) [Mathematics Curriculum (Primary and middle school grades 1, 2, 3, 4, 5, 6, 7 and 8)]. Republic of Türkiye Ministry of National Education.
  • Moon, K. (2019). Preservice teachers’ understanding of two-variable inequalities: APOS Theory. Otten, S., Candela, A. G., de Araujo, Z., Haines, C., & Munter, C, Proceedings of the forty-first annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 686–694). St Louis, MO: University of Missouri.
  • Öksüz, C., & Ak, Ş. (2009). Öğretmen adaylarının ilköğretim matematik öğretiminde teknoloji kullanımına ilişkin algıları [Preservice teachers’ perceptions for technology use in the teaching of mathematics in elementary schools]. Van Yüzüncü Yıl University Journal of Education, 6(2), 1–19.
  • Rose, P., Beeby, J., & Parker, D. (1995). Academic rigour in the lived experience of researchers using phenomenological methods in nursing. Journal of Advanced Nursing, 21, 1123–1129.
  • Rowell, A. J., Dawson, C. J., & Harry, L. (1990). Changing misconceptions: A challenge to science education. International Journal of Science Education, 12(2), 167–175.
  • Seferoğlu, S. S. (2001). Öğretmenlerin bilişim teknolojilerinin kullanımıyla ilgili görüşleri [Teachers' views on the use of information technologies]. Proceedings of 1th International Educational Technology Conference (IETC-2001), 334–350. Sakarya University.
  • Siagian, M. D., Suryadi, D., Nurlaelah, E., & Prabawanto, S. (2022). Investigation of secondary students' epistemological obstacles in the inequality concept. Mathematics Teaching Research Journal, 14(4), 106–128.
  • Tyson, P. (1991). Talking about lesson planning: The use of semi-structured interviews in teacher education. Teacher Education Quarterly, 18(3), 87–96.
  • Tsamir, P., & Almog, N. (2001). Students' strategies and difficulties: The case of algebraic inequalities. International Journal of Mathematical Education in Science and Technology, 32(4), 513–524.
  • Ünlü, M. (2017). Matematik öğretmen adaylarının matematik derslerinde öğretim materyali kullanımına ilişkin görüşleri [Pre-service mathematics teachers’ views about using instructional materials in mathematics lessons]. Journal of Theory and Practice in Education, 13(1), 10–34.
  • Van Zoest, L. R., & Bohl, J. (2005). Mathematics teacher identity: A framework for understanding secondary school mathematics teachers’ learning through practice. Teacher Development, 9(3), 315–345.
  • Yazlık, D. Ö. (2019). Eşitsizlik kavramı ve eşitsizlik kavramının öğretimi [The concept of inequality and teaching the concept of inequality]. G. Sarpkaya Aktaş (Ed.), Uygulama Örnekleriyle Cebirsel Düşünme ve Öğretimi (ss. 221–250). Pegem Akademi.
  • Yetkin, E. (2003). Student difficulties in learning elementary mathematics. ERIC Digest, 1–6.
  • Yıldırım, A., & Şimşek, H. (2006). Sosyal bilimlerde nitel araştırma yöntemleri (6. Baskı). Seçkin Yayıncılık.

The Process of Teaching and Learning from the Views of Prospective Mathematics Teachers: The Case of Algebraic Inequalities

Year 2024, Volume: 5 Issue: 2, 67 - 87
https://doi.org/10.52911/itall.1552703

Abstract

This study explores the views of prospective mathematics teachers on the process of teaching and learning about algebraic inequalities. Phenomenology, one of the qualitative research methods, was used in the study. The participants of the study consisted of 6 prospective middle school mathematics teachers studying in the last year of the Elementary Mathematics Teacher Education Program of a university in the Central Anatolia Region of Türkiye in the spring semester of the 2021-2022 academic year. Data were collected through semi-structured interviews. The obtained data were analyzed using content analysis, one of the qualitative analysis methods. As a result of the analysis of the interviews with the prospective middle school mathematics teachers, three main themes were obtained. Teaching inequalities, the difficulties that students may experience in inequalities, and the methods that can be used to overcome difficulties were the main categories that emerged. Direct quotations from the prospective teachers’ views were also included in the presentation of the findings. As a result of the study, it is recommended that more practice should be included in teacher education programs to improve prospective mathematics teachers' knowledge and experience of meaningful learning and overcoming difficulties.

