Loading [a11y]/accessibility-menu.js
Review
BibTex RIS Cite

Biyokontrol Yaklaşımı ile Küflerin Kontrolü

Year 2024, Volume: 2 Issue: 1, 29 - 40, 28.03.2024

Abstract

Dünya nüfusunun artmasıyla birlikte küresel gıda talebini karşılayabilmek amacıyla gıda üretimi de artış göstermektedir. Artan bu gıda talebi; özellikle tarımsal gıda üretimi üzerinde büyük bir baskı oluşturmakta, dolayısıyla tarım alanlarının daha verimli ve etkili biçimde kullanılmasını gerekli kılmaktadır. Tarım alanlarındaki verim kayıplarını azaltmak amacıyla yakın geçmişte üzerinde en çok çalışma yürütülen konulardan birisi olan biyokontrol yaklaşımı sayesinde tarımsal gıda üretiminde gerçekleştirilen kayıpların azaltılması, böylece hem sürdürülebilir hem de gıda güvenliği açısından uygun kabul edilen üretim proseslerinin entegrasyonunun sağlanması hedeflenmektedir. Biyokontrol yaklaşımı, çeşitli mikroorganizmaların bitki patojenlerini kontrol etmek amacıyla, insan, hayvan ve bitki sağlığı üzerinde toksik etkileri görülen kimyasal pestisitler yerine kullanımını içermektedir. Bu çalışma kapsamında zirai ürünlerde küf gelişimini kontrol etmek amacıyla bakteri, küf ve mayaların kullanımı ve etki mekanizmaları incelenmiştir.

References

  • Alaniz Zanon, M. S., Barros, G. G., & Chulze, S. N. (2016). Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina. International Journal of Food Microbiology, 231, 63-68. https://doi.org/10.1016/ j.ijfoodmicro. 2016.05.016
  • Asad, S. A. (2022). Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases—A review. Ecological Complexity, 49, 100978. https:// doi.org/ 10.1016/j.ecocom.2021.100978
  • Baron, N. C., Rigobelo, E. C., & Zied, D. C. (2019). Filamentous fungi in biological control: Current status and future perspectives. Chilean Journal of Agricultural Research, 79(2), 307-315. https://doi.org/10.4067/S0718-58392019000200307
  • Bennett, J. S., Isakeit, T., Borrego, E. J., Odvody, G., Murray, S., & Kolomiets, M. V. (2023). Identification of naturally occurring atoxigenic strains of Fusarium verticillioides and their potential as biocontrol agents of mycotoxins and ear rot pathogens of maize. Crop Protection, 167, 106197. https://doi.org/10.1016/j.cropro.2023.106197
  • Biasi, A., Zhimo, V. Y., Kumar, A., Abdelfattah, A., Salim, S., Feygenberg, O., Wisniewski, M., & Droby, S. (2021). Changes in the Fungal Community Assembly of Apple Fruit Following Postharvest Application of the Yeast Biocontrol Agent Metschnikowia fructicola. Horticulturae, 7(10), 360. https://doi.org/10.3390/horticulturae7100360
  • Bonaterra, A., Badosa, E., Daranas, N., Francés, J., Roselló, G., & Montesinos, E. (2022). Bacteria as Biological Control Agents of Plant Diseases. Microorganisms, 10(9), 1759. https://doi.org/10.3390/microorganisms10091759
  • Bruce, T. J. A., Smart, L. E., Birch, A. N. E., Blok, V. C., MacKenzie, K., Guerrieri, E., Cascone, P., Luna, E., & Ton, J. (2017). Prospects for plant defence activators and biocontrol in IPM – Concepts and lessons learnt so far. Crop Protection, 97, 128-134. https://doi.org/10.1016/j.cropro.2016.10.003
  • Canonico, L., Agarbati, A., Galli, E., Comitini, F., & Ciani, M. (2023). Metschnikowia pulcherrima as biocontrol agent and wine aroma enhancer in combination with a native Saccharomyces cerevisiae. LWT, 181, 114758. https://doi.org/10.1016/j.lwt.2023.114758
  • Carbó, A., Torres, R., Usall, J., Ballesta, J., & Teixidó, N. (2020). Biocontrol potential of Ampelomyces quisqualis strain CPA-9 against powdery mildew: Conidia production in liquid medium and efficacy on zucchini leaves. Scientia Horticulturae, 267, 109337. https://doi.org/10.1016/j.scienta.2020.109337
  • Chapman, P. (2014). Is the regulatory regime for the registration of plant protection products in the EU potentially compromising food security? Food and Energy Security, 3(1), 1-6. https://doi.org/10.1002/fes3.45
