Review
BibTex RIS Cite

SWAT (Soil and Water Assessment Tool) Modeline Genel Bir Bakış ve Modelin Türkiye’deki Uygulamaları

Year 2022, Volume: 23 Issue: 1, 9 - 26, 31.05.2022

Abstract

USDA (Amerika Birleşik Devletleri Tarım Bakanlığı) tarafından yaklaşık 40 yıldır geliştirilmekte olan SWAT (Soil and Water Assessment Tool) dünyanın farklı bölgelerinde yaygın olarak kullanılan bir havza modelleme aracıdır. SWAT ile ilgili literatürde yer alan makaleler ve uluslararası konferans bildirileri modelin dünya çapında kabul gördüğünü göstermektedir. Son yıllarda, SWAT modelinin ülkemizde yapılan araştırmalardaki uygulamaları da giderek hız kazanmıştır. Bu araştırmalar çoğunlukla bilimsel makaleler ve tezler ile yayınlanmaktadır. Mevcut çalışmanın amacı SWAT modeli hakkında genel bir bilgi vererek modelin Türkiye’deki uygulamalarını içeren bir literatür taramasına ait analizleri paylaşmaktır. Bu çalışma ile araştırmacılar için SWAT modelinin 2008 - 2022 yılları arasında ülkemizin farklı havzalarında yapılan uygulamalarına kolay erişilebilir bir kaynak hazırlanması hedeflenmektedir. Bu kapsamda 46 makale ve 19 tez çalışması olmak üzere toplam 65 çalışma incelenmiş olup bu çalışmalarda kullanılan farklı veri setleri ve kaynakları sunulmaktadır. İncelenen çalışmalar, genel kapsamları bakımından hidroloji (%69) ve su kalitesi (%31) odaklı çalışmalar olarak iki sınıfta ele alınmaktadır. Bu sınıflar mevcut durum (günümüz veya geçmiş tarihli) ve gelecek dönem (iklim ve arazi kullanımı değişikliği) için yapılan yüzey suyu, yer altı suyu, kirlilik ve sediment ile ilgili çalışmalar olarak alt sınıflarda incelenmektedir. Çalışmalarda, SWAT modelinin ihtiyaç duyduğu sayısal yükseklik haritası, arazi kullanımı ve toprak çeşidi mekânsal girdileri için sırasıyla SRTM (%31), CORINE (%43) ve FAO-UNESCO (%60) verileri en çok tercih edilen veri kaynaklarıdır. Çoğunlukla, zamansal model girdisi olan iklim verileri için MGM (%65), model kalibrasyonunda kullanılan akım verileri için ise DSİ (%65) kurumuna ait veri kaynakları tercih edilmektedir. Çalışmalarda gerçekleştirilen kalibrasyon ve validasyonların çoğunda yaygın olarak tanınan performans göstergelerine dayalı olarak tatmin edici sonuçlar elde edildiği görülmüştür.

References

  • Abbaspour, K.C. (2015) SWAT‐CUP: SWAT calibration and uncertainty programs user manual. Dübendorf, Zürich: EAWAG.
  • Abbaspour, K.C., Johnson, C.A. and van Genuchten, M. T. (2004) Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone Journal, 3(4), 1340 - 1352. doi:10.2136/vzj2004.1340
  • Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J. and Srinivasan, R. (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2-4), 413-430. doi:10.1016/j.jhydrol.2006.09.014
  • Ajaaj, A.A., Mishra, A.K. and Khan, A.A. (2019) Evaluation of Satellite and Gauge-Based Precipitation Products through Hydrologic Simulation in Tigris River Basin under Data-Scarce Environment, Journal of Hydrologic Engineering, 24(3), 05018033. doi:10.1061/(ASCE)HE.1943-5584.0001737
  • Akbas, A., Freer, J., Ozdemir, H., Bates, P.D. and Turp, M.T. (2020) What about reservoirs? Questioning anthropogenic and climatic interferences on water availability. Hydrological Processes, 34(26), 5441– 5455. doi:10.1002/hyp.13960
  • Akgül, M.A. (2015) Aşağı Seyhan Ovası Sol Sahil Sulaması, Su ve Nitrat Bütçesinin Modellenmesi, Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Akiner, M.E. and Akkoyunlu, A. (2012) Modeling and forecasting river flow rate from the Melen Watershed, Turkey. Journal of Hydrology, 456-457, 121-129. doi:10.1016/j.jhydrol.2012.06.031
  • Akoko, G., Le, T.H., Gomi, T. and Kato, T. (2021) A Review of SWAT Model Application in Africa. Water, 13(9),1313. doi:10.3390/w13091313
  • Arnold, J.G. and Williams, J.R. (1987) Validation of SWRRB—Simulator for Water Resources in Rural Basins. Journal of Water Resources Planning and Management, 113(2), 243-256. doi:10.1061/(ASCE)0733-9496(1987)113:2(243)
  • Arnold, J.G., Srinivasan R., Muttiah R.S. and Williams J.R. (1998) Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association, 34(1), 73-89. doi:10.1111/j.1752-1688.1998.tb05961.x
  • Arnold, J.G., Williams, J.R. and Maidment, D.R. (1995) Continuous-Time Water and Sediment-Routing Model for Large Basins. Journal of Hydraulic Engineering, 121(2), 171-183. doi:10.1061/(ASCE)0733-9429(1995)121:2(171)
  • Arnold, J.G., Bieger, K., White, M.J., Srinivasan, R., Dunbar, J.A. and Allen, P.M. (2018) Use of Decision Tables to Simulate Management in SWAT+. Water, 10(6), 713. doi:10.3390/w10060713
  • Askar, M.A.A. (2020) İklim değişikliğinin Seyhan havzası su kaynakları üzerindeki etkilerinin SWAT modeli ile değerlendirilmesi, Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Azgın, Ş.T. (2015) Palas ovasında arazi örtüsü değişimlerinin belirlenmesi ve yayılı kirletici yüklerin SWAT ile modellenmesi, Yüksek Lisans Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Kayseri.
  • Bailey, R.T., Wible, T.C., Arabi, M., Records, R.M. and Ditty, J. (2016) Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. Hydrological Processes, 30(23), 4420 - 4433. doi:10.1002/hyp.10933
  • Baltacı, E. (2019) İnebolu havzasında yüzeysel akış ve sediment yükünün tahmin edilmesinde SWAT modelinin uygulanması, Yüksek Lisans Tezi, Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü, Kahramanmaraş.
  • Bär, R., Rouholahnejad, E., Rahman, K., Abbaspour, K.C. and Lehmann, A. (2015) Climate change and agricultural water resources: A vulnerability assessment of the Black Sea catchment. Environmental Science & Policy, 46, 57-63. doi:10.1016/j.envsci.2014.04.008
  • Beven, K. and Binley, A. (1992) The Future of Distributed Models - Model Calibration and Uncertainty Prediction. Hydrological Processes, 6(3), 279-298. doi:10.1002/hyp.3360060305
  • Bieger, K., Arnold, J.G., Rathjens, H., White, M.J., Bosch, D.D., Allen, P.M., Volk, M. and Srinivasan, R. (2017) Introduction to SWAT+, a Completely Restructured Version of the Soil and Water Assessment Tool. Journal of the American Water Resources Association, 53(1), 115– 130. doi:10.1111/1752-1688.12482
  • Bieger, K., Arnold, J.G., Rathjens, H., White, M.J., Bosch, D.D. and Allen, P.M. (2019) Representing the Connectivity of Upland Areas to Floodplains and Streams in SWAT+. Journal of the American Water Resources Association, 55(3), 578– 590. doi:10.1111/1752-1688.12728.