References

  • Abu Mokh, R., Othman, A., & Shahbari, J. A. (2019). Mistakes made by students with logical connectives when solving equations and inequalities, and how teachers assess these mistakes. International Journal of Research in Education and Science, 5(2), 421–428.
  • Altun, M. (2001). İlköğretim ikinci kademede (6, 7 ve 8. sınıflarda) Matematik öğretimi. [Mathematics teaching in the second level of elementary education (6th, 7th and 8th grades)]. Alfa Yayınları.
  • Argün, Z., & Arıkan, A., Bulut, S., Halıcıoğlu, S. (2014). Temel matematik kavramların künyesi [A vocabulary of basic mathematical concepts]. Gazi Kitabevi.
  • Baki, A. (2008). Kuramdan uygulamaya matematik eğitimi [Mathematics education from theory to practice]. Harf Eğitim Yayınları.
  • Baki, A. (2014). Matematik tarihi ve felsefesi [History and philosophy of mathematics]. Pegem Akademi.
  • Blanco, L. J., & Garrote, M. (2007). Difficulties in learning inequalities in students of the first year of pre-university education in Spain. Eurasia Journal of Mathematics, Science and Technology Education, 3(3), 22–229.
  • Clements, D. H. (1999). ‘Concrete’ manipulatives, concrete ideas. Contemporary Issues in Early Childhood, 1(1), 45–60.
  • Clements, D. H., & McMillen, S. (1996). Rethinking concrete manipulatives. Teaching Children Mathematics, 2(85), 270–279.
  • Creswell, J. W. (2013). Qualitative inquiry and research design: Choosing among five approaches (Third Ed.). Sage Publications.
  • Çoban, K., & Yenilmez, K. (2020). Sekizinci sınıf öğrencilerinin eşitsizlikler konusunda karşılaştıkları güçlüklerin incelenmesi [Investigation of the difficulties encountered by eighth grade students on inequalities]. Eskişehir Osmangazi Üniversitesi Türk Dünyası Uygulama ve Araştırma Merkezi Estüdam Eğitim Dergisi, 5(1), 40–56.
  • Dede, Y., & Argün, Z. (2003). Cebir, öğrencilere niçin zor gelmektedir? [Why do students have difficulty with algebra?]. Hacettepe University Journal of Education, 24, 180–185.
  • Dede, Y., & Peker, M. (2007). Öğrencilerin cebire yönelik hata ve yanlış anlamaları: Matematik öğretmen adayları’nın bunları tahmin becerileri ve çözüm önerileri [Students’ errors and misunderstanding towards algebra: Pre-service mathematics teachers’ prediction skills of error and misunderstanding and solution suggestions]. Elementary Education Online, 6(1), 35–49.
  • Erbaş, A. K., Çetinkaya, B., & Ersoy, Y. (2009). Öğrencilerin basit doğrusal denklemlerin çözümünde karşılaştıkları güçlükler ve kavram yanılgıları [Student difficulties and misconceptions in solving simple linear equations]. Education and Science, 34(152), 44–59.
  • Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1–4.
  • Kelly, A. C. (2006). Using manipulatives in mathematical problem solving: A performance-based analysis. The Montana Mathematics Enthusiast, 3(2), 184–193.
  • Kieran, C. (1992). The learning and teaching of school algebra. In D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 390–419). New York: Macmillan Publishing Company.
  • Knuth, E. J., Alibali, M. W., McNeil, N. M., Weinberg, A., & Stephens, A. C. (2005). Middle school students’ understanding of core algebraic concepts: Equality and variable. International Reviews on Mathematical Education, 37, 1–9.
  • MacGregor, M., & Stacey, K. (1997). Ideas about symbolism that students bring to algebra. The Mathematics Teacher, 90(2), 110–113.
  • McCarthy, P. J. (1998). Teacher attitudes towards computers and the relationship between attitudes towards computers and level of involvement with computers among New York City Special Education teachers [Doctoral dissertation]. Columbia University.