  • Chavéz-Díaz, I. F., Cruz-Cárdenas, C. I., Sandoval-Cancino, G., Calvillo-Aguilar, F. F., Ruíz-Ramírez, S., Blanco-Camarillo, M., Rojas-Anaya, E., Ramírez-Vega, H., Arteaga-Garibay, R. I., & Zelaya-Molina, L. X. (2022). Seedling growth promotion and potential biocontrol against phytopathogenic Fusarium by native rhizospheric Pseudomonas spp. Strains from Amarillo Zamorano maize landrace. Rhizosphere, 24, 100601. https://doi.org/10.1016/j.rhisph.2022.100601
  • Chen, C., Guo, J., Kahramanoǧlu, İ., Wan, C., Gan, Z., & Chen, J. (2021). Biocontrol Bacterium Paenibacillus brasilensis YS-1 Fermented Broth Enhances the Quality Attributes and Storability of Harvested “Newhall” Navel Oranges. ACS Food Science and Technology, 1(1), 88-95. https://doi.org/10.1021/acsfoodscitech.0c00038
  • Chen, K., Tian, Z., He, H., Long, C., & Jiang, F. (2020). Bacillus species as potential biocontrol agents against citrus diseases. Biological Control, 151, 104419. https://doi.org/10.1016/j.biocontrol.2020.104419
  • Cheng, L., Zhou, L., Li, D., Gao, Z., Teng, J., Nie, X., Guo, F., Wang, C., Wang, X., Li, S., & Li, X. (2023). Combining the biocontrol agent Meyerozyma guilliermondii with UV-C treatment to manage postharvest gray mold on kiwifruit. Biological Control, 180, 105198. https://doi.org/10.1016/j.biocontrol.2023.105198
  • Contarino, R., Brighina, S., Fallico, B., Cirvilleri, G., Parafati, L., & Restuccia, C. (2019). Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food Microbiology, 82, 70-74. https://doi.org/10.1016/j.fm.2019.01.008
  • Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361(6405), 916-919. https://doi.org/10.1126/science.aat3466
  • Devi, A. P., Jesumaharaja, G. L., Balasundaram, K., Sahana, N., Battacharya, P. M., Roy, A., Bandyopadhyay, S., & Khalko, S. (2022). Streptomyces sp.: A feasible biocontrol agent for sustainable management of crop diseases. Içinde Microbes and Microbial Biotechnology for Green Remediation (ss. 377-388). Elsevier. https://doi.org/10.1016/B978-0-323-90452-0.00025-6
  • Di Canito, A., Mateo-Vargas, M. A., Mazzieri, M., Cantoral, J., Foschino, R., Cordero-Bueso, G., & Vigentini, I. (2021). The Role of Yeasts as Biocontrol Agents for Pathogenic Fungi on Postharvest Grapes: A Review. Foods, 10(7), 1650. https://doi.org/10.3390/foods10071650
  • Di Francesco, A., Milella, F., Mari, M., & Roberti, R. (2017). A preliminary investigation into Aureobasidium pullulans as a potential biocontrol agent against Phytophthora infestans of tomato. Biological Control, 114, 144-149. https://doi.org/10.1016/j.biocontrol.2017.08.010
  • Ding, Y., Liu, F., Yang, J., Fan, Y., Yu, L., Li, Z., Jiang, N., An, J., Jiao, Z., & Wang, C. (2023). Isolation and identification of Bacillus mojavensis YL-RY0310 and its biocontrol potential against Penicillium expansum and patulin in apples. Biological Control, 182, 105239. https://doi.org/10.1016/j.biocontrol.2023.105239
  • Droby, S., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E., & Porat, R. (2002). Induction of Resistance to Penicillium digitatum in Grapefruit by the Yeast Biocontrol Agent Candida oleophila. Phytopathology®, 92(4), 393-399. https://doi.org/10.1094/PHYTO.2002.92.4.393
  • El-Wakeil, N., Saleh, M., & Abu-hashim, M. (Ed.). (2020). Cottage Industry of Biocontrol Agents and Their Applications: Practical Aspects to Deal Biologically with Pests and Stresses Facing Strategic Crops. Springer International Publishing. https://doi.org/10.1007/978-3-030-33161-0
  • Erazo, J. G., Palacios, S. A., Pastor, N., Giordano, F. D., Rovera, M., Reynoso, M. M., Venisse, J. S., & Torres, A. M. (2021). Biocontrol mechanisms of Trichoderma harzianum ITEM 3636 against peanut brown root rot caused by Fusarium solani RC 386. Biological Control, 164, 104774. https://doi.org/10.1016/j.biocontrol.2021.104774
  • Evans, A. (2009). The feeding of the nine billion: Global food security for the 21st century. Royal Institute of International Affairs.