  • Bressiani, D.A., Gassman, P.W., Fernandes, J.G., Garbossa L.H.P., Srinivasan, R., Bonumá, N.B. and Mendiondo, E.M. (2015) Review of Soil and Water Assessment Tool (SWAT) applications in Brazil: Challenges and prospects. International Journal of Agricultural and Biolological Engineering, 8(3), 9-35. doi: 10.3965/j.ijabe.20150803.1765
  • Brighenti, T.M., Bonumá, N.B., Srinivasan, R. and Chaffe, P.L.B (2019) Simulating sub-daily hydrological process with SWAT: a review, Hydrological Sciences Journal, 64(12), 1415-1423. doi: 10.1080/02626667.2019.1642477
  • Brown, L.C. and Barnwell, J.T.O. (1987) The enhanced water quality models QUAL2E and QUAL2E‐UNCAS: Documentation and user manual. Athens, Ga.: USEPA.: EPA.
  • Bucak, T., Trolle, D., Andersen, H.E., Thodsen, H., Erdoğan, Ş., Levi, E.E., Filiz, N., Jeppesen, E. and Beklioğlu, M. (2017) Future water availability in the largest freshwater Mediterranean lake is at great risk as evidenced from simulations with the SWAT model. Science of the Total Environment, 581-582, 413-425. doi:10.1016/j.scitotenv.2016.12.149
  • Bucak, T., Trolle, D., Tavşanoğlu, Ü.N., Çakıroğlu, A.İ., Özen, A., Jeppesen, E. and Beklioğlu, M. (2018). Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir. Science of the Total Environment, 621, 802-816. doi:10.1016/j.scitotenv.2017.11.258
  • Bulut, E. and Aksoy, A. (2008) Impact of fertilizer usage on phosphorus loads to Lake Uluabat. Desalination, 226(1–3), 289-297. doi:10.1016/j.desal.2007.02.112
  • CARD (2020) SWAT Literature Database for Peer-Reviewed Journal Articles. Center for Agricultural and Rural Development: Iowa State University, Ames, IA, USA.
  • Cerkasova, N., Umgiesser, G. and Ertürk, A. (2018) Development of a hydrology and water quality model for a large transboundary river watershed to investigate the impacts of climate change – A SWAT application. Ecological Engineering, 124, 99-115. doi:10.1016/j.ecoleng.2018.09.025
  • Coppens, J., Özen, A., Tavşanoğlu, Ü.N., Erdoğan, Ş., Levi, E.L., Yozgatlıgil, C., Jeppesen, E. and Beklioğlu, M. (2016) Impact of alternating wet and dry periods on long-term seasonal phosphorus and nitrogen budgets of two shallow Mediterranean lakes. Science of the Total Environment, 563-564, 456-467. doi:10.1016/j.scitotenv.2016.04.028
  • Coppens, J., Trolle, D., Jeppesen, E. and Beklioğlu, M. (2020) The impact of climate change on a Mediterranean shallow lake: insights based on catchment and lake modelling. Regional Environment Change, 20(2), 62. doi:10.1007/s10113-020-01641-6
  • Crawford, N.H. and Linsley, R.K. (1966) Digital Simulation in Hydrology: Stanford Watershed Model IV. Contemporary Hydrology, Technical report 39, 158-160.
  • Cuceloglu, G. and Ozturk, I. (2019) Assessing the Impact of CFSR and Local Climate Datasets on Hydrological Modeling Performance in the Mountainous Black Sea Catchment. Water, 11(11), 2277. doi:10.3390/w11112277
  • Cuceloglu, G., Abbaspour K.C. and Ozturk, I. (2017) Assessing the Water-Resources Potential of Istanbul by Using a Soil and Water Assessment Tool (SWAT) Hydrological Model. Water, 9(10), 814. doi:10.3390/w9100814
  • Cunderlik, M.J. (2003) Hydrologic model selection for the CFCAS project: Assessment of water resources risk and vulnerability to changing climatic conditions. Project report 1, 38.
  • Cüceloğlu, G, Şeker, D., Tanık, A. and Öztürk, İ. (2021) Analyzing Effects of Two Different Land Use Datasets on Hydrological Simulations by Using SWAT Model. International Journal of Environment and Geoinformatics, 8(2), 172-185. doi:10.30897/ijegeo.828112
  • Cüceloğlu, G. (2019) İklim değişikliğinin İstanbul'un yüzeysel su kaynaklarına etkisi ve kuraklık dirençli bütünleşik su yönetimi, Doktora Tezi. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Daggupati, P., Srinivasan, R., Dile, Y.T. and Verma, D. (2017) Reconstructing the historical water regime of the contributing basins to the Hawizeh marsh: Implications of water control structures. Science of the Total Environment, 580, 832-845. doi:10.1016/j.scitotenv.2016.12.029
  • Devia, G.K., Ganasri, B.P. and Dwarakish, G.S. (2015) A review on hydrological models. Aquatic Procedia, International Conference on Water Resources, Coastal and Ocean Engineering, 4, 1001-1007. doi:10.1016/j.aqpro.2015.02.126
  • Dile, Y.T., Daggupati, P., George, C., Srinivasan, R., and Arnold, J. (2016) Introducing a new open source GIS user interface for the SWAT model. Environmental Modelling & Software, 85, 129-138. doi:10.1016/j.envsoft.2016.08.004
  • Dogan, F.N. and Karpuzcu, M.E. (2021) Effect of land use change on hydrology of forested watersheds. Ecohydrology, e2367. doi:10.1002/eco.2367
  • Douglas-Mankin, K.R., Srinivasan, R. and Arnold, J.G. (2010) Soil and Water Assessment Tool (SWAT) Model: Current developments and applications. Transactions of the ASABE, 53(5), 1423-1431. doi: 10.13031/2013.34915
  • Donmez, C., Sari, O., Berberoglu, S., Cilek, A., Satir, O. and Volk, M. (2020) Improving the Applicability of the SWAT Model to Simulate Flow and Nitrate Dynamics in a Flat Data-Scarce Agricultural Region in the Mediterranean. Water, 12(12), 3479. doi:10.3390/w12123479
  • Duru, U., Arabi, M. and Wohl, E.E. (2018) Modeling stream flow and sediment yield using the SWAT model: a case study of Ankara River basin, Turkey. Physical Geography, 39(3), 264-289. doi:10.1080/02723646.2017.1342199
  • Duru, U., Wohl, E. and Ahmadi, M. (2017) Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin. Environmental Management, 59(5), 826–841. doi:10.1007/s00267-016-0818-8
  • Dutal, H. (2020) Körsulu deresi yağış havzasının WEPP (Water Erosion Prediction Project) and SWAT (Soil and Water Assessment Tool) modelleri kullanılarak havza amenajmanı bakımından planlanması üzerine araştırmalar, Doktora Tezi. Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü, Kahramanmaraş.
  • Ekdal, A., Gurel, M., Guzel, C., Ertürk, A., Tanik, A. and Gönenç, I.E. (2011) Application of WASP and SWAT models for a Mediterranean Coastal Lagoon with Limited Seawater Exchange. Journal of Coastal Research, 64, 1023-1027.
  • Elçi, A. (2017) Evaluation of nutrient retention in vegetated filter strips using the SWAT model. Water Science & Technology, 76(10), 2742–2752. doi:10.2166/wst.2017.448
  • El-Sadek, A. and İrvem, A. (2014) Evaluating the impact of land use uncertainty on the simulated streamflow and sediment yield of the Seyhan River basin using the SWAT model. Turkish Journal of Agriculture and Forestry, 38(4), 515-530. doi:10.3906/tar-1309-89
  • Ertürk, A., Ekdal, A., Gurel, M., Karakaya, N., Cuceloglu, G. and Gönenç, E. (2017) Model-based assessment of groundwater vulnerability for the Dalyan Region of southwestern Mediterranean Turkey. Regional Environment Change, 17(4), 1193–1203. doi:10.1007/s10113-017-1106-8
  • Ertürk, A., Ekdal, A., Gurel, M., Karakaya, N., Guzel, C. and Gönenç, E. (2014) Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed. Science of the Total Environment, 499, 437-447. doi:10.1016/j.scitotenv.2014.07.001
  • Esen, S.E. and Hein, L. (2020) Development of SEEA water accounts with a hydrological model. Science of the Total Environment, 737, 140168. doi:10.1016/j.scitotenv.2020.140168
  • Fıstıkoğlu, O. (1999) Hidrolojik Modeller. Türkiye İnşaat Mühendisliği 15. Teknik Kongre ve Sergisi Bildiriler Kitabı, 799-809, Ankara.