  • Ministry of National Education (2018). Matematik Dersi Öğretim Programı (İlkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. sınıflar) [Mathematics Curriculum (Primary and middle school grades 1, 2, 3, 4, 5, 6, 7 and 8)]. Republic of Türkiye Ministry of National Education.
  • Moon, K. (2019). Preservice teachers’ understanding of two-variable inequalities: APOS Theory. Otten, S., Candela, A. G., de Araujo, Z., Haines, C., & Munter, C, Proceedings of the forty-first annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 686–694). St Louis, MO: University of Missouri.
  • Öksüz, C., & Ak, Ş. (2009). Öğretmen adaylarının ilköğretim matematik öğretiminde teknoloji kullanımına ilişkin algıları [Preservice teachers’ perceptions for technology use in the teaching of mathematics in elementary schools]. Van Yüzüncü Yıl University Journal of Education, 6(2), 1–19.
  • Rose, P., Beeby, J., & Parker, D. (1995). Academic rigour in the lived experience of researchers using phenomenological methods in nursing. Journal of Advanced Nursing, 21, 1123–1129.
  • Rowell, A. J., Dawson, C. J., & Harry, L. (1990). Changing misconceptions: A challenge to science education. International Journal of Science Education, 12(2), 167–175.
  • Seferoğlu, S. S. (2001). Öğretmenlerin bilişim teknolojilerinin kullanımıyla ilgili görüşleri [Teachers' views on the use of information technologies]. Proceedings of 1th International Educational Technology Conference (IETC-2001), 334–350. Sakarya University.
  • Siagian, M. D., Suryadi, D., Nurlaelah, E., & Prabawanto, S. (2022). Investigation of secondary students' epistemological obstacles in the inequality concept. Mathematics Teaching Research Journal, 14(4), 106–128.
  • Tyson, P. (1991). Talking about lesson planning: The use of semi-structured interviews in teacher education. Teacher Education Quarterly, 18(3), 87–96.
  • Tsamir, P., & Almog, N. (2001). Students' strategies and difficulties: The case of algebraic inequalities. International Journal of Mathematical Education in Science and Technology, 32(4), 513–524.
  • Ünlü, M. (2017). Matematik öğretmen adaylarının matematik derslerinde öğretim materyali kullanımına ilişkin görüşleri [Pre-service mathematics teachers’ views about using instructional materials in mathematics lessons]. Journal of Theory and Practice in Education, 13(1), 10–34.
  • Van Zoest, L. R., & Bohl, J. (2005). Mathematics teacher identity: A framework for understanding secondary school mathematics teachers’ learning through practice. Teacher Development, 9(3), 315–345.
  • Yazlık, D. Ö. (2019). Eşitsizlik kavramı ve eşitsizlik kavramının öğretimi [The concept of inequality and teaching the concept of inequality]. G. Sarpkaya Aktaş (Ed.), Uygulama Örnekleriyle Cebirsel Düşünme ve Öğretimi (ss. 221–250). Pegem Akademi.
  • Yetkin, E. (2003). Student difficulties in learning elementary mathematics. ERIC Digest, 1–6.
  • Yıldırım, A., & Şimşek, H. (2006). Sosyal bilimlerde nitel araştırma yöntemleri (6. Baskı). Seçkin Yayıncılık.
There are 33 citations in total.

Details

Primary Language English
Subjects Other Fields of Education (Other)
Journal Section Research Articles
Authors

Emel Topbaş Tat 0000-0002-1487-3027

Hafize Gümüş This is me 0000-0001-8972-5961

Early Pub Date November 13, 2024
Publication Date
Submission Date September 19, 2024
Acceptance Date November 12, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Topbaş Tat, E., & Gümüş, H. (2024). The Process of Teaching and Learning from the Views of Prospective Mathematics Teachers: The Case of Algebraic Inequalities. Instructional Technology and Lifelong Learning, 5(2), 67-87. https://doi.org/10.52911/itall.1552703

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License.