  • Fathi, F., Saberi-Riseh, R., & Khodaygan, P. (2021). Survivability and controlled release of alginate-microencapsulated Pseudomonas fluorescens VUPF506 and their effects on biocontrol of Rhizoctonia solani on potato. International Journal of Biological Macromolecules, 183, 627-634. https://doi.org/10.1016/j.ijbiomac.2021.04.159
  • Favaro, L., Barretto Penna, A. L., & Todorov, S. D. (2015). Bacteriocinogenic LAB from cheeses – Application in biopreservation? Trends in Food Science & Technology, 41(1), 37-48. https://doi.org/10.1016/j.tifs.2014.09.001
  • Fenibo, E. O., Ijoma, G. N., & Matambo, T. (2021). Biopesticides in Sustainable Agriculture: A Critical Sustainable Development Driver Governed by Green Chemistry Principles. Frontiers in Sustainable Food Systems, 5, 619058. https://doi.org/10.3389/fsufs.2021.619058
  • Fernandez-San Millan, A., Larraya, L., Farran, I., Ancin, M., & Veramendi, J. (2021). Successful biocontrol of major postharvest and soil-borne plant pathogenic fungi by antagonistic yeasts. Biological Control, 160, 104683. https://doi.org/10.1016/j.biocontrol.2021.104683
  • Freimoser, F. M., Rueda-Mejia, M. P., Tilocca, B., & Migheli, Q. (2019). Biocontrol yeasts: Mechanisms and applications. World Journal of Microbiology and Biotechnology, 35(10), 154. https://doi.org/10.1007/s11274-019-2728-4
  • Gajera, H. P., Hirpara, D. G., Katakpara, Z. A., Patel, S. V., & Golakiya, B. A. (2016). Molecular evolution and phylogenetic analysis of biocontrol genes acquired from SCoT polymorphism of mycoparasitic Trichoderma koningii inhibiting phytopathogen Rhizoctonia solani Kuhn. Infection, Genetics and Evolution, 45, 383-392. https://doi.org/10.1016/j.meegid.2016.09.026
  • Gao, Z., Zhang, R., & Xiong, B. (2021). Management of postharvest diseases of kiwifruit with a combination of the biocontrol yeast Candida oleophila and an oligogalacturonide. Biological Control, 156, 104549. https://doi.org/10.1016/j.biocontrol.2021.104549
  • Garvey, M. (2022). Bacteriophages and Food Production: Biocontrol and Bio-Preservation Options for Food Safety. Antibiotics, 11(10), 1324. https://doi.org/10.3390/antibiotics11101324
  • Ghent University, Belgium, & Höfte, M. (2021). The use of Pseudomonas spp. As bacterial biocontrol agents to control plant diseases. Içinde Wageningen University & Research, The Netherlands & J. Köhl (Ed.), Burleigh Dodds Series in Agricultural Science (ss. 301-374). Burleigh Dodds Science Publishing. https://doi.org/10.19103/AS.2021.0093.11
  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food Security: The Challenge of Feeding 9 Billion People. Science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383
  • Gohel, N. M., Raghunandan, B. L., Patel, N. B., Parmar, H. V., & Raval, D. B. (2022). Role of Fungal Biocontrol Agents for Sustainable Agriculture. Içinde V. R. Rajpal, I. Singh, & S. S. Navi (Ed.), Fungal diversity, ecology and control management (ss. 577-606). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-8877-5_28
  • Guzmán-Guzmán, P., Kumar, A., De Los Santos-Villalobos, S., Parra-Cota, F. I., Orozco-Mosqueda, Ma. D. C., Fadiji, A. E., Hyder, S., Babalola, O. O., & Santoyo, G. (2023). Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases—A Review. Plants, 12(3), 432. https://doi.org/10.3390/plants12030432
  • Hernandez-Montiel, L. G., Droby, S., Preciado-Rangel, P., Rivas-García, T., González-Estrada, R. R., Gutiérrez-Martínez, P., & Ávila-Quezada, G. D. (2021). A Sustainable Alternative for Postharvest Disease Management and Phytopathogens Biocontrol in Fruit: Antagonistic Yeasts. Plants, 10(12), 2641. https://doi.org/10.3390/plants10122641
  • Hough, J., Howard, J. D., Brown, S., Portwood, D. E., Kilby, P. M., & Dickman, M. J. (2022). Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides. Frontiers in Bioengineering and Biotechnology, 10, 980592. https://doi.org/10.3389/fbioe.2022.980592