  • Francesconi, W., Srinivasan, R., Pérez-Miñana, E., Willcock, S.P. and Quintero, M. (2016) Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. Journal of Hydrology, 535, 625-636. doi: 10.1016/j.jhydrol.2016.01.034
  • Fontaine, T., Cruickshank, T., Arnold, J. and Hotchkiss, R. (2002) Development of a snowfall - Snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). Journal of Hydrology, 262, 209–223.
  • Gassman, P.W., Reyes, M.R., Green, C.H. and Arnold, J.G. (2007) The soil and water assessment tool: Historical development, applications, and future research directions. Transactions of the ASABE, 40(4), 1211-1250. doi:10.13031/2013.23637
  • Gassman, P.W., Sadeghi, A.M. and Srinivasan, R. (2014) Applications of the SWAT Model Special Section: Overview and Insights. Journal of Environmental Quality, 43(1), 1-8. doi:10.2134/jeq2013.11.0466
  • Gölpınar, M.S. (2017) Yüzey akışların SWAT modeli ile belirlenmesi: Akarsu Sulama Birliği Sahası örneği, Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Gungor, K., Karakaya, N., Evrendilek, F., Akgul, S., Baskan, O., Cebel, H., Farhoud, H.J., Turkecan, O., Yasar, S. and Gumus, O. (2016) Spatiotemporal modeling of watershed nutrient transport dynamics: Implications for eutrophication abatement. Ecological Informatics, 34, 52-69. doi:10.1016/j.ecoinf.2016.04.012
  • Güngör, Ö. (2011) Aşağı Porsuk çayı havzasında askıda katı madde taşınımının belirlenmesi ve modellenmesi, Yüksek Lisans Tezi. Anadolu Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • Güngör, Ö. (2018) SWAT modeli kullanılarak Filyos çayı havzasının hidrolojik analizi, Doktora Tezi, Bülent Ecevit Üniversitesi Fen Bilimleri Enstitüsü, Zonguldak.
  • Güngör, Ö. and Göncü, S. (2013) Application of the soil and water assessment tool model on the Lower Porsuk Stream Watershed. Hydrological Processes, 27(3), 453-466. doi:10.1002/hyp.9228
  • Güzel, Ç. (2010) Application of SWAT model in a watershed in Turkey, M.Sc. Thesis. Istanbul Technical University Institute of Science and Technology, Istanbul.
  • Hargreaves, G.H. and Allen, R.G. (2003) History and Evaluation of Hargreaves Evapotranspiration Equation. Journal of Irrigation and Drainage Engineering, 129, 53-63. doi: 10.1061/(ASCE)0733-9437(2003)129:1(53)
  • Izaurralde, R.C., Williams, J.R., McGill, W.B., Rosenberg, N.J. and Jakas, M.C.Q. (2006) Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecological Modelling, 192(3–4), 362-384. doi:10.1016/j.ecolmodel.2005.07.010
  • İrvem, A. and El-Sadek, A. (2018). Evaluation of Streamflow Simulation By SWAT Model for The Seyhan River Basin. Çukurova Tarım ve Gıda Bilimleri Dergisi, 33(2), 99-110.
  • Jones, C., Sultan, M., Yan, E., Milewski, A., Hussein, M., Al-Dousari, A., Al-Kaisy, S. and Becker, R. (2008) Hydrologic impacts of engineering projects on the Tigris–Euphrates system and its marshlands. Journal of Hydrology, 353(1–2), 59-75. doi:10.1016/j.jhydrol.2008.01.029
  • Jouma, N. (2019). Sultan Sazlığı’nda iklim değişikliği ve arazi kullanımı/örtüsü değişimlerinin etkilerinin SWAT ile modellenmesi, Doktora Tezi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Kayseri.
  • Jouma, N. and Dadaser Celık, F. (2018) Develi Ovası’nda Sulama ve Rezervuar Depolamasının SWAT ile Simülasyonu. Ziraat Fakültesi Dergisi, 1. Uluslararası Tarımsal Yapılar ve Sulama Kongresi Özel Sayısı, 468-476.
  • Kabal, C. (2019). Evaluation of the alternatives to improve water quality in gürdük watershed using SWAT model, M.Sc. Thesis, Middle East Technical University Graduate School of Natural and Applied Sciences, Ankara.
  • Karabulut, A., Elbaşı, F., Ustaoğlu S. and Yatman, D. (2011) Türkiye büyük toprak grubu haritası, Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü Toprak Gübre ve Su Kaynakları Merkez Araştırma Enstitüsü Müdürlüğü, Mekanizasyon ve Bilişim Teknolojileri Bölümü, Ankara.
  • Kaya, S. and Kutukcu, A. (2017) Investigation of morphometric and hydrological characteristics of a water basin using numerical models. Fresenius Environmental Bulletin, 26(1), 360-368.
  • Knisel, W.G. (1980) CREAMS, a field‐scale model for chemicals, runoff, and erosion from agricultural management systems. Washington, D.C.: USDA.
  • Koycegiz, C., Buyukyildiz, M. and Kumcu, S.Y. (2021) Spatio-temporal analysis of sediment yield with a physically based model for a data-scarce headwater in Konya Closed Basin, Turkey. Water Supply, 21 (4): 1752–1763. doi:10.2166/ws.2021.016
  • Koycegiz, C. and Buyukyildiz M. (2019) Calibration of SWAT and Two Data-Driven Models for a Data-Scarce Mountainous Headwater in Semi-Arid Konya Closed Basin. Water, 11(1), 147. doi:10.3390/w11010147
  • Köyceğiz, C. (2018) SWAT ve yapay zekâ metotları ile akım tahmini, Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Kuczera, G. and Parent, E. (1998) Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. Journal of Hydrology, 211(1-4), 69-85. doi:10.1016/S0022-1694(98)00198-X
  • Leonard, R.A., Knisel, W.G. and Still, D.A. (1987) GLEAMS: Groundwater loading effects of agricultural management systems. Transactions of the ASAE, 30, 1403-1418. doi:10.13031/2013.30578
  • Marshall, L., Nott, D. and Sharma, A. (2004) A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resources Research, 40(2). doi:10.1029/2003WR002378
  • Monteith, J.L. (1965) Evaporation and the Environment. 19th Symposia of the Society for Experimental Biology, 19, 205-234.
  • Mulvaney, T.J. (1850) On the use of self-registering rain and flood gauges. Transactions of the Institution of Civil Engineers of Ireland, 4(2), 1-8.
  • Neitsch, S.L., Arnold, J.G., Kiniry, J.R. and Williams, J.R. (2011) Soil and Water Assessment Tool Theoretical Documentation. Temple, Texas 76502: USDA-153 ARS Grassland Soil and Water Research Laboratory, and Texas A&M University, Blackland Research and Extension Center.
  • Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Srinivasan, R. and Williams, J.R. (2012) Soil and Water Assessment Tool Input/Output File Documentation. Temple, Texas: USDA‐ARS: USDA‐ARS Grassland, Soil and Water Research Laboratory.
