Review
BibTex RIS Cite

Döngüsel Ekonomi Kapsamında Evsel Atıksu Arıtma Tesislerinde Fosfor Geri Kazanımı Uygulamalarına Genel Bir Bakış

Year 2022, Volume: 23 Issue: 2, 117 - 132, 30.11.2022

Abstract

Güncel projeksiyon çalışmaları, insanlığın temel ihtiyacı olan ve büyük oranda tarım sektörü için gübre üretiminde kullanılan fosfora ait doğal kaynakların önümüzdeki birkaç yüzyıl içerisinde tükenebileceğini göstermektedir. Pek çok ülke fosfor ihtiyacını ithal yol ile karşılamaktadır ve tarımsal üretiminin devamlılığı için dışa bağımlıdır. Dolayısıyla ülkeler özellikle son yıllarda kendilerini bekleyen fosfor krizinin önlenmesine yönelik çeşitli adımlar atmaktadır. Günümüzde, döngüsel ekonomi, kaynak geri kazanımı odaklı atıksu arıtma tesisi (AAT) gibi konseptler, doğal kaynakların sürdürülebilir yönetiminin bir zaruret haline gelmesiyle önem kazanmıştır. Atıksular önemli miktarda fosfor ihtiva etmektedir. Bu yüzden AAT’lerde fosfor geri kazanımı sağlanarak doğal fosfor rezervlerinin sürdürülebilir yönetimine katkı sunulabilir. AAT’lerde geri kazanılan fosforlu nihai ürün, içerdiği toksik madde ve ağır metaller çevre ve insan sağlığı açısından risk teşkil etmediği müddetçe, tarım sektöründe gübre olarak değerlendirilebilir. Böylece birçok ülkenin ulusal hedefinde yer alan yeşil tarıma geçiş sürecine de katkı sunulmuş olur. AAT’lerde çamur, çamur külü, yan akımlar, arıtma çıkış suyu ve kaynağında ayrı toplanması durumunda idrar, yüksek fosfor geri kazanımı potansiyeli nedeniyle literatürde birçok farklı laboratuvar, pilot veya tam ölçekli çalışma kapsamında değerlendirilmiştir. Bu çalışmada belirtilen akımlarda fosfor geri kazanımına dair yapılan araştırmalar incelenerek derlenmiş ve kapsamlı bir değerlendirme yapılmıştır.