  • Huang, K., Zou, Y., Luo, J., & Liu, Y. (2015). Combining UV-C treatment with biocontrol yeast to control postharvest decay of melon. Environmental Science and Pollution Research, 22(18), 14307-14313. https://doi.org/10.1007/s11356-015-4687-0
  • Islam, M. T., Rahman, M., Pandey, P., Jha, C. K., & Aeron, A. (Ed.). (2016). Bacilli and Agrobiotechnology. Springer International Publishing. https://doi.org/10.1007/978-3-319-44409-3
  • Jaiswal, D. K., Gawande, S. J., Soumia, P. S., Krishna, R., Vaishnav, A., & Ade, A. B. (2022). Biocontrol strategies: An eco-smart tool for integrated pest and diseases management. BMC Microbiology, 22(1), 324. https://doi.org/10.1186/s12866-022-02744-2
  • Kharazian, Z. A., Salehi Jouzani, G., Aghdasi, M., Khorvash, M., Zamani, M., & Mohammadzadeh, H. (2017). Biocontrol potential of Lactobacillus strains isolated from corn silages against some plant pathogenic fungi. Biological Control, 110, 33-43. https://doi.org/10.1016/j.biocontrol.2017.04.004
  • Klein, M. N., & Kupper, K. C. (2018). Biofilm production by Aureobasidium pullulans improves biocontrol against sour rot in citrus. Food Microbiology, 69, 1-10. https://doi.org/10.1016/j.fm.2017.07.008
  • Li, W., Zhang, H., Li, P., Apaliya, M. T., Yang, Q., Peng, Y., & Zhang, X. (2016). Biocontrol of postharvest green mold of oranges by Hanseniaspora uvarum Y3 in combination with phosphatidylcholine. Biological Control, 103, 30-38. https://doi.org/10.1016/j.biocontrol.2016.07.014
  • Li, X., Jing, T., Zhou, D., Zhang, M., Qi, D., Zang, X., Zhao, Y., Li, K., Tang, W., Chen, Y., Qi, C., Wang, W., & Xie, J. (2021). Biocontrol efficacy and possible mechanism of Streptomyces sp. H4 against postharvest anthracnose caused by Colletotrichum fragariae on strawberry fruit. Postharvest Biology and Technology, 175, 111401. https://doi.org/10.1016/j.postharvbio.2020.111401
  • Li, X., Yu, L., An, F., Bai, H., Wisniewski, M., & Wang, Z. (2023). Caffeic acid increases the fitness of Candida oleophila to the microenvironment of kiwifruit and its biocontrol performance against postharvest decay fungi. Postharvest Biology and Technology, 196, 112177. https://doi.org/10.1016/j.postharvbio.2022.112177
  • Lima, F. B. D., Félix, C., Osório, N., Alves, A., Vitorino, R., Domingues, P., Correia, A., Da Silva Ribeiro, R. T., & Esteves, A. C. (2016). Secretome analysis of Trichoderma atroviride T17 biocontrol of Guignardia citricarpa. Biological Control, 99, 38-46. https://doi.org/10.1016/j.biocontrol.2016.04.009
  • Ling, L., Jiang, K., Cheng, W., Wang, Y., Pang, M., Luo, H., Lu, L., Gao, K., & Tu, Y. (2022). Biocontrol of volatile organic compounds obtained from Bacillus subtilis CL2 against Aspergillus flavus in peanuts during storage. Biological Control, 176, 105094. https://doi.org/10.1016/j.biocontrol.2022.105094
  • Liu, J., Qin, D., Huang, W., Wang, X., Li, Y., & Zhang, R. (2023). Biocontrol ability and action mechanism of Bacillus amyloliquefaciens Baf1 against Fusarium incarnatum causing fruit rot in postharvest muskmelon (cv. Yugu) fruit. LWT, 181, 114714. https://doi.org/10.1016/j.lwt.2023.114714
  • Liu, Z., Du, S., Ren, Y., & Liu, Y. (2018). Biocontrol ability of killer yeasts ( Saccharomyces cerevisiae ) isolated from wine against Colletotrichum gloeosporioides on grape. Journal of Basic Microbiology, 58(1), 60-67. https://doi.org/10.1002/jobm.201700264
  • Lopes, M. R., Klein, M. N., Ferraz, L. P., Da Silva, A. C., & Kupper, K. C. (2015). Saccharomyces cerevisiae: A novel and efficient biological control agent for Colletotrichum acutatum during pre-harvest. Microbiological Research, 175, 93-99. https://doi.org/10.1016/j.micres.2015.04.003
  • Marican, A., & Durán-Lara, E. F. (2018). A review on pesticide removal through different processes. Environmental Science and Pollution Research, 25(3), 2051-2064. https://doi.org/10.1007/s11356-017-0796-2
  • Matas-Baca, M. Á., Urías García, C., Pérez-Álvarez, S., Flores-Córdova, M. A., Escobedo-Bonilla, C. M., Magallanes-Tapia, M. A., & Sánchez Chávez, E. (2022). Morphological and molecular characterization of a new autochthonous Trichoderma sp. Isolate and its biocontrol efficacy against Alternaria sp. Saudi Journal of Biological Sciences, 29(4), 2620-2625. https://doi.org/10.1016/j.sjbs.2021.12.052