  • Oruç, H.N. (2021) Evaluating the effects of soil data quality on the swat model runoff prediction performance in a highly industrialized catchment; case study in Saz-Çayirova stream, Turkey, M.Sc. Thesis, Gebze Technical University Institute of Earth and Marine Science, Gebze.
  • Ozdemir, A. and Leloglu, U.M. (2018) A fast and automated hydrologic calibration tool for SWAT. Water and Environment Journal, 33(4), 488-498. doi:10.1111/wej.12419
  • Ozdemir, A., Leloglu, U.M. and Abbaspour, K.C. (2017) Hierarchical approach to hydrological model calibration. Environmental Earth Sciences, 76, 318. doi:10.1007/s12665-017-6560-6
  • Özcan, Z. (2016) Evaluation of the best management practices to control agricultural diffuse pollution in lake Mogan watershed with SWAT model. M.Sc. Thesis, Middle East Technical University Graduate School of Natural and Applied Sciences, Ankara.
  • Özcan, Z., Kentel, E. and Alp, E. (2016) Determination of unit nutrient loads for different land uses in wet periods through modelling and optimization for a semi-arid region. Journal of Hydrology, 540, 40-49. doi:10.1016/j.jhydrol.2016.05.074
  • Özcan, Z., Başkan, O., Düzgün, H.Ş., Kentel, E. and Alp, E. (2017a) A pollution fate and transport model application in a semi-arid region: Is some number better than no number? Science of the Total Environment, 595, 425-440. doi:10.1016/j.scitotenv.2017.03.240
  • Özcan, Z., Kentel, E. and Alp, E. (2017b) Evaluation of the best management practices in a semi-arid region with high agricultural activity. Agricultural Water Management, 194, 160-171. doi:10.1016/j.agwat.2017.09.007
  • Özdemir, A. (2021) İklim Değişikliğinin Havza Ölçeğinde Akım ve Sediman Miktarına Etkilerinin Değerlendirilmesi: Yuvacık Baraj Gölü Havzası, Jeoloji Mühendisliği Dergisi, 45(1), 129-154, doi:10.24232/jmd.941528
  • Özdemir, K. and Güngör, Ö. (2019) Filyos Çayı Havzasında SWAT Modelinin Uygulaması. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 1(2), 90-102.
  • Peker, I.B. and Sorman A.A. (2021) Application of SWAT Using Snow Data and Detecting Climate Change Impacts in the Mountainous Eastern Regions of Turkey. Water, 13(14), 1982. doi:10.3390/w13141982
  • Peker, İ.B. (2020) Türkiye'deki dağlık havzalarda uygulanan SWAT modeli ile iklim değişikliğinin incelenmesi, Yüksek Lisans Tezi, Eskişehir Teknik Üniversitesi Lisansüstü Eğitim Enstitüsü, Eskişehir.
  • Priestley, C.H.B. and Taylor, R.J. (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2), 81-92. doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  • Saddiqi, M. and Karpuzcu, M. (2019) Küçük Menderes Alt Havzası’nın SWAT ile Modellenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(4) , 55-70. doi:10.21605/cukurovaummfd.702065
  • Saddiqi, M.M. (2019) Modelling Kücük Menderes watershed using Soil and Water Assessment Tool (SWAT), M.Sc. Thesis, Istanbul Technical University Graduate School of Science Engineering and Technology, Istanbul.
  • Sarı, Ö. (2018) Aşağı Seyhan Havzası hidrolojik dinamiklerinin SWAT model yaklaşımı ile modellenmesi, Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Schuerz, C. (2019) chrisschuerz/SWATplusR: SWATplusR 0.2.7 (0.2.7). Zenodo. doi:10.5281/zenodo.3373859
  • Sertel, E., Imamoglu, M.Z., Cuceloglu, G. and Erturk, A. (2019) Impacts of Land Cover/Use Changes on Hydrological Processes in a Rapidly Urbanizing Mid-latitude Water Supply Catchment. Water, 11(5), 1075. doi:10.3390/w11051075
  • Singh, V.P. and Woolhiser, D.A., (2002) Mathematical Modeling of Watershed Hydrology. Journal of Hydrologic Engineering, 7(4), 270-292. doi:10.1061/(ASCE)1084-0699(2002)7:4(270)
  • Srinivasan, R. and Arnold, J.G. (1994) Integration of a basin-scale water quality model with GIS. Water Resources Bulletin, (30)3, 453-462. doi:10.1111/j.1752-1688.1994.tb03304.x
  • Swalih, S.A. and Kahya, E. (2020) Hydrological model optimization using multi-gauge calibration (MGC) in a mountainous region. Journal of Hydroinformatics, 23 (2): 340–351. doi:10.2166/hydro.2020.034
  • Tan, M.L., Gassman, P.W., Srinivasan, R., Arnold, J.G. and Yang, X. (2019) A Review of SWAT Studies in Southeast Asia: Applications, Challenges and Future Directions. Water, 11(5),914. doi:10.3390/w11050914
  • Tan, M.L., Gassman, P.W., Liang, J. and Haywood, J.M. (2021) A review of alternative climate products for SWAT modelling: Sources, assessment and future directions. Science of The Total Environment, 795, 148915 doi: 10.1016/j.scitotenv.2021.148915
  • Thakur, J.K., Singh, S.K. and Ekanthalu, V.S. (2016) Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling. Applied Water Science, 7(4), 1595–1608. doi:10.1007/s13201-016-0384-5
  • Tufekcioglu, M., Yavuz, M., Zaimes, G.N., Dinc, M., Koutalakis, P. and Tufekcioglu, A. (2017) Application of Soil Water Assessment Tool (SWAT) to suppress wildfire at Bayam Forest, Turkey. Journal of Environmental Biology, 38(5), 719-726. doi:10.22438/jeb/38/5/MRN-331
  • van Griensven, A. and Meixner, T. (2006) Methods to quantify and identify the sources of uncertainty for river basin water quality models. Water Science & Technology, 53(1), 51-59. doi:10.2166/wst.2006.00
  • van Griensven, A., Ndomba, P., Yalew, S., and Kilonzo, F. (2012) Critical review of SWAT applications in the upper Nile basin countries, Hydrology and Earth System Sciences, 16, 3371–3381, doi: 10.5194/hess-16-3371-2012
  • Vrugt, J.A., Gupta, H.V., Bouten, W. and Sorooshian, S. (2003) A shuffled complex evolution metropolis algorithm for estimating posterior distribution of watershed model parameters. In Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau, & R. Turcotte (Eds.), Calibration of Watershed Models (pp. 105-112): Washington DC: American Geophysical Union.
  • Williams, J.R. (1990) The Erosion-Productivity Impact Calculator (EPIC) Model: A Case History. Philosophical Transactions: Biological Sciences, 329(1255), 421-428. doi:10.1098/rstb.1990.0184
  • Yalcin, E. (2019) Estimation of irrigation return flow on monthly time resolution using SWAT model under limited data availability. Hydrological Sciences Journal, 64(13), 1588-1604. doi:10.1080/02626667.2019.1662025
  • Yalçın, E. (2020) Karlı Dağlık Bir Havzada Günlük ve Aylık Akım Değerlerinin SWAT Modeliyle Değerlendirilmesi: Bitlis Çayı Havzası Örneği. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(4). doi:10.35414/akufemubid.710126
  • Yang, J., Reichert, P., Abbaspour, K. C. and Yang, H. (2007) Hydrological modelling of the Chaohe Basin in China: Statistical model formulation and Bayesian inference. Journal of Hydrology, 340(3-4), 167-182. doi:10.1016/j.jhydrol.2007.04.006
  • Yen, H., Park, S., Arnold, J.G., Srinivasan, R., Chawanda, C.J., Wang, R., Feng, Q., Wu, J., Miao, C., Bieger, K., Daggupati, P., Griensven, A.v., Kalin, L., Lee, S., Sheshukov, A.Y., White, M.J., Yuan, Y., Yeo, I.-Y., Zhang, M. and Zhang, X. (2019) IPEAT+: A Built-In Optimization and Automatic Calibration Tool of SWAT+. Water, 11, 1681. doi:10.3390/w11081681
  • Yıldırımer, S. (2018) Borçka barajı havzasında su rejimi, su kalitesi ve sediment veriminin SWAT kullanarak belirlenmesi ve modellenmesi, Doktora Tezi, Artvin Çoruh Üniversitesi Fen Bilimleri Enstitüsü, Artvin.