References

  • Agronomist, G. (1998). Phosphorus availability in the 21st century Management of a non- renewable resource. Cl, 1–13.
  • Amann, A., Zoboli, O., Krampe, J., Rechberger, H., Zessner, M., & Egle, L. (2018). Environmental impacts of phosphorus recovery from municipal wastewater. Resources, Conservation and Recycling, 130(December 2017), 127–139.
  • Atienza-Martìnez, M., Gea, G., Arauzo, J., Kersten, S., Koostra, M. (2014): Phosphorus recovery from sewage sludge ash. In: Biomass and Bioenergy 65 (42-50)
  • Bashar, R., Gungor, K., Karthikeyan, K. G., & Barak, P. (2018). Cost effectiveness of phosphorus removal processes in municipal wastewater treatment. Chemosphere, 197, 280–290.
  • Beler-Baykal, B., Allar, A. D., & Bayram, S. (2011). Nitrogen recovery from source-separated human urine using clinoptilolite and preliminary results of its use as fertilizer. Water Science and Technology, 63(4), 811–817. doi:10.2166/wst.2011.324
  • Bergmans B. (2011). Struvite Recovery from Digested Sludge. Thesis Master of Science in Civil Engineering. Delft University, Delft, Netherlands.
  • Blöcher, C., Niewersch, C., & Melin, T. (2012). Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration. Water Research, 46(6), 2009–2019. https://doi.org/10.1016/j.watres.2012.01.022
  • Britton, A., Koch, F. A., Mavinic, D. S., Adnan, A., Oldham, W. K., & Udala, B. (2005). Pilot-scale struvite recovery from anaerobic digester supernatant at an enhanced biological phosphorus removal wastewater treatment plant. Journal of Environmental Engineering and Science, 4(4), 265–277. https://doi.org/10.1139/s04-059
  • Cao, J., Wu, Y., Zhao, J., Jin, S., Aleem, M., Zhang, Q., & Fang, F. (2019). Bioresource Technology Phosphorus recovery as vivianite from waste activated sludge via optimizing iron source and pH value during anaerobic fermentation. Bioresource Technology, 293(August), 122088. https://doi.org/10.1016/j.biortech.2019.122088
  • Chen, Y., Lin, H., Yan, W., Huang, J., Wang, G., & Shen, N. (2019). Bioresource Technology Alkaline fermentation promotes organics and phosphorus recovery from polyaluminum chloride-enhanced primary sedimentation sludge. Bioresource Technology, 294(September), 122160. https://doi.org/10.1016/j.biortech.2019.122160
  • Chrispim, M. C., Scholz, M., & Nolasco, M. A. (2019). Phosphorus recovery from municipal wastewater treatment: Critical review of challenges and opportunities for developing countries. Journal of Environmental Management, 248(July), 109268. https://doi.org/10.1016/j.jenvman.2019.109268
  • Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. Journal of Cleaner Production, 142, 1728–1740. https://doi.org/10.1016/j.jclepro.2016.11.116
  • Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
  • Cooper, J., Lombardi, R., Boardman, D., & Carliell-marquet, C. (2011). Resources , Conservation and Recycling The future distribution and production of global phosphate rock reserves. “Resources, Conservation & Recycling,” 57(January), 78–86. https://doi.org/10.1016/j.resconrec.2011.09.009
  • De Boer, M. A., Romeo-Hall, A. G., Rooimans, T. M., & Slootweg, J. C. (2018). An assessment of the drivers and barriers for the deployment of urban phosphorus recovery technologies: A case study of the Netherlands. Sustainability (Switzerland), 10(6), 1–19. https://doi.org/10.3390/su10061790
  • De Boer, M.A.; Wolzak, L.; Slootweg, J.C. (2019). Phosphorus: Reserves, Production, and Applications. In Phosphorus Recovery and Recycling; Springer: Singapore, 2019; pp. 75–100; ISBN 9789811080319.
  • Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van Der Bruggen, B., Verstraete, W., Rabaey, K., & Meesschaert, B. (2015). Global phosphorus scarcity and full-scale P-recovery techniques: A review. Critical Reviews in Environmental Science and Technology, 45(4), 336–384. https://doi.org/10.1080/10643389.2013.866531
  • Donatello, S., Tong, D., & Cheeseman, C. R. (2010). Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA). Waste Management, 30(8–9), 1634–1642. https://doi.org/10.1016/j.wasman.2010.04.009
  • EC. (2019). Regulation (EU) 2019/1009 of the European Parliament and of the council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending regulations (EC) no 1069/2009 and (EC) no 1107/2009 and repealing regulation (EC) no 2003/2003 (text with EEA relevance). European Parlia- ment. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R1009:
  • Egle, L., Rechberger, H., Krampe, J., & Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Science of the Total Environment, 571, 522–542. https://doi.org/10.1016/j.scitotenv.2016.07.019
  • Egle, Lukas, Rechberger, H., & Zessner, M. (2015). Overview and description of technologies for recovering phosphorus from municipal wastewater. Resources, Conservation and Recycling, 105, 325–346. https://doi.org/10.1016/j.resconrec.2015.09.016
  • Gell, K., Ruijter, F. J. d., Kuntke, P., Graaff, M. de, & Smit, A. L. (2011). Safety and Effectiveness of Struvite from Black Water and Urine as a Phosphorus Fertilizer. Journal of Agricultural Science, 3(3), 67–80. https://doi.org/10.5539/jas.v3n3p67
  • Ghosh, S., Lobanov, S., & Lo, V. K. (2020). Chemical Engineering and Processing - Process Intensification Investigation of the impact of hydrodynamic parameters for phosphorus recovery from synthetic anaerobic digester supernatant in a fluidized bed reactor. Chemical Engineering and Processing - Process Intensification, 157(June), 108155. https://doi.org/10.1016/j.cep.2020.108155
  • Gundlach, J., Bryla, M., Larsen, T. A., Kristoferitsch, L., Gründl, H., & Holzner, M. (2021). Novel NoMix toilet concept for efficient separation of urine and feces and its design optimization using computational fluid mechanics. Journal of Building Engineering, 33(March 2020), 101500. https://doi.org/10.1016/j.jobe.2020.101500
  • Gutierrez, F., Kinney, K. A., & Katz, L. E. (2020). Phosphorus speciation in municipal wastewater solids and implications for phosphorus recovery. Environmental Engineering Science, 37(5), 316–327. https://doi.org/10.1089/ees.2019.0360
  • Heinzmann, B., Engel, G. (2003). Phosphorus Recycling in Treatment Plants with Biological Phosphorus Removal. Seminar German Federal Environment Ministry/RWTH Aachen. “Recovery of phosphorus in land management and from water and wastes” , 6–7 February 2003, Berlin.
  • International Biochar Initiative (IBI). (2015). Standardized Product Definition and Product Testing Guidelines for Biochar that Is Used in Soil (version number 2.1)
  • Irwin, J., & Forrester, L. (2019). Urine collection practices in a small rural hospital: Evaluation of alignment with antimicrobial stewardship guidelines. Canadian Journal of Infection Control, 34(1), 35–40. https://doi.org/10.36584/cjic.2019.005
  • Johir, M. A. H., George, J., Vigneswaran, S., Kandasamy, J., & Grasmick, A. (2011). Removal and recovery of nutrients by ion exchange from high rate membrane bio-reactor (MBR) effluent. Desalination, 275(1–3), 197–202. https://doi.org/10.1016/j.desal.2011.02.054
  • Jupp, A. R., Beijer, S., Narain, G. C., Schipper, W., & Slootweg, J. C. (2021). Phosphorus recovery and recycling-closing the loop. Chemical Society Reviews, 50(1), 87–101. https://doi.org/10.1039/d0cs01150a