  • Mateo, E. M., Tarazona, A., Aznar, R., & Mateo, F. (2023). Exploring the impact of lactic acid bacteria on the biocontrol of toxigenic Fusarium spp. And their main mycotoxins. International Journal of Food Microbiology, 387, 110054. https://doi.org/10.1016/j.ijfoodmicro.2022.110054
  • Medhioub, I., Cheffi, M., Tounsi, S., & Triki, M. A. (2022). Study of Bacillus velezensis OEE1 potentialities in the biocontrol against Erwinia amylovora, causal agent of fire blight disease of rosaceous plants. Biological Control, 167, 104842. https://doi.org/10.1016/j.biocontrol.2022.104842
  • Neves, T. T. D., Brandão, R. M., Barbosa, R. B., Cardoso, M. D. G., Batista, L. R., & Silva, C. F. (2021). Simulation of coffee beans contamination by Aspergillus species under different environmental conditions and the biocontrol effect by Saccharomyces cerevisiae. LWT, 148, 111610. https://doi.org/10.1016/j.lwt.2021.111610
  • Nie, X., Zhang, C., Jiang, C., Zhang, R., Guo, F., & Fan, X. (2019). Trehalose increases the oxidative stress tolerance and biocontrol efficacy of Candida oleophila in the microenvironment of pear wounds. Biological Control, 132, 23-28. https://doi.org/10.1016/j.biocontrol.2019.01.015
  • Ou, C., Liu, Y., Wang, W., & Dong, D. (2016). Integration of UV-C with antagonistic yeast treatment for controlling post-harvest disease and maintaining fruit quality of Ananas comosus. BioControl, 61(5), 591-603. https://doi.org/10.1007/s10526-016-9740-5
  • Oztekin, S., & Karbancioglu-Guler, F. (2021). Bioprospection of Metschnikowia sp. İsolates as biocontrol agents against postharvest fungal decays on lemons with their potential modes of action. Postharvest Biology and Technology, 181, 111634. https://doi.org/10.1016/j.postharvbio.2021.111634
  • Palmieri, D., Ianiri, G., Del Grosso, C., Barone, G., De Curtis, F., Castoria, R., & Lima, G. (2022). Advances and Perspectives in the Use of Biocontrol Agents against Fungal Plant Diseases. Horticulturae, 8(7), 577. https://doi.org/10.3390/horticulturae8070577
  • Panpatte, D. G., Jhala, Y. K., Shelat, H. N., & Vyas, R. V. (2016). Pseudomonas fluorescens: A Promising Biocontrol Agent and PGPR for Sustainable Agriculture. Içinde D. P. Singh, H. B. Singh, & R. Prabha (Ed.), Microbial Inoculants in Sustainable Agricultural Productivity (ss. 257-270). Springer India. https://doi.org/10.1007/978-81-322-2647-5_15
  • Peshin, R., & Zhang, W. (2014). Integrated Pest Management and Pesticide Use. Içinde D. Pimentel & R. Peshin (Ed.), Integrated Pest Management (ss. 1-46). Springer Netherlands. https://doi.org/10.1007/978-94-007-7796-5_1
  • Pu, L., Yuan-yuan, S., Lifeng, C., & Chao-an, L. (2014). Farnesol produced by the biocontrol agent Candida ernobii can be used in controlling the postharvest pathogen Penicillium expansum. African Journal of Microbiology Research, 8(9), 922-928. https://doi.org/10.5897/AJMR2013.5976
  • Qin, X., Xiao, H., Xue, C., Yu, Z., Yang, R., Cai, Z., & Si, L. (2015). Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest Biology and Technology, 100, 160-167. https://doi.org/10.1016/j.postharvbio.2014.09.010
  • Quattrini, M., Bernardi, C., Stuknytė, M., Masotti, F., Passera, A., Ricci, G., Vallone, L., De Noni, I., Brasca, M., & Fortina, M. G. (2018). Functional characterization of Lactobacillus plantarum ITEM 17215: A potential biocontrol agent of fungi with plant growth promoting traits, able to enhance the nutritional value of cereal products. Food Research International, 106, 936-944. https://doi.org/10.1016/j.foodres.2018.01.074
  • Raymaekers, K., Ponet, L., Holtappels, D., Berckmans, B., & Cammue, B. P. A. (2020). Screening for novel biocontrol agents applicable in plant disease management – A review. Biological Control, 144, 104240. https://doi.org/10.1016/j.biocontrol.2020.104240