  • Zaimes, G.N., Tufekcioglu, M., Tufekcioglu, A., Zibtsev, S., Corobov, R., Emmanouloudis, D., Uratu, R., Ghulijanyan, A., Borsuk, A. and Trombitsky, I. (2016) Transboundary Collaborations to Enhance Wildfire Suppression in Protected Areas of the Black Sea Region. Journal of Engineering Science and Technology Review, 9(1), 108-114. doi:10.25103/jetsr.092.18
Year 2022, Volume: 23 Issue: 1, 9 - 26, 31.05.2022

Abstract

References

  • Abbaspour, K.C. (2015) SWAT‐CUP: SWAT calibration and uncertainty programs user manual. Dübendorf, Zürich: EAWAG.
  • Abbaspour, K.C., Johnson, C.A. and van Genuchten, M. T. (2004) Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone Journal, 3(4), 1340 - 1352. doi:10.2136/vzj2004.1340
  • Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J. and Srinivasan, R. (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2-4), 413-430. doi:10.1016/j.jhydrol.2006.09.014
  • Ajaaj, A.A., Mishra, A.K. and Khan, A.A. (2019) Evaluation of Satellite and Gauge-Based Precipitation Products through Hydrologic Simulation in Tigris River Basin under Data-Scarce Environment, Journal of Hydrologic Engineering, 24(3), 05018033. doi:10.1061/(ASCE)HE.1943-5584.0001737
  • Akbas, A., Freer, J., Ozdemir, H., Bates, P.D. and Turp, M.T. (2020) What about reservoirs? Questioning anthropogenic and climatic interferences on water availability. Hydrological Processes, 34(26), 5441– 5455. doi:10.1002/hyp.13960
  • Akgül, M.A. (2015) Aşağı Seyhan Ovası Sol Sahil Sulaması, Su ve Nitrat Bütçesinin Modellenmesi, Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Akiner, M.E. and Akkoyunlu, A. (2012) Modeling and forecasting river flow rate from the Melen Watershed, Turkey. Journal of Hydrology, 456-457, 121-129. doi:10.1016/j.jhydrol.2012.06.031
  • Akoko, G., Le, T.H., Gomi, T. and Kato, T. (2021) A Review of SWAT Model Application in Africa. Water, 13(9),1313. doi:10.3390/w13091313
  • Arnold, J.G. and Williams, J.R. (1987) Validation of SWRRB—Simulator for Water Resources in Rural Basins. Journal of Water Resources Planning and Management, 113(2), 243-256. doi:10.1061/(ASCE)0733-9496(1987)113:2(243)
  • Arnold, J.G., Srinivasan R., Muttiah R.S. and Williams J.R. (1998) Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association, 34(1), 73-89. doi:10.1111/j.1752-1688.1998.tb05961.x
  • Arnold, J.G., Williams, J.R. and Maidment, D.R. (1995) Continuous-Time Water and Sediment-Routing Model for Large Basins. Journal of Hydraulic Engineering, 121(2), 171-183. doi:10.1061/(ASCE)0733-9429(1995)121:2(171)
  • Arnold, J.G., Bieger, K., White, M.J., Srinivasan, R., Dunbar, J.A. and Allen, P.M. (2018) Use of Decision Tables to Simulate Management in SWAT+. Water, 10(6), 713. doi:10.3390/w10060713
  • Askar, M.A.A. (2020) İklim değişikliğinin Seyhan havzası su kaynakları üzerindeki etkilerinin SWAT modeli ile değerlendirilmesi, Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Azgın, Ş.T. (2015) Palas ovasında arazi örtüsü değişimlerinin belirlenmesi ve yayılı kirletici yüklerin SWAT ile modellenmesi, Yüksek Lisans Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Kayseri.
  • Bailey, R.T., Wible, T.C., Arabi, M., Records, R.M. and Ditty, J. (2016) Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. Hydrological Processes, 30(23), 4420 - 4433. doi:10.1002/hyp.10933
  • Baltacı, E. (2019) İnebolu havzasında yüzeysel akış ve sediment yükünün tahmin edilmesinde SWAT modelinin uygulanması, Yüksek Lisans Tezi, Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü, Kahramanmaraş.
  • Bär, R., Rouholahnejad, E., Rahman, K., Abbaspour, K.C. and Lehmann, A. (2015) Climate change and agricultural water resources: A vulnerability assessment of the Black Sea catchment. Environmental Science & Policy, 46, 57-63. doi:10.1016/j.envsci.2014.04.008
  • Beven, K. and Binley, A. (1992) The Future of Distributed Models - Model Calibration and Uncertainty Prediction. Hydrological Processes, 6(3), 279-298. doi:10.1002/hyp.3360060305
  • Bieger, K., Arnold, J.G., Rathjens, H., White, M.J., Bosch, D.D., Allen, P.M., Volk, M. and Srinivasan, R. (2017) Introduction to SWAT+, a Completely Restructured Version of the Soil and Water Assessment Tool. Journal of the American Water Resources Association, 53(1), 115– 130. doi:10.1111/1752-1688.12482
  • Bieger, K., Arnold, J.G., Rathjens, H., White, M.J., Bosch, D.D. and Allen, P.M. (2019) Representing the Connectivity of Upland Areas to Floodplains and Streams in SWAT+. Journal of the American Water Resources Association, 55(3), 578– 590. doi:10.1111/1752-1688.12728.
  • Bressiani, D.A., Gassman, P.W., Fernandes, J.G., Garbossa L.H.P., Srinivasan, R., Bonumá, N.B. and Mendiondo, E.M. (2015) Review of Soil and Water Assessment Tool (SWAT) applications in Brazil: Challenges and prospects. International Journal of Agricultural and Biolological Engineering, 8(3), 9-35. doi: 10.3965/j.ijabe.20150803.1765
  • Brighenti, T.M., Bonumá, N.B., Srinivasan, R. and Chaffe, P.L.B (2019) Simulating sub-daily hydrological process with SWAT: a review, Hydrological Sciences Journal, 64(12), 1415-1423. doi: 10.1080/02626667.2019.1642477
  • Brown, L.C. and Barnwell, J.T.O. (1987) The enhanced water quality models QUAL2E and QUAL2E‐UNCAS: Documentation and user manual. Athens, Ga.: USEPA.: EPA.
  • Bucak, T., Trolle, D., Andersen, H.E., Thodsen, H., Erdoğan, Ş., Levi, E.E., Filiz, N., Jeppesen, E. and Beklioğlu, M. (2017) Future water availability in the largest freshwater Mediterranean lake is at great risk as evidenced from simulations with the SWAT model. Science of the Total Environment, 581-582, 413-425. doi:10.1016/j.scitotenv.2016.12.149
  • Bucak, T., Trolle, D., Tavşanoğlu, Ü.N., Çakıroğlu, A.İ., Özen, A., Jeppesen, E. and Beklioğlu, M. (2018). Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir. Science of the Total Environment, 621, 802-816. doi:10.1016/j.scitotenv.2017.11.258
  • Bulut, E. and Aksoy, A. (2008) Impact of fertilizer usage on phosphorus loads to Lake Uluabat. Desalination, 226(1–3), 289-297. doi:10.1016/j.desal.2007.02.112
  • CARD (2020) SWAT Literature Database for Peer-Reviewed Journal Articles. Center for Agricultural and Rural Development: Iowa State University, Ames, IA, USA.