  • Kalaitzidou, K., Mitrakas, M., Raptopoulou, C., Tolkou, A., Palasantza, P. A., & Zouboulis, A. (2016). Pilot-Scale Phosphate Recovery from Secondary Wastewater Effluents. Environmental Processes, 3, 5–22. https://doi.org/10.1007/s40710-016-0139-1
  • Kang, S. K., Choo, K. H., & Lim, K. H. (2003). Use of iron oxide particles as adsorbans to enhance phosphorus removal from secondary wastewater effluent. Separation Science and Technology, 38(15), 3853–3874. https://doi.org/10.1081/SS-120024236
  • Kirchmann, H., & Pettersson, S. (1994). Human urine - Chemical composition and fertilizer use efficiency. Fertilizer Research, 40(2), 149–154. https://doi.org/10.1007/BF00750100
  • Leong, H. Y., Chang, C. K., Khoo, K. S., Chew, K. W., Chia, S. R., Lim, J. W., Chang, J. S., & Show, P. L. (2021). Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues. Biotechnology for Biofuels, 14(1), 1–15. https://doi.org/10.1186/s13068-021-01939-5
  • Liberti, L., Petruzzelli, D., & De Florio, L. (2001). Rem nut ion exchange plus struvite precipitation process. Environmental Technology (United Kingdom), 22(11), 1313 1324.https://doi.org/10.1080/09593330409355443
  • Liu, H., Hu, G., Basar, I. A., Li, J., Lyczko, N., Nzihou, A., & Eskicioglu, C. (2021). Phosphorus recovery from municipal sludge-derived ash and hydrochar through wet-chemical technology: A review towards sustainable waste management. Chemical Engineering Journal, 417(January), 129300. https://doi.org/10.1016/j.cej.2021.129300
  • Liu, R., Wang, Y., Wu, G., Luo, J., & Wang, S. (2017). Development of a selective electrodialysis for nutrient recovery and desalination during secondary effluent treatment. Chemical Engineering Journal, 322, 224–233. https://doi.org/10.1016/j.cej.2017.03.149
  • Luyckx, L., & Van Caneghem, J. (2021). Recovery of phosphorus from sewage sludge ash: Influence of incineration temperature on ash mineralogy and related phosphorus and heavy metal extraction. Journal of Environmental Chemical Engineering, 9(6), 106471. https://doi.org/10.1016/j.jece.2021.106471
  • Ma, J., Yang, R., Yu, X., Zhao, Y., Sang, Q., Wang, F., & Chen, Y. (2020). Investigation of anaerobic side-stream phosphorus recovery and its effect on the performance of mainstream EBPR subjected to low-consumption. Water Science and Technology. doi:10.2166/wst.2020.014
  • Ma, P., & Rosen, C. (2021). Land application of sewage sludge incinerator ash for phosphorus recovery: A review. Chemosphere, 274, 129609. https://doi.org/10.1016/j.chemosphere.2021.129609
  • Maurer, M., & Gujer, W. (1999). Kinetics of biologically induced phosphorus precipitation in wastewater treatment. Water Research. 33(2), 484–493.
  • Mavinic, D. S., Koch, F. A., Huang, H., & Lo, K. V. (2007). Phosphorus recovery from anaerobic digester supernatants using a pilot-scale struvite crystallization process. Journal of Environmental Engineering and Science, 6(5), 561–571. https://doi.org/10.1139/S07-007
  • Metcalf, I., Eddy, H., (2003). Wastewater Engineering: Treatment and Reuse. McGraw- Hill, New York.
  • Meyer, C., Preyl, V., Steinmetz, H., Maier, W., Mohn, R.-E., Schönberger H., Piersson, T. (2018): The Stuttgart Process. In: Schaum, Chr. (editor) Phosphorus: Polluter and Resource of the Future: Removal and Recovery fromWastewater, IWA Publishing, ISBN13: 9781780408354, eISBN: 9781780408361.
  • Midorikawa, I., Aoki, H., Omori, A., Shimizu, T., Kawaguchi, Y., Kassai, K., & Murakami, T. (2008). Recovery of high purity phosphorus from municipal wastewater secondary effluent by a high-speed adsorban. 1601–1608. https://doi.org/10.2166/wst.2008.537
  • Moreno, J., & Espada, J. J. (2020). treatment systems for sludge. In Wastewater Treatment Residues as Resources for Biorefinery Products and Energy. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816204-0.00010-2
  • Muys, M., Phukan, R., Brader, G., Samad, A., Moretti, M., Haiden, B., Pluchon, S., Roest, K., Vlaeminck, S. E., & Spiller, M. (2021). A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability. Science of the Total Environment, 756, 143726. https://doi.org/10.1016/j.scitotenv.2020.143726
  • Münch, E.V., Barr, K., 2001. Controlled struvite crystallisation for removing phos- phorus from anaerobic digester sidestreams. Water Res. 35 (1), 151e159.
  • Naji F., Drenkova-Tuhtan A., Rapf M., Meyer C., Steinmetz H., Kranert M. (2016). Phosphorus recovery from wastewater, sewage sludge and sewage sludge ash. Indo-German Conference on Sustainability. DOI: 10.13140/RG.2.1.3427.8166.
  • Nättorp, A., Remmen, K., & Remy, C. (2017). Cost assessment of different routes for phosphorus recovery from wastewater using data from pilot and production plants. Water Science and Technology, 76(2), 413–424. https://doi.org/10.2166/wst.2017.212
  • Neczaj, E., & Grosser, A. (2018). Circular Economy in Wastewater Treatment Plant – Challenges and Barriers†.https://doi.org/10.3390/proceedings2110614
  • Nieminen, J. (2010). Phosphorus recovery and recycling from municipal wastewater sludge. A Master of Science thesis Submitted for inspection in Espoo.
  • Nir, O., Sengpiel, R., & Wessling, M. (2018). Closing the cycle: Phosphorus removal and recovery from diluted effluents using acid resistive membranes. Chemical Engineering Journal, 346(March), 640–648. https://doi.org/10.1016/j.cej.2018.03.181
  • Ohura, S., Harada, H., Biswas, B. K., Kondo, M., Ishikawa, S., Kawakita, H., Ohto, K., & Inoue, K. (2011). Phosphorus recovery from secondary effluent and side-stream liquid in a sewage treatment plant using zirconium-loaded saponified orange waste. Journal of Material Cycles and Waste Management, 13(4), 293–297. https://doi.org/10.1007/s10163-011-0029-6
  • Ortwein, B. (2018). AirPrex® sludge optimization and struvite recovery from digested sludge in Phosphorus: Polluter and Resource of the Future. IWA Publishing. Chapter17.https://doi.org/10.2166/9781780408361_343.
  • Ott, C., & Rechberger, H. (2012). The European phosphorus balance. Resources, Conservation and Recycling, 60, 159–172. https://doi.org/10.1016/j.resconrec.2011.12.007
  • Öztürk İ., Şeker., M. (2021). Marmara Denizi'nin Ekolojisi: Deniz salyası oluşumu etkileşimleri ve çözüm önerileri, Türkiye Bilimler Akademisi. ISBN: 978-605-2249-73-4
  • Pacurariu, R. L., Vatca, S. D., Lakatos, E. S., Bacali, L., & Vlad, M. (2021). A critical review of eu key indicators for the transition to the circular economy. International Journal of Environmental Research and Public Health, 18(16). https://doi.org/10.3390/ijerph18168840
  • Perera, M. K., Englehardt, J. D., & Dvorak, A. C. (2019). Technologies for Recovering Nutrients from Wastewater: A Critical Review. Environmental Engineering Science, 36(5), 511–529. https://doi.org/10.1089/ees.2018.0436
  • Petzet, S., Peplinski, B., Bodkhe, S. Y., & Cornel, P. (2011). Recovery of phosphorus and aluminium from sewage sludge ash by a new wet chemical elution process (SESAL-Phos-recovery process). Water Science and Technology, 64(3), 693–699. https://doi.org/10.2166/wst.2011.682
  • Petzet, S., Peplinski, B., & Cornel, P. (2012). On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Research, 46(12), 3769–3780. https://doi.org/10.1016/j.watres.2012.03.068
  • Pott, R., Johnstone-robertson, M., & Verster, B. (2018). Wastewater Biorefineries : Integrating Water Treatment and Value Recovery Wastewater Biore fi neries : Integrating Water Treatment and Value Recovery. November 2020. https://doi.org/10.1007/978-3-319-63612-2