  • Ren, Y., Yao, M., Chang, P., Sun, Y., Li, R., Meng, D., Xia, X., & Wang, Y. (2021). Isolation and characterization of a Pseudomonas poae JSU-Y1 with patulin degradation ability and biocontrol potential against Penicillium expansum. Toxicon, 195, 1-6. https://doi.org/10.1016/j.toxicon.2021.02.014
  • Roberti, R., Di Francesco, A., Innocenti, G., & Mari, M. (2019). Potential for biocontrol of Pleurotus ostreatus green mould disease by Aureobasidium pullulans De Bary (Arnaud). Biological Control, 135, 9-15. https://doi.org/10.1016/j.biocontrol.2019.04.016
  • Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3(3), 430-439. https://doi.org/10.1038/s41559-018-0793-y
  • Shaik, F., Mohammed, N., Ahmed, F., & Rao, L. N. (2023). Advanced technologies for the treatment of pesticides. 020023. https://doi.org/10.1063/5.0119507
  • Sharma, V., Sharma, A., Malannavar, A. B., & Salwan, R. (2020). Molecular aspects of biocontrol species of Streptomyces in agricultural crops. Içinde Molecular Aspects of Plant Beneficial Microbes in Agriculture (ss. 89-109). Elsevier. https://doi.org/10.1016/B978-0-12-818469-1.00008-0
  • Shi, Y., Yang, Q., Zhao, Q., Dhanasekaran, S., Ahima, J., Zhang, X., Zhou, S., Droby, S., & Zhang, H. (2022). Aureobasidium pullulans S-2 reduced the disease incidence of tomato by influencing the postharvest microbiome during storage. Postharvest Biology and Technology, 185, 111809. https://doi.org/10.1016/j.postharvbio.2021.111809
  • Smetana, S., Oehen, B., Goyal, S., & Heinz, V. (2020). Environmental sustainability issues for western food production. Içinde Nutritional and Health Aspects of Food in Western Europe (ss. 173-200). Elsevier. https://doi.org/10.1016/B978-0-12-813171-8.00010-X
  • Souza, M. C. O., Cruz, J. C., Cesila, C. A., Gonzalez, N., Rocha, B. A., Adeyemi, J. A., Nadal, M., Domingo, J. L., & Barbosa, F. (2023). Recent trends in pesticides in crops: A critical review of the duality of risks-benefits and the Brazilian legislation issue. Environmental Research, 228, 115811. https://doi.org/10.1016/j.envres.2023.115811
  • Stewart, G. G. (2014). SACCHAROMYCES | Saccharomyces cerevisiae. Içinde Encyclopedia of Food Microbiology (ss. 309-315). Elsevier. https://doi.org/10.1016/B978-0-12-384730-0.00292-5
  • Sui, Y., Wisniewski, M., Droby, S., Piombo, E., Wu, X., & Yue, J. (2020). Genome Sequence, Assembly, and Characterization of the Antagonistic Yeast Candida oleophila Used as a Biocontrol Agent Against Post-harvest Diseases. Frontiers in Microbiology, 11, 295. https://doi.org/ 10.3389/ fmicb.2020.00295
  • Thambugala, K. M., Daranagama, D. A., Phillips, A. J. L., Kannangara, S. D., & Promputtha, I. (2020). Fungi vs. Fungi in Biocontrol: An Overview of Fungal Antagonists Applied Against Fungal Plant Pathogens. Frontiers in Cellular and Infection Microbiology, 10, 604923. https://doi.org/10.3389/fcimb.2020.604923
  • FAO, IFAD, UNICEF, WFP and WHO. (2023) The State of Food Security and Nutrition in the World 2023. Urbanization, agrifood systems transformation and healthy diets across the rural–urban continuum. Rome, FAO. https://doi.org/10.4060/cc3017en
  • Trias, R., Badosa, E., Montesinos, E., & Bañeras, L. (2008). Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables. International Journal of Food Microbiology, 127(1-2), 91-98. https://doi.org/10.1016/j.ijfoodmicro.2008.06.011
  • Vanshree, C. R., Singhal, M., Sexena, M., Sankhla, M. S., Parihar, K., Jadhav, E. B., Awasthi, K. K., & Yadav, C. S. (2022). Microbes as biocontrol agent: From crop protection till food security. Içinde Relationship Between Microbes and the Environment for Sustainable Ecosystem Services, Volume 1 (ss. 215-237). Elsevier. https://doi.org/10.1016/B978-0-323-89938-3.00011-6
  • Vedamurthy, A. B., Varsha, S. L., & Shruthi, S. D. (2021). Regulatory requirement for commercialization of biocontrol agents. Içinde Biocontrol Agents and Secondary Metabolites (ss. 659-675). Elsevier. https://doi.org/10.1016/B978-0-12-822919-4.00029-6