  • Cerkasova, N., Umgiesser, G. and Ertürk, A. (2018) Development of a hydrology and water quality model for a large transboundary river watershed to investigate the impacts of climate change – A SWAT application. Ecological Engineering, 124, 99-115. doi:10.1016/j.ecoleng.2018.09.025
  • Coppens, J., Özen, A., Tavşanoğlu, Ü.N., Erdoğan, Ş., Levi, E.L., Yozgatlıgil, C., Jeppesen, E. and Beklioğlu, M. (2016) Impact of alternating wet and dry periods on long-term seasonal phosphorus and nitrogen budgets of two shallow Mediterranean lakes. Science of the Total Environment, 563-564, 456-467. doi:10.1016/j.scitotenv.2016.04.028
  • Coppens, J., Trolle, D., Jeppesen, E. and Beklioğlu, M. (2020) The impact of climate change on a Mediterranean shallow lake: insights based on catchment and lake modelling. Regional Environment Change, 20(2), 62. doi:10.1007/s10113-020-01641-6
  • Crawford, N.H. and Linsley, R.K. (1966) Digital Simulation in Hydrology: Stanford Watershed Model IV. Contemporary Hydrology, Technical report 39, 158-160.
  • Cuceloglu, G. and Ozturk, I. (2019) Assessing the Impact of CFSR and Local Climate Datasets on Hydrological Modeling Performance in the Mountainous Black Sea Catchment. Water, 11(11), 2277. doi:10.3390/w11112277
  • Cuceloglu, G., Abbaspour K.C. and Ozturk, I. (2017) Assessing the Water-Resources Potential of Istanbul by Using a Soil and Water Assessment Tool (SWAT) Hydrological Model. Water, 9(10), 814. doi:10.3390/w9100814
  • Cunderlik, M.J. (2003) Hydrologic model selection for the CFCAS project: Assessment of water resources risk and vulnerability to changing climatic conditions. Project report 1, 38.
  • Cüceloğlu, G, Şeker, D., Tanık, A. and Öztürk, İ. (2021) Analyzing Effects of Two Different Land Use Datasets on Hydrological Simulations by Using SWAT Model. International Journal of Environment and Geoinformatics, 8(2), 172-185. doi:10.30897/ijegeo.828112
  • Cüceloğlu, G. (2019) İklim değişikliğinin İstanbul'un yüzeysel su kaynaklarına etkisi ve kuraklık dirençli bütünleşik su yönetimi, Doktora Tezi. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Daggupati, P., Srinivasan, R., Dile, Y.T. and Verma, D. (2017) Reconstructing the historical water regime of the contributing basins to the Hawizeh marsh: Implications of water control structures. Science of the Total Environment, 580, 832-845. doi:10.1016/j.scitotenv.2016.12.029
  • Devia, G.K., Ganasri, B.P. and Dwarakish, G.S. (2015) A review on hydrological models. Aquatic Procedia, International Conference on Water Resources, Coastal and Ocean Engineering, 4, 1001-1007. doi:10.1016/j.aqpro.2015.02.126
  • Dile, Y.T., Daggupati, P., George, C., Srinivasan, R., and Arnold, J. (2016) Introducing a new open source GIS user interface for the SWAT model. Environmental Modelling & Software, 85, 129-138. doi:10.1016/j.envsoft.2016.08.004
  • Dogan, F.N. and Karpuzcu, M.E. (2021) Effect of land use change on hydrology of forested watersheds. Ecohydrology, e2367. doi:10.1002/eco.2367
  • Douglas-Mankin, K.R., Srinivasan, R. and Arnold, J.G. (2010) Soil and Water Assessment Tool (SWAT) Model: Current developments and applications. Transactions of the ASABE, 53(5), 1423-1431. doi: 10.13031/2013.34915
  • Donmez, C., Sari, O., Berberoglu, S., Cilek, A., Satir, O. and Volk, M. (2020) Improving the Applicability of the SWAT Model to Simulate Flow and Nitrate Dynamics in a Flat Data-Scarce Agricultural Region in the Mediterranean. Water, 12(12), 3479. doi:10.3390/w12123479
  • Duru, U., Arabi, M. and Wohl, E.E. (2018) Modeling stream flow and sediment yield using the SWAT model: a case study of Ankara River basin, Turkey. Physical Geography, 39(3), 264-289. doi:10.1080/02723646.2017.1342199
  • Duru, U., Wohl, E. and Ahmadi, M. (2017) Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin. Environmental Management, 59(5), 826–841. doi:10.1007/s00267-016-0818-8
  • Dutal, H. (2020) Körsulu deresi yağış havzasının WEPP (Water Erosion Prediction Project) and SWAT (Soil and Water Assessment Tool) modelleri kullanılarak havza amenajmanı bakımından planlanması üzerine araştırmalar, Doktora Tezi. Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü, Kahramanmaraş.
  • Ekdal, A., Gurel, M., Guzel, C., Ertürk, A., Tanik, A. and Gönenç, I.E. (2011) Application of WASP and SWAT models for a Mediterranean Coastal Lagoon with Limited Seawater Exchange. Journal of Coastal Research, 64, 1023-1027.
  • Elçi, A. (2017) Evaluation of nutrient retention in vegetated filter strips using the SWAT model. Water Science & Technology, 76(10), 2742–2752. doi:10.2166/wst.2017.448
  • El-Sadek, A. and İrvem, A. (2014) Evaluating the impact of land use uncertainty on the simulated streamflow and sediment yield of the Seyhan River basin using the SWAT model. Turkish Journal of Agriculture and Forestry, 38(4), 515-530. doi:10.3906/tar-1309-89
  • Ertürk, A., Ekdal, A., Gurel, M., Karakaya, N., Cuceloglu, G. and Gönenç, E. (2017) Model-based assessment of groundwater vulnerability for the Dalyan Region of southwestern Mediterranean Turkey. Regional Environment Change, 17(4), 1193–1203. doi:10.1007/s10113-017-1106-8
  • Ertürk, A., Ekdal, A., Gurel, M., Karakaya, N., Guzel, C. and Gönenç, E. (2014) Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed. Science of the Total Environment, 499, 437-447. doi:10.1016/j.scitotenv.2014.07.001
  • Esen, S.E. and Hein, L. (2020) Development of SEEA water accounts with a hydrological model. Science of the Total Environment, 737, 140168. doi:10.1016/j.scitotenv.2020.140168
  • Fıstıkoğlu, O. (1999) Hidrolojik Modeller. Türkiye İnşaat Mühendisliği 15. Teknik Kongre ve Sergisi Bildiriler Kitabı, 799-809, Ankara.
  • Francesconi, W., Srinivasan, R., Pérez-Miñana, E., Willcock, S.P. and Quintero, M. (2016) Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. Journal of Hydrology, 535, 625-636. doi: 10.1016/j.jhydrol.2016.01.034
  • Fontaine, T., Cruickshank, T., Arnold, J. and Hotchkiss, R. (2002) Development of a snowfall - Snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). Journal of Hydrology, 262, 209–223.