  • Ribarova, I., Dimitrova, S., Lambeva, R., Wintgens, T., Stemann, J., & Remmen, K. (2017). Phosphorus recovery potential in Sofia WWTP in view of the national sludge management strategy. Resources, Conservation and Recycling, 116, 152–159. https://doi.org/10.1016/j.resconrec.2016.10.003
  • Saerens, B., Geerts, S., & Weemaes, M. (2021). Phosphorus recovery as struvite from digested sludge – experience from the full scale. Journal of Environmental Management, 280(February 2020), 111743. https://doi.org/10.1016/j.jenvman.2020.111743
  • Salehi, S., Yu, K., Heitz, A., & Ginige, M. P. (2018). Re-visiting the Phostrip process to recover phosphorus from municipal wastewater. Chemical Engineering Journal, 343(December 2017), 390–398. https://doi.org/10.1016/j.cej.2018.02.074
  • Semerci, N., Ahadi S., Coşgun S. (2021). Comparison of dried sludge and sludge ash for phosphorus recovery with acidic and alkaline leaching. 359–370. https://doi.org/10.1111/wej.12633
  • Schaum, C. (2018). Phosphorus: Polluter and Resource of the Future - Removal and Recovery from Wastewater. Water Intelligence Online, 17, 9781780408361. https://doi.org/10.2166/9781780408361
  • Schroder, J. J., Cordell, D., Smit, A. L., & Rosemarin, A. (October 2010). Sustainable use of phosphorous. Plant Research International, Retrieved from http://ec.europa.eu/environment/natres/pdf/sustainable_use_phosphorus.pdf
  • Schütte, T., Niewersch, C., Wintgens, T., & Yüce, S. (2015). Phosphorus recovery from sewage sludge by nanofiltration in diafiltration mode. Journal of Membrane Science, 480, 74–82. https://doi.org/10.1016/j.memsci.2015.01.013
  • Shu, L., Schneider, P., Jegatheesan, V., & Johnson, J. (2006). An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresource Technology, 97(17), 2211–2216. https://doi.org/10.1016/j.biortech.2005.11.005
  • Smit, A.L., Bindraban, P.S., Schröder, J.J., Conjin, J.G., Meer, H.G. (2009). Phosphorus in agriculture: global resources, trends and developments. Plant Research International B.V., Wageningen Report 282.
  • Simha, P., Karlsson, C., Viskari, E. L., Malila, R., & Vinnerås, B. (2020). Field Testing a Pilot-Scale System for Alkaline Dehydration of Source-Separated Human Urine: A Case Study in Finland. Frontiers in Environmental Science, 8(September), 1–10. https://doi.org/10.3389/fenvs.2020.570637
  • Singh, R. P., & Agrawal, M. (2008). Potential benefits and risks of land application of sewage sludge. 28, 347–358. https://doi.org/10.1016/j.wasman.2006.12.010
  • Soares, A., Czajkowska, J., Colprim, J., Gali, A., Johansson, S., Masic, A., Marchi, A., McLeod, A., Nenov, V., Ruscalleda, M., & Siwiec, T. (2017). Nutrients recovery from wastewater streams. Innovative Wastewater Treatment & Resource Recovery Technologies: Impacts on Energy, Economy and Environment, 369–398. https://doi.org/10.2166/9781780407876_0369
  • Stitt B., Goss T., Moncholi M., Abu-Orf M., Diaz I. (2017) Enhanced Dewatering with Struvite Recovery: Pilot Testing of AirPrex® Technology at Miami’s South District WWTP. Proceedings of the Water Environment Federation · January 2017, 139-154.
  • Tchobanoglous, G., Burton, F.L., Stensel, H.D., Tsuchihashi, R., Burton, F. (2014). Wastewater Engineering: Treatment and Resource Recovery, 5th Edition, Metcalf & Eddy Inc., McGraw-Hill, New York, 2014.
  • Thurston, A. (2015). The disappearing nutrient. Nature, 163(4), 310.
  • van der Hoek, J. P., Struker, A., & de Danschutter, J. E. M. (2017). Amsterdam as a sustainable European metropolis: integration of water, energy and material flows. Urban Water Journal, 14(1), 61–68. https://doi.org/10.1080/1573062X.2015.1076858
  • Vanotti M.B., Dube P.J., Szogi A.A., Garcia-Gonzalez M.C. (2017). Recovery of ammonia and production of high-grade phosphates from side stream digester effluents using gas permeable membranes, in Lecture notes in civil engineering, Springer. ISSN 2366-2565.
  • Vasenko, L., Bonnemain-fernandes, A., Malwade, C., & Qu, H. (2020). Environmental Science Water Research & Technology via a two-step process of ozonation and. 817–828. https://doi.org/10.1039/c9ew00994a
  • Verster, B., Minnaar, S., & Cohen, B. (2014). Introducing the Wastewater Biorefinery Concept: A scoping study of poly-glutamic acid production from a Bacillus -rich mixed culture using municipal wastewater. In Water Research Comission (Issue April). https://doi.org/10.13140/RG.2.1.3120.9688
  • Wei, X., Viadero, R. C., & Bhojappa, S. (2008). Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants. Water Research, 42(13), 3275–3284. https://doi.org/10.1016/j.watres.2008.04.005
  • Wei, S. P., van Rossum, F., van de Pol, G. J., & Winkler, M. K. H. (2018). Recovery of phosphorus and nitrogen from human urine by struvite precipitation, air stripping and acid scrubbing: A pilot study. Chemosphere, 212, 1030–1037. https://doi.org/10.1016/j.chemosphere.2018.08.154
  • World Bank. (2022). World Bank commodity markets data. https://thedocs.worldbank.org/en/doc/5d903e84db1d1b83e0ec8f744e555700350012021/related/CMO-Historical-Data-Annual.xlsx.
  • Xavier LD, Cammarota MC, Yokoyama L, Volschan I (2014) Study of the recovery of phosphorus from struvite precipitation in supernatant line from anaerobic digesters of sludge. Water Sci Technol Water Supply 14:751–757. https://doi.org/10.2166/ws.2014.033
  • Xia, W. J., Xu, L. Z. J., Yu, L. Q., Zhang, Q., Zhao, Y. H., Xiong, J. R., Zhu, X. Y., Fan, N. S., Huang, B. C., & Jin, R. C. (2020). Conversion of municipal wastewater-derived waste to an adsorbent for phosphorus recovery from secondary effluent. Science of the Total Environment, 705, 135959. https://doi.org/10.1016/j.scitotenv.2019.135959
  • Xiao-jun, Y., Wen-qing, T., Ying, D., Yu-qi, C., Ya-e, W., Zhi-long, W., & Li, J. (2021). Journal of Water Process Engineering Nutrient removal and phosphorus recovery performance of an anaerobic side-stream extraction based enhanced biological phosphorus removal subjected to low dissolved oxygen. Journal of Water Process Engineering, 42(December 2020), 101861. https://doi.org/10.1016/j.jwpe.2020.101861
  • Xiao, X., Liu, S., Zhang, X., & Zheng, S. (2017). Phosphorus removal and recovery from secondary effluent in sewage treatment plant by magnetite mineral microparticles. Powder Technology, 306, 68–73. https://doi.org/10.1016/j.powtec.2016.10.066
  • Xie, M., Nghiem, L. D., Price, W. E., & Elimelech, M. (2014). Toward Resource Recovery from Wastewater: Extraction of Phosphorus from Digested Sludge Using a Hybrid Forward Osmosis − Membrane Distillation Process.
  • Xu, H., He, P., Gu, W., Wang, G., & Shao, L. (2012). Recovery of phosphorus as struvite from sewage sludge ash. Journal of Environmental Sciences, 24(8), 1533–1538.https://doi.org/10.1016/S1001-0742(11)60969-8
  • Yu, B., Luo, J., Xie, H., Yang, H., Chen, S., Liu, J., Zhang, R., & Li, Y. (2021). Species , fractions , and characterization of phosphorus in sewage sludge : A critical review from the perspective of recovery. Science of the Total Environment, 786, 147437. https://doi.org/10.1016/j.scitotenv.2021.147437
  • Zoboli, O., Zessner, M., & Rechberger, H. (2016). Science of the Total Environment Supporting phosphorus management in Austria : Potential , priorities and limitations. Science of the Total Environment, 565, 313–323. https://doi.org/10.1016/j.scitotenv.2016.04.171
Year 2022, Volume: 23 Issue: 2, 117 - 132, 30.11.2022