  • Wang, S. Y., Herrera-Balandrano, D. D., Wang, Y. X., Shi, X. C., Chen, X., Jin, Y., Liu, F. Q., & Laborda, P. (2022). Biocontrol Ability of the Bacillus amyloliquefaciens Group, B. amyloliquefaciens , B. velezensis , B. nakamurai , and B. siamensis , for the Management of Fungal Postharvest Diseases: A Review. Journal of Agricultural and Food Chemistry, 70(22),6591-6616.https://doi.org/10.1021/ acs. jafc.2c01745
  • Wang, Z., Zhong, T., Chen, K., Du, M., Chen, G., Chen, X., Wang, K., Zalán, Z., Takács, K., & Kan, J. (2021). Antifungal activity of volatile organic compounds produced by Pseudomonas fluorescens ZX and potential biocontrol of blue mold decay on postharvest citrus. Food Control, 120, 107499. https://doi.org/10.1016/j.foodcont.2020.107499
  • Wei, J., Zhao, J., Suo, M., Wu, H., Zhao, M., & Yang, H. (2023). Biocontrol mechanisms of Bacillus velezensis against Fusarium oxysporum from Panax ginseng. Biological Control, 182,105222. https://doi.org/10.1016/j.biocontrol.2023. 105222
  • Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual review of phytopathology, 40(1), 309-348. https://doi.org/10.1146/annurev.phyto.40.030402.110010
  • Xu, Y., Wang, L., Liang, W., & Liu, M. (2021). Biocontrol potential of endophytic Bacillus velezensis strain QSE-21 against postharvest grey mould of fruit. Biological Control, 161, 104711. https://doi.org/10.1016/j.biocontrol.2021.104711
  • Zhang, C., Chen, K., & Wang, G. (2013). Combination of the biocontrol yeast Cryptococcus laurentii with UV-C treatment for control of postharvest diseases of tomato fruit. BioControl, 58(2), 269-281.
  • Zhang, H., Kong, N., Liu, B., Yang, Y., Li, C., Qi, J., Ma, Y., Ji, S., & Liu, Z. (2022). Biocontrol potential of Trichoderma harzianum CGMCC20739 (Tha739) against postharvest bitter rot of apples. Microbiological Research, 265, 127182. https://doi.org/10.1016/j.micres.2022.127182
  • Zhang, X., Li, B., Zhang, Z., Chen, Y., & Tian, S. (2020). Antagonistic Yeasts: A Promising Alternative to Chemical Fungicides for Controlling Postharvest Decay of Fruit. Journal of Fungi, 6(3), 158. https://doi.org/10.3390/jof6030158
  • Zhimo, V. Y., Kumar, A., Biasi, A., Salim, S., Feygenberg, O., Toamy, M. A., Abdelfattaah, A., Medina, S., Freilich, S., Wisniewski, M., & Droby, S. (2021). Compositional shifts in the strawberry fruit microbiome in response to near-harvest application of Metschnikowia fructicola, a yeast biocontrol agent. Postharvest Biology and Technology, 175, 111469. https://doi.org/10.1016/j.postharvbio.2021.111469
  • Zhou, D., Jing, T., Chen, Y., Yun, T., Qi, D., Zang, X., Zhang, M., Wei, Y., Li, K., Zhao, Y., Wang, W., & Xie, J. (2022). Biocontrol potential of a newly isolated Streptomyces sp. HSL-9B from mangrove forest on postharvest anthracnose of mango fruit caused by Colletotrichum gloeosporioides. Food Control, 135, 108836. https://doi.org/10.1016/j.foodcont.2022.108836

CONTROL OF MOLDS WITH BIOCONTROL APPROACH

Year 2024, Volume: 2 Issue: 1, 29 - 40, 28.03.2024

Abstract

With the world's population increasing day by day, food production increases in direct proportion to meet the global food demand. This demand for food generates great pressure on agricultural production, thus making it necessary to expand farm land and use it more efficiently and effectively. In order to reduce yield losses in farming areas, the biocontrol approach, one of the most studied topics in the recent past, aims to reduce losses in agricultural food production, thus ensuring the integration of production processes that are considered both sustainable and appropriate regarding food safety. Biocontrol approach refers to using various organisms to control plant pathogens instead of chemical pesticides that have toxic effects on human, animal and plant health. The substances used in this approach are called biocontrol agents. In this study, the prominent mechanisms of biocontrol agents on plant pathogens will be mentioned, and then the biocontrol agents of bacteria, mold and yeast used against molds will be emphasized.