  • Gassman, P.W., Reyes, M.R., Green, C.H. and Arnold, J.G. (2007) The soil and water assessment tool: Historical development, applications, and future research directions. Transactions of the ASABE, 40(4), 1211-1250. doi:10.13031/2013.23637
  • Gassman, P.W., Sadeghi, A.M. and Srinivasan, R. (2014) Applications of the SWAT Model Special Section: Overview and Insights. Journal of Environmental Quality, 43(1), 1-8. doi:10.2134/jeq2013.11.0466
  • Gölpınar, M.S. (2017) Yüzey akışların SWAT modeli ile belirlenmesi: Akarsu Sulama Birliği Sahası örneği, Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Gungor, K., Karakaya, N., Evrendilek, F., Akgul, S., Baskan, O., Cebel, H., Farhoud, H.J., Turkecan, O., Yasar, S. and Gumus, O. (2016) Spatiotemporal modeling of watershed nutrient transport dynamics: Implications for eutrophication abatement. Ecological Informatics, 34, 52-69. doi:10.1016/j.ecoinf.2016.04.012
  • Güngör, Ö. (2011) Aşağı Porsuk çayı havzasında askıda katı madde taşınımının belirlenmesi ve modellenmesi, Yüksek Lisans Tezi. Anadolu Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • Güngör, Ö. (2018) SWAT modeli kullanılarak Filyos çayı havzasının hidrolojik analizi, Doktora Tezi, Bülent Ecevit Üniversitesi Fen Bilimleri Enstitüsü, Zonguldak.
  • Güngör, Ö. and Göncü, S. (2013) Application of the soil and water assessment tool model on the Lower Porsuk Stream Watershed. Hydrological Processes, 27(3), 453-466. doi:10.1002/hyp.9228
  • Güzel, Ç. (2010) Application of SWAT model in a watershed in Turkey, M.Sc. Thesis. Istanbul Technical University Institute of Science and Technology, Istanbul.
  • Hargreaves, G.H. and Allen, R.G. (2003) History and Evaluation of Hargreaves Evapotranspiration Equation. Journal of Irrigation and Drainage Engineering, 129, 53-63. doi: 10.1061/(ASCE)0733-9437(2003)129:1(53)
  • Izaurralde, R.C., Williams, J.R., McGill, W.B., Rosenberg, N.J. and Jakas, M.C.Q. (2006) Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecological Modelling, 192(3–4), 362-384. doi:10.1016/j.ecolmodel.2005.07.010
  • İrvem, A. and El-Sadek, A. (2018). Evaluation of Streamflow Simulation By SWAT Model for The Seyhan River Basin. Çukurova Tarım ve Gıda Bilimleri Dergisi, 33(2), 99-110.
  • Jones, C., Sultan, M., Yan, E., Milewski, A., Hussein, M., Al-Dousari, A., Al-Kaisy, S. and Becker, R. (2008) Hydrologic impacts of engineering projects on the Tigris–Euphrates system and its marshlands. Journal of Hydrology, 353(1–2), 59-75. doi:10.1016/j.jhydrol.2008.01.029
  • Jouma, N. (2019). Sultan Sazlığı’nda iklim değişikliği ve arazi kullanımı/örtüsü değişimlerinin etkilerinin SWAT ile modellenmesi, Doktora Tezi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Kayseri.
  • Jouma, N. and Dadaser Celık, F. (2018) Develi Ovası’nda Sulama ve Rezervuar Depolamasının SWAT ile Simülasyonu. Ziraat Fakültesi Dergisi, 1. Uluslararası Tarımsal Yapılar ve Sulama Kongresi Özel Sayısı, 468-476.
  • Kabal, C. (2019). Evaluation of the alternatives to improve water quality in gürdük watershed using SWAT model, M.Sc. Thesis, Middle East Technical University Graduate School of Natural and Applied Sciences, Ankara.
  • Karabulut, A., Elbaşı, F., Ustaoğlu S. and Yatman, D. (2011) Türkiye büyük toprak grubu haritası, Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü Toprak Gübre ve Su Kaynakları Merkez Araştırma Enstitüsü Müdürlüğü, Mekanizasyon ve Bilişim Teknolojileri Bölümü, Ankara.
  • Kaya, S. and Kutukcu, A. (2017) Investigation of morphometric and hydrological characteristics of a water basin using numerical models. Fresenius Environmental Bulletin, 26(1), 360-368.
  • Knisel, W.G. (1980) CREAMS, a field‐scale model for chemicals, runoff, and erosion from agricultural management systems. Washington, D.C.: USDA.
  • Koycegiz, C., Buyukyildiz, M. and Kumcu, S.Y. (2021) Spatio-temporal analysis of sediment yield with a physically based model for a data-scarce headwater in Konya Closed Basin, Turkey. Water Supply, 21 (4): 1752–1763. doi:10.2166/ws.2021.016
  • Koycegiz, C. and Buyukyildiz M. (2019) Calibration of SWAT and Two Data-Driven Models for a Data-Scarce Mountainous Headwater in Semi-Arid Konya Closed Basin. Water, 11(1), 147. doi:10.3390/w11010147
  • Köyceğiz, C. (2018) SWAT ve yapay zekâ metotları ile akım tahmini, Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • Kuczera, G. and Parent, E. (1998) Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm. Journal of Hydrology, 211(1-4), 69-85. doi:10.1016/S0022-1694(98)00198-X
  • Leonard, R.A., Knisel, W.G. and Still, D.A. (1987) GLEAMS: Groundwater loading effects of agricultural management systems. Transactions of the ASAE, 30, 1403-1418. doi:10.13031/2013.30578
  • Marshall, L., Nott, D. and Sharma, A. (2004) A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resources Research, 40(2). doi:10.1029/2003WR002378
  • Monteith, J.L. (1965) Evaporation and the Environment. 19th Symposia of the Society for Experimental Biology, 19, 205-234.
  • Mulvaney, T.J. (1850) On the use of self-registering rain and flood gauges. Transactions of the Institution of Civil Engineers of Ireland, 4(2), 1-8.
  • Neitsch, S.L., Arnold, J.G., Kiniry, J.R. and Williams, J.R. (2011) Soil and Water Assessment Tool Theoretical Documentation. Temple, Texas 76502: USDA-153 ARS Grassland Soil and Water Research Laboratory, and Texas A&M University, Blackland Research and Extension Center.
  • Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Srinivasan, R. and Williams, J.R. (2012) Soil and Water Assessment Tool Input/Output File Documentation. Temple, Texas: USDA‐ARS: USDA‐ARS Grassland, Soil and Water Research Laboratory.
  • Oruç, H.N. (2021) Evaluating the effects of soil data quality on the swat model runoff prediction performance in a highly industrialized catchment; case study in Saz-Çayirova stream, Turkey, M.Sc. Thesis, Gebze Technical University Institute of Earth and Marine Science, Gebze.
  • Ozdemir, A. and Leloglu, U.M. (2018) A fast and automated hydrologic calibration tool for SWAT. Water and Environment Journal, 33(4), 488-498. doi:10.1111/wej.12419
  • Ozdemir, A., Leloglu, U.M. and Abbaspour, K.C. (2017) Hierarchical approach to hydrological model calibration. Environmental Earth Sciences, 76, 318. doi:10.1007/s12665-017-6560-6
  • Özcan, Z. (2016) Evaluation of the best management practices to control agricultural diffuse pollution in lake Mogan watershed with SWAT model. M.Sc. Thesis, Middle East Technical University Graduate School of Natural and Applied Sciences, Ankara.
  • Özcan, Z., Kentel, E. and Alp, E. (2016) Determination of unit nutrient loads for different land uses in wet periods through modelling and optimization for a semi-arid region. Journal of Hydrology, 540, 40-49. doi:10.1016/j.jhydrol.2016.05.074
  • Özcan, Z., Başkan, O., Düzgün, H.Ş., Kentel, E. and Alp, E. (2017a) A pollution fate and transport model application in a semi-arid region: Is some number better than no number? Science of the Total Environment, 595, 425-440. doi:10.1016/j.scitotenv.2017.03.240
  • Özcan, Z., Kentel, E. and Alp, E. (2017b) Evaluation of the best management practices in a semi-arid region with high agricultural activity. Agricultural Water Management, 194, 160-171. doi:10.1016/j.agwat.2017.09.007
  • Özdemir, A. (2021) İklim Değişikliğinin Havza Ölçeğinde Akım ve Sediman Miktarına Etkilerinin Değerlendirilmesi: Yuvacık Baraj Gölü Havzası, Jeoloji Mühendisliği Dergisi, 45(1), 129-154, doi:10.24232/jmd.941528
  • Özdemir, K. and Güngör, Ö. (2019) Filyos Çayı Havzasında SWAT Modelinin Uygulaması. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 1(2), 90-102.