Abstract

References

  • Agronomist, G. (1998). Phosphorus availability in the 21st century Management of a non- renewable resource. Cl, 1–13.
  • Amann, A., Zoboli, O., Krampe, J., Rechberger, H., Zessner, M., & Egle, L. (2018). Environmental impacts of phosphorus recovery from municipal wastewater. Resources, Conservation and Recycling, 130(December 2017), 127–139.
  • Atienza-Martìnez, M., Gea, G., Arauzo, J., Kersten, S., Koostra, M. (2014): Phosphorus recovery from sewage sludge ash. In: Biomass and Bioenergy 65 (42-50)
  • Bashar, R., Gungor, K., Karthikeyan, K. G., & Barak, P. (2018). Cost effectiveness of phosphorus removal processes in municipal wastewater treatment. Chemosphere, 197, 280–290.
  • Beler-Baykal, B., Allar, A. D., & Bayram, S. (2011). Nitrogen recovery from source-separated human urine using clinoptilolite and preliminary results of its use as fertilizer. Water Science and Technology, 63(4), 811–817. doi:10.2166/wst.2011.324
  • Bergmans B. (2011). Struvite Recovery from Digested Sludge. Thesis Master of Science in Civil Engineering. Delft University, Delft, Netherlands.
  • Blöcher, C., Niewersch, C., & Melin, T. (2012). Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration. Water Research, 46(6), 2009–2019. https://doi.org/10.1016/j.watres.2012.01.022
  • Britton, A., Koch, F. A., Mavinic, D. S., Adnan, A., Oldham, W. K., & Udala, B. (2005). Pilot-scale struvite recovery from anaerobic digester supernatant at an enhanced biological phosphorus removal wastewater treatment plant. Journal of Environmental Engineering and Science, 4(4), 265–277. https://doi.org/10.1139/s04-059
  • Cao, J., Wu, Y., Zhao, J., Jin, S., Aleem, M., Zhang, Q., & Fang, F. (2019). Bioresource Technology Phosphorus recovery as vivianite from waste activated sludge via optimizing iron source and pH value during anaerobic fermentation. Bioresource Technology, 293(August), 122088. https://doi.org/10.1016/j.biortech.2019.122088
  • Chen, Y., Lin, H., Yan, W., Huang, J., Wang, G., & Shen, N. (2019). Bioresource Technology Alkaline fermentation promotes organics and phosphorus recovery from polyaluminum chloride-enhanced primary sedimentation sludge. Bioresource Technology, 294(September), 122160. https://doi.org/10.1016/j.biortech.2019.122160
  • Chrispim, M. C., Scholz, M., & Nolasco, M. A. (2019). Phosphorus recovery from municipal wastewater treatment: Critical review of challenges and opportunities for developing countries. Journal of Environmental Management, 248(July), 109268. https://doi.org/10.1016/j.jenvman.2019.109268
  • Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. Journal of Cleaner Production, 142, 1728–1740. https://doi.org/10.1016/j.jclepro.2016.11.116
  • Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
  • Cooper, J., Lombardi, R., Boardman, D., & Carliell-marquet, C. (2011). Resources , Conservation and Recycling The future distribution and production of global phosphate rock reserves. “Resources, Conservation & Recycling,” 57(January), 78–86. https://doi.org/10.1016/j.resconrec.2011.09.009
  • De Boer, M. A., Romeo-Hall, A. G., Rooimans, T. M., & Slootweg, J. C. (2018). An assessment of the drivers and barriers for the deployment of urban phosphorus recovery technologies: A case study of the Netherlands. Sustainability (Switzerland), 10(6), 1–19. https://doi.org/10.3390/su10061790
  • De Boer, M.A.; Wolzak, L.; Slootweg, J.C. (2019). Phosphorus: Reserves, Production, and Applications. In Phosphorus Recovery and Recycling; Springer: Singapore, 2019; pp. 75–100; ISBN 9789811080319.
  • Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van Der Bruggen, B., Verstraete, W., Rabaey, K., & Meesschaert, B. (2015). Global phosphorus scarcity and full-scale P-recovery techniques: A review. Critical Reviews in Environmental Science and Technology, 45(4), 336–384. https://doi.org/10.1080/10643389.2013.866531
  • Donatello, S., Tong, D., & Cheeseman, C. R. (2010). Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA). Waste Management, 30(8–9), 1634–1642. https://doi.org/10.1016/j.wasman.2010.04.009
  • EC. (2019). Regulation (EU) 2019/1009 of the European Parliament and of the council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending regulations (EC) no 1069/2009 and (EC) no 1107/2009 and repealing regulation (EC) no 2003/2003 (text with EEA relevance). European Parlia- ment. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R1009:
  • Egle, L., Rechberger, H., Krampe, J., & Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Science of the Total Environment, 571, 522–542. https://doi.org/10.1016/j.scitotenv.2016.07.019
  • Egle, Lukas, Rechberger, H., & Zessner, M. (2015). Overview and description of technologies for recovering phosphorus from municipal wastewater. Resources, Conservation and Recycling, 105, 325–346. https://doi.org/10.1016/j.resconrec.2015.09.016
  • Gell, K., Ruijter, F. J. d., Kuntke, P., Graaff, M. de, & Smit, A. L. (2011). Safety and Effectiveness of Struvite from Black Water and Urine as a Phosphorus Fertilizer. Journal of Agricultural Science, 3(3), 67–80. https://doi.org/10.5539/jas.v3n3p67
  • Ghosh, S., Lobanov, S., & Lo, V. K. (2020). Chemical Engineering and Processing - Process Intensification Investigation of the impact of hydrodynamic parameters for phosphorus recovery from synthetic anaerobic digester supernatant in a fluidized bed reactor. Chemical Engineering and Processing - Process Intensification, 157(June), 108155. https://doi.org/10.1016/j.cep.2020.108155