References

  • Alaniz Zanon, M. S., Barros, G. G., & Chulze, S. N. (2016). Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina. International Journal of Food Microbiology, 231, 63-68. https://doi.org/10.1016/ j.ijfoodmicro. 2016.05.016
  • Asad, S. A. (2022). Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases—A review. Ecological Complexity, 49, 100978. https:// doi.org/ 10.1016/j.ecocom.2021.100978
  • Baron, N. C., Rigobelo, E. C., & Zied, D. C. (2019). Filamentous fungi in biological control: Current status and future perspectives. Chilean Journal of Agricultural Research, 79(2), 307-315. https://doi.org/10.4067/S0718-58392019000200307
  • Bennett, J. S., Isakeit, T., Borrego, E. J., Odvody, G., Murray, S., & Kolomiets, M. V. (2023). Identification of naturally occurring atoxigenic strains of Fusarium verticillioides and their potential as biocontrol agents of mycotoxins and ear rot pathogens of maize. Crop Protection, 167, 106197. https://doi.org/10.1016/j.cropro.2023.106197
  • Biasi, A., Zhimo, V. Y., Kumar, A., Abdelfattah, A., Salim, S., Feygenberg, O., Wisniewski, M., & Droby, S. (2021). Changes in the Fungal Community Assembly of Apple Fruit Following Postharvest Application of the Yeast Biocontrol Agent Metschnikowia fructicola. Horticulturae, 7(10), 360. https://doi.org/10.3390/horticulturae7100360
  • Bonaterra, A., Badosa, E., Daranas, N., Francés, J., Roselló, G., & Montesinos, E. (2022). Bacteria as Biological Control Agents of Plant Diseases. Microorganisms, 10(9), 1759. https://doi.org/10.3390/microorganisms10091759
  • Bruce, T. J. A., Smart, L. E., Birch, A. N. E., Blok, V. C., MacKenzie, K., Guerrieri, E., Cascone, P., Luna, E., & Ton, J. (2017). Prospects for plant defence activators and biocontrol in IPM – Concepts and lessons learnt so far. Crop Protection, 97, 128-134. https://doi.org/10.1016/j.cropro.2016.10.003
  • Canonico, L., Agarbati, A., Galli, E., Comitini, F., & Ciani, M. (2023). Metschnikowia pulcherrima as biocontrol agent and wine aroma enhancer in combination with a native Saccharomyces cerevisiae. LWT, 181, 114758. https://doi.org/10.1016/j.lwt.2023.114758
  • Carbó, A., Torres, R., Usall, J., Ballesta, J., & Teixidó, N. (2020). Biocontrol potential of Ampelomyces quisqualis strain CPA-9 against powdery mildew: Conidia production in liquid medium and efficacy on zucchini leaves. Scientia Horticulturae, 267, 109337. https://doi.org/10.1016/j.scienta.2020.109337
  • Chapman, P. (2014). Is the regulatory regime for the registration of plant protection products in the EU potentially compromising food security? Food and Energy Security, 3(1), 1-6. https://doi.org/10.1002/fes3.45
  • Chavéz-Díaz, I. F., Cruz-Cárdenas, C. I., Sandoval-Cancino, G., Calvillo-Aguilar, F. F., Ruíz-Ramírez, S., Blanco-Camarillo, M., Rojas-Anaya, E., Ramírez-Vega, H., Arteaga-Garibay, R. I., & Zelaya-Molina, L. X. (2022). Seedling growth promotion and potential biocontrol against phytopathogenic Fusarium by native rhizospheric Pseudomonas spp. Strains from Amarillo Zamorano