  • Peker, I.B. and Sorman A.A. (2021) Application of SWAT Using Snow Data and Detecting Climate Change Impacts in the Mountainous Eastern Regions of Turkey. Water, 13(14), 1982. doi:10.3390/w13141982
  • Peker, İ.B. (2020) Türkiye'deki dağlık havzalarda uygulanan SWAT modeli ile iklim değişikliğinin incelenmesi, Yüksek Lisans Tezi, Eskişehir Teknik Üniversitesi Lisansüstü Eğitim Enstitüsü, Eskişehir.
  • Priestley, C.H.B. and Taylor, R.J. (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2), 81-92. doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  • Saddiqi, M. and Karpuzcu, M. (2019) Küçük Menderes Alt Havzası’nın SWAT ile Modellenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(4) , 55-70. doi:10.21605/cukurovaummfd.702065
  • Saddiqi, M.M. (2019) Modelling Kücük Menderes watershed using Soil and Water Assessment Tool (SWAT), M.Sc. Thesis, Istanbul Technical University Graduate School of Science Engineering and Technology, Istanbul.
  • Sarı, Ö. (2018) Aşağı Seyhan Havzası hidrolojik dinamiklerinin SWAT model yaklaşımı ile modellenmesi, Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Schuerz, C. (2019) chrisschuerz/SWATplusR: SWATplusR 0.2.7 (0.2.7). Zenodo. doi:10.5281/zenodo.3373859
  • Sertel, E., Imamoglu, M.Z., Cuceloglu, G. and Erturk, A. (2019) Impacts of Land Cover/Use Changes on Hydrological Processes in a Rapidly Urbanizing Mid-latitude Water Supply Catchment. Water, 11(5), 1075. doi:10.3390/w11051075
  • Singh, V.P. and Woolhiser, D.A., (2002) Mathematical Modeling of Watershed Hydrology. Journal of Hydrologic Engineering, 7(4), 270-292. doi:10.1061/(ASCE)1084-0699(2002)7:4(270)
  • Srinivasan, R. and Arnold, J.G. (1994) Integration of a basin-scale water quality model with GIS. Water Resources Bulletin, (30)3, 453-462. doi:10.1111/j.1752-1688.1994.tb03304.x
  • Swalih, S.A. and Kahya, E. (2020) Hydrological model optimization using multi-gauge calibration (MGC) in a mountainous region. Journal of Hydroinformatics, 23 (2): 340–351. doi:10.2166/hydro.2020.034
  • Tan, M.L., Gassman, P.W., Srinivasan, R., Arnold, J.G. and Yang, X. (2019) A Review of SWAT Studies in Southeast Asia: Applications, Challenges and Future Directions. Water, 11(5),914. doi:10.3390/w11050914
  • Tan, M.L., Gassman, P.W., Liang, J. and Haywood, J.M. (2021) A review of alternative climate products for SWAT modelling: Sources, assessment and future directions. Science of The Total Environment, 795, 148915 doi: 10.1016/j.scitotenv.2021.148915
  • Thakur, J.K., Singh, S.K. and Ekanthalu, V.S. (2016) Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling. Applied Water Science, 7(4), 1595–1608. doi:10.1007/s13201-016-0384-5
  • Tufekcioglu, M., Yavuz, M., Zaimes, G.N., Dinc, M., Koutalakis, P. and Tufekcioglu, A. (2017) Application of Soil Water Assessment Tool (SWAT) to suppress wildfire at Bayam Forest, Turkey. Journal of Environmental Biology, 38(5), 719-726. doi:10.22438/jeb/38/5/MRN-331
  • van Griensven, A. and Meixner, T. (2006) Methods to quantify and identify the sources of uncertainty for river basin water quality models. Water Science & Technology, 53(1), 51-59. doi:10.2166/wst.2006.00
  • van Griensven, A., Ndomba, P., Yalew, S., and Kilonzo, F. (2012) Critical review of SWAT applications in the upper Nile basin countries, Hydrology and Earth System Sciences, 16, 3371–3381, doi: 10.5194/hess-16-3371-2012
  • Vrugt, J.A., Gupta, H.V., Bouten, W. and Sorooshian, S. (2003) A shuffled complex evolution metropolis algorithm for estimating posterior distribution of watershed model parameters. In Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau, & R. Turcotte (Eds.), Calibration of Watershed Models (pp. 105-112): Washington DC: American Geophysical Union.
  • Williams, J.R. (1990) The Erosion-Productivity Impact Calculator (EPIC) Model: A Case History. Philosophical Transactions: Biological Sciences, 329(1255), 421-428. doi:10.1098/rstb.1990.0184
  • Yalcin, E. (2019) Estimation of irrigation return flow on monthly time resolution using SWAT model under limited data availability. Hydrological Sciences Journal, 64(13), 1588-1604. doi:10.1080/02626667.2019.1662025
  • Yalçın, E. (2020) Karlı Dağlık Bir Havzada Günlük ve Aylık Akım Değerlerinin SWAT Modeliyle Değerlendirilmesi: Bitlis Çayı Havzası Örneği. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(4). doi:10.35414/akufemubid.710126
  • Yang, J., Reichert, P., Abbaspour, K. C. and Yang, H. (2007) Hydrological modelling of the Chaohe Basin in China: Statistical model formulation and Bayesian inference. Journal of Hydrology, 340(3-4), 167-182. doi:10.1016/j.jhydrol.2007.04.006
  • Yen, H., Park, S., Arnold, J.G., Srinivasan, R., Chawanda, C.J., Wang, R., Feng, Q., Wu, J., Miao, C., Bieger, K., Daggupati, P., Griensven, A.v., Kalin, L., Lee, S., Sheshukov, A.Y., White, M.J., Yuan, Y., Yeo, I.-Y., Zhang, M. and Zhang, X. (2019) IPEAT+: A Built-In Optimization and Automatic Calibration Tool of SWAT+. Water, 11, 1681. doi:10.3390/w11081681
  • Yıldırımer, S. (2018) Borçka barajı havzasında su rejimi, su kalitesi ve sediment veriminin SWAT kullanarak belirlenmesi ve modellenmesi, Doktora Tezi, Artvin Çoruh Üniversitesi Fen Bilimleri Enstitüsü, Artvin.
  • Zaimes, G.N., Tufekcioglu, M., Tufekcioglu, A., Zibtsev, S., Corobov, R., Emmanouloudis, D., Uratu, R., Ghulijanyan, A., Borsuk, A. and Trombitsky, I. (2016) Transboundary Collaborations to Enhance Wildfire Suppression in Protected Areas of the Black Sea Region. Journal of Engineering Science and Technology Review, 9(1), 108-114. doi:10.25103/jetsr.092.18
There are 116 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering, Civil Engineering
Journal Section Derlemeler
Authors

İsmail Bilal Peker 0000-0001-9133-6797

Gokhan Cuceloglu 0000-0002-9534-250X

Publication Date May 31, 2022
Submission Date December 13, 2021
Published in Issue Year 2022 Volume: 23 Issue: 1

Cite

APA Peker, İ. B., & Cuceloglu, G. (2022). SWAT (Soil and Water Assessment Tool) Modeline Genel Bir Bakış ve Modelin Türkiye’deki Uygulamaları. Çevre İklim Ve Sürdürülebilirlik, 23(1), 9-26.