  • Gundlach, J., Bryla, M., Larsen, T. A., Kristoferitsch, L., Gründl, H., & Holzner, M. (2021). Novel NoMix toilet concept for efficient separation of urine and feces and its design optimization using computational fluid mechanics. Journal of Building Engineering, 33(March 2020), 101500. https://doi.org/10.1016/j.jobe.2020.101500
  • Gutierrez, F., Kinney, K. A., & Katz, L. E. (2020). Phosphorus speciation in municipal wastewater solids and implications for phosphorus recovery. Environmental Engineering Science, 37(5), 316–327. https://doi.org/10.1089/ees.2019.0360
  • Heinzmann, B., Engel, G. (2003). Phosphorus Recycling in Treatment Plants with Biological Phosphorus Removal. Seminar German Federal Environment Ministry/RWTH Aachen. “Recovery of phosphorus in land management and from water and wastes” , 6–7 February 2003, Berlin.
  • International Biochar Initiative (IBI). (2015). Standardized Product Definition and Product Testing Guidelines for Biochar that Is Used in Soil (version number 2.1)
  • Irwin, J., & Forrester, L. (2019). Urine collection practices in a small rural hospital: Evaluation of alignment with antimicrobial stewardship guidelines. Canadian Journal of Infection Control, 34(1), 35–40. https://doi.org/10.36584/cjic.2019.005
  • Johir, M. A. H., George, J., Vigneswaran, S., Kandasamy, J., & Grasmick, A. (2011). Removal and recovery of nutrients by ion exchange from high rate membrane bio-reactor (MBR) effluent. Desalination, 275(1–3), 197–202. https://doi.org/10.1016/j.desal.2011.02.054
  • Jupp, A. R., Beijer, S., Narain, G. C., Schipper, W., & Slootweg, J. C. (2021). Phosphorus recovery and recycling-closing the loop. Chemical Society Reviews, 50(1), 87–101. https://doi.org/10.1039/d0cs01150a
  • Kalaitzidou, K., Mitrakas, M., Raptopoulou, C., Tolkou, A., Palasantza, P. A., & Zouboulis, A. (2016). Pilot-Scale Phosphate Recovery from Secondary Wastewater Effluents. Environmental Processes, 3, 5–22. https://doi.org/10.1007/s40710-016-0139-1
  • Kang, S. K., Choo, K. H., & Lim, K. H. (2003). Use of iron oxide particles as adsorbans to enhance phosphorus removal from secondary wastewater effluent. Separation Science and Technology, 38(15), 3853–3874. https://doi.org/10.1081/SS-120024236
  • Kirchmann, H., & Pettersson, S. (1994). Human urine - Chemical composition and fertilizer use efficiency. Fertilizer Research, 40(2), 149–154. https://doi.org/10.1007/BF00750100
  • Leong, H. Y., Chang, C. K., Khoo, K. S., Chew, K. W., Chia, S. R., Lim, J. W., Chang, J. S., & Show, P. L. (2021). Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues. Biotechnology for Biofuels, 14(1), 1–15. https://doi.org/10.1186/s13068-021-01939-5
  • Liberti, L., Petruzzelli, D., & De Florio, L. (2001). Rem nut ion exchange plus struvite precipitation process. Environmental Technology (United Kingdom), 22(11), 1313 1324.https://doi.org/10.1080/09593330409355443
  • Liu, H., Hu, G., Basar, I. A., Li, J., Lyczko, N., Nzihou, A., & Eskicioglu, C. (2021). Phosphorus recovery from municipal sludge-derived ash and hydrochar through wet-chemical technology: A review towards sustainable waste management. Chemical Engineering Journal, 417(January), 129300. https://doi.org/10.1016/j.cej.2021.129300
  • Liu, R., Wang, Y., Wu, G., Luo, J., & Wang, S. (2017). Development of a selective electrodialysis for nutrient recovery and desalination during secondary effluent treatment. Chemical Engineering Journal, 322, 224–233. https://doi.org/10.1016/j.cej.2017.03.149
  • Luyckx, L., & Van Caneghem, J. (2021). Recovery of phosphorus from sewage sludge ash: Influence of incineration temperature on ash mineralogy and related phosphorus and heavy metal extraction. Journal of Environmental Chemical Engineering, 9(6), 106471. https://doi.org/10.1016/j.jece.2021.106471
  • Ma, J., Yang, R., Yu, X., Zhao, Y., Sang, Q., Wang, F., & Chen, Y. (2020). Investigation of anaerobic side-stream phosphorus recovery and its effect on the performance of mainstream EBPR subjected to low-consumption. Water Science and Technology. doi:10.2166/wst.2020.014
  • Ma, P., & Rosen, C. (2021). Land application of sewage sludge incinerator ash for phosphorus recovery: A review. Chemosphere, 274, 129609. https://doi.org/10.1016/j.chemosphere.2021.129609
  • Maurer, M., & Gujer, W. (1999). Kinetics of biologically induced phosphorus precipitation in wastewater treatment. Water Research. 33(2), 484–493.
  • Mavinic, D. S., Koch, F. A., Huang, H., & Lo, K. V. (2007). Phosphorus recovery from anaerobic digester supernatants using a pilot-scale struvite crystallization process. Journal of Environmental Engineering and Science, 6(5), 561–571. https://doi.org/10.1139/S07-007
  • Metcalf, I., Eddy, H., (2003). Wastewater Engineering: Treatment and Reuse. McGraw- Hill, New York.
  • Meyer, C., Preyl, V., Steinmetz, H., Maier, W., Mohn, R.-E., Schönberger H., Piersson, T. (2018): The Stuttgart Process. In: Schaum, Chr. (editor) Phosphorus: Polluter and Resource of the Future: Removal and Recovery fromWastewater, IWA Publishing, ISBN13: 9781780408354, eISBN: 9781780408361.
  • Midorikawa, I., Aoki, H., Omori, A., Shimizu, T., Kawaguchi, Y., Kassai, K., & Murakami, T. (2008). Recovery of high purity phosphorus from municipal wastewater secondary effluent by a high-speed adsorban. 1601–1608. https://doi.org/10.2166/wst.2008.537
  • Moreno, J., & Espada, J. J. (2020). treatment systems for sludge. In Wastewater Treatment Residues as Resources for Biorefinery Products and Energy. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816204-0.00010-2
  • Muys, M., Phukan, R., Brader, G., Samad, A., Moretti, M., Haiden, B., Pluchon, S., Roest, K., Vlaeminck, S. E., & Spiller, M. (2021). A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability. Science of the Total Environment, 756, 143726. https://doi.org/10.1016/j.scitotenv.2020.143726
  • Münch, E.V., Barr, K., 2001. Controlled struvite crystallisation for removing phos- phorus from anaerobic digester sidestreams. Water Res. 35 (1), 151e159.
  • Naji F., Drenkova-Tuhtan A., Rapf M., Meyer C., Steinmetz H., Kranert M. (2016). Phosphorus recovery from wastewater, sewage sludge and sewage sludge ash. Indo-German Conference on Sustainability. DOI: 10.13140/RG.2.1.3427.8166.
  • Nättorp, A., Remmen, K., & Remy, C. (2017). Cost assessment of different routes for phosphorus recovery from wastewater using data from pilot and production plants. Water Science and Technology, 76(2), 413–424. https://doi.org/10.2166/wst.2017.212
  • Neczaj, E., & Grosser, A. (2018). Circular Economy in Wastewater Treatment Plant – Challenges and Barriers†.https://doi.org/10.3390/proceedings2110614
  • Nieminen, J. (2010). Phosphorus recovery and recycling from municipal wastewater sludge. A Master of Science thesis Submitted for inspection in Espoo.
  • Nir, O., Sengpiel, R., & Wessling, M. (2018). Closing the cycle: Phosphorus removal and recovery from diluted effluents using acid resistive membranes. Chemical Engineering Journal, 346(March), 640–648. https://doi.org/10.1016/j.cej.2018.03.181
  • Ohura, S., Harada, H., Biswas, B. K., Kondo, M., Ishikawa, S., Kawakita, H., Ohto, K., & Inoue, K. (2011). Phosphorus recovery from secondary effluent and side-stream liquid in a sewage treatment plant using zirconium-loaded saponified orange waste. Journal of Material Cycles and Waste Management, 13(4), 293–297. https://doi.org/10.1007/s10163-011-0029-6
  • Ortwein, B. (2018). AirPrex® sludge optimization and struvite recovery from digested sludge in Phosphorus: Polluter and Resource of the Future. IWA Publishing. Chapter17.https://doi.org/10.2166/9781780408361_343.
  • Ott, C., & Rechberger, H. (2012). The European phosphorus balance. Resources, Conservation and Recycling, 60, 159–172. https://doi.org/10.1016/j.resconrec.2011.12.007
  • Öztürk İ., Şeker., M. (2021). Marmara Denizi'nin Ekolojisi: Deniz salyası oluşumu etkileşimleri ve çözüm önerileri, Türkiye Bilimler Akademisi. ISBN: 978-605-2249-73-4
  • Pacurariu, R. L., Vatca, S. D., Lakatos, E. S., Bacali, L., & Vlad, M. (2021). A critical review of eu key indicators for the transition to the circular economy. International Journal of Environmental Research and Public Health, 18(16). https://doi.org/10.3390/ijerph18168840
  • Perera, M. K., Englehardt, J. D., & Dvorak, A. C. (2019). Technologies for Recovering Nutrients from Wastewater: A Critical Review. Environmental Engineering Science, 36(5), 511–529. https://doi.org/10.1089/ees.2018.0436
  • Petzet, S., Peplinski, B., Bodkhe, S. Y., & Cornel, P. (2011). Recovery of phosphorus and aluminium from sewage sludge ash by a new wet chemical elution process (SESAL-Phos-recovery process). Water Science and Technology, 64(3), 693–699. https://doi.org/10.2166/wst.2011.682
  • Petzet, S., Peplinski, B., & Cornel, P. (2012). On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Research, 46(12), 3769–3780. https://doi.org/10.1016/j.watres.2012.03.068
  • Pott, R., Johnstone-robertson, M., & Verster, B. (2018). Wastewater Biorefineries : Integrating Water Treatment and Value Recovery Wastewater Biore fi neries : Integrating Water Treatment and Value Recovery. November 2020. https://doi.org/10.1007/978-3-319-63612-2
  • Ribarova, I., Dimitrova, S., Lambeva, R., Wintgens, T., Stemann, J., & Remmen, K. (2017). Phosphorus recovery potential in Sofia WWTP in view of the national sludge management strategy. Resources, Conservation and Recycling, 116, 152–159. https://doi.org/10.1016/j.resconrec.2016.10.003
  • Saerens, B., Geerts, S., & Weemaes, M. (2021). Phosphorus recovery as struvite from digested sludge – experience from the full scale. Journal of Environmental Management, 280(February 2020), 111743. https://doi.org/10.1016/j.jenvman.2020.111743
  • Salehi, S., Yu, K., Heitz, A., & Ginige, M. P. (2018). Re-visiting the Phostrip process to recover phosphorus from municipal wastewater. Chemical Engineering Journal, 343(December 2017), 390–398. https://doi.org/10.1016/j.cej.2018.02.074
  • Semerci, N., Ahadi S., Coşgun S. (2021). Comparison of dried sludge and sludge ash for phosphorus recovery with acidic and alkaline leaching. 359–370. https://doi.org/10.1111/wej.12633
  • Schaum, C. (2018). Phosphorus: Polluter and Resource of the Future - Removal and Recovery from Wastewater. Water Intelligence Online, 17, 9781780408361. https://doi.org/10.2166/9781780408361
  • Schroder, J. J., Cordell, D., Smit, A. L., & Rosemarin, A. (October 2010). Sustainable use of phosphorous. Plant Research International, Retrieved from http://ec.europa.eu/environment/natres/pdf/sustainable_use_phosphorus.pdf
  • Schütte, T., Niewersch, C., Wintgens, T., & Yüce, S. (2015). Phosphorus recovery from sewage sludge by nanofiltration in diafiltration mode. Journal of Membrane Science, 480, 74–82. https://doi.org/10.1016/j.memsci.2015.01.013
  • Shu, L., Schneider, P., Jegatheesan, V., & Johnson, J. (2006). An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresource Technology, 97(17), 2211–2216. https://doi.org/10.1016/j.biortech.2005.11.005
  • Smit, A.L., Bindraban, P.S., Schröder, J.J., Conjin, J.G., Meer, H.G. (2009). Phosphorus in agriculture: global resources, trends and developments. Plant Research International B.V., Wageningen Report 282.
  • Simha, P., Karlsson, C., Viskari, E. L., Malila, R., & Vinnerås, B. (2020). Field Testing a Pilot-Scale System for Alkaline Dehydration of Source-Separated Human Urine: A Case Study in Finland. Frontiers in Environmental Science, 8(September), 1–10. https://doi.org/10.3389/fenvs.2020.570637
  • Singh, R. P., & Agrawal, M. (2008). Potential benefits and risks of land application of sewage sludge. 28, 347–358. https://doi.org/10.1016/j.wasman.2006.12.010
  • Soares, A., Czajkowska, J., Colprim, J., Gali, A., Johansson, S., Masic, A., Marchi, A., McLeod, A., Nenov, V., Ruscalleda, M., & Siwiec, T. (2017). Nutrients recovery from wastewater streams. Innovative Wastewater Treatment & Resource Recovery Technologies: Impacts on Energy, Economy and Environment, 369–398. https://doi.org/10.2166/9781780407876_0369
  • Stitt B., Goss T., Moncholi M., Abu-Orf M., Diaz I. (2017) Enhanced Dewatering with Struvite Recovery: Pilot Testing of AirPrex® Technology at Miami’s South District WWTP. Proceedings of the Water Environment Federation · January 2017, 139-154.
  • Tchobanoglous, G., Burton, F.L., Stensel, H.D., Tsuchihashi, R., Burton, F. (2014). Wastewater Engineering: Treatment and Resource Recovery, 5th Edition, Metcalf & Eddy Inc., McGraw-Hill, New York, 2014.
  • Thurston, A. (2015). The disappearing nutrient. Nature, 163(4), 310.
  • van der Hoek, J. P., Struker, A., & de Danschutter, J. E. M. (2017). Amsterdam as a sustainable European metropolis: integration of water, energy and material flows. Urban Water Journal, 14(1), 61–68. https://doi.org/10.1080/1573062X.2015.1076858
  • Vanotti M.B., Dube P.J., Szogi A.A., Garcia-Gonzalez M.C. (2017). Recovery of ammonia and production of high-grade phosphates from side stream digester effluents using gas permeable membranes, in Lecture notes in civil engineering, Springer. ISSN 2366-2565.
  • Vasenko, L., Bonnemain-fernandes, A., Malwade, C., & Qu, H. (2020). Environmental Science Water Research & Technology via a two-step process of ozonation and. 817–828. https://doi.org/10.1039/c9ew00994a
  • Verster, B., Minnaar, S., & Cohen, B. (2014). Introducing the Wastewater Biorefinery Concept: A scoping study of poly-glutamic acid production from a Bacillus -rich mixed culture using municipal wastewater. In Water Research Comission (Issue April). https://doi.org/10.13140/RG.2.1.3120.9688
  • Wei, X., Viadero, R. C., & Bhojappa, S. (2008). Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants. Water Research, 42(13), 3275–3284. https://doi.org/10.1016/j.watres.2008.04.005
  • Wei, S. P., van Rossum, F., van de Pol, G. J., & Winkler, M. K. H. (2018). Recovery of phosphorus and nitrogen from human urine by struvite precipitation, air stripping and acid scrubbing: A pilot study. Chemosphere, 212, 1030–1037. https://doi.org/10.1016/j.chemosphere.2018.08.154
  • World Bank. (2022). World Bank commodity markets data. https://thedocs.worldbank.org/en/doc/5d903e84db1d1b83e0ec8f744e555700350012021/related/CMO-Historical-Data-Annual.xlsx.
  • Xavier LD, Cammarota MC, Yokoyama L, Volschan I (2014) Study of the recovery of phosphorus from struvite precipitation in supernatant line from anaerobic digesters of sludge. Water Sci Technol Water Supply 14:751–757. https://doi.org/10.2166/ws.2014.033
  • Xia, W. J., Xu, L. Z. J., Yu, L. Q., Zhang, Q., Zhao, Y. H., Xiong, J. R., Zhu, X. Y., Fan, N. S., Huang, B. C., & Jin, R. C. (2020). Conversion of municipal wastewater-derived waste to an adsorbent for phosphorus recovery from secondary effluent. Science of the Total Environment, 705, 135959. https://doi.org/10.1016/j.scitotenv.2019.135959
  • Xiao-jun, Y., Wen-qing, T., Ying, D., Yu-qi, C., Ya-e, W., Zhi-long, W., & Li, J. (2021). Journal of Water Process Engineering Nutrient removal and phosphorus recovery performance of an anaerobic side-stream extraction based enhanced biological phosphorus removal subjected to low dissolved oxygen. Journal of Water Process Engineering, 42(December 2020), 101861. https://doi.org/10.1016/j.jwpe.2020.101861
  • Xiao, X., Liu, S., Zhang, X., & Zheng, S. (2017). Phosphorus removal and recovery from secondary effluent in sewage treatment plant by magnetite mineral microparticles. Powder Technology, 306, 68–73. https://doi.org/10.1016/j.powtec.2016.10.066
  • Xie, M., Nghiem, L. D., Price, W. E., & Elimelech, M. (2014). Toward Resource Recovery from Wastewater: Extraction of Phosphorus from Digested Sludge Using a Hybrid Forward Osmosis − Membrane Distillation Process.
  • Xu, H., He, P., Gu, W., Wang, G., & Shao, L. (2012). Recovery of phosphorus as struvite from sewage sludge ash. Journal of Environmental Sciences, 24(8), 1533–1538.https://doi.org/10.1016/S1001-0742(11)60969-8
  • Yu, B., Luo, J., Xie, H., Yang, H., Chen, S., Liu, J., Zhang, R., & Li, Y. (2021). Species , fractions , and characterization of phosphorus in sewage sludge : A critical review from the perspective of recovery. Science of the Total Environment, 786, 147437. https://doi.org/10.1016/j.scitotenv.2021.147437
  • Zoboli, O., Zessner, M., & Rechberger, H. (2016). Science of the Total Environment Supporting phosphorus management in Austria : Potential , priorities and limitations. Science of the Total Environment, 565, 313–323. https://doi.org/10.1016/j.scitotenv.2016.04.171
There are 92 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Derlemeler
Authors

Ali İzzet Cengiz 0000-0002-4715-9567

Hüseyin Güven 0000-0001-6754-0106

Mustafa Evren Erşahin 0000-0003-1607-0524

Hale Özgün 0000-0001-8784-8351

İzzet Öztürk 0000-0002-8274-5326

Publication Date November 30, 2022
Submission Date March 21, 2022
Published in Issue Year 2022 Volume: 23 Issue: 2

Cite

APA Cengiz, A. İ., Güven, H., Erşahin, M. E., Özgün, H., et al. (2022). Döngüsel Ekonomi Kapsamında Evsel Atıksu Arıtma Tesislerinde Fosfor Geri Kazanımı Uygulamalarına Genel Bir Bakış. Çevre İklim Ve Sürdürülebilirlik, 23(2), 117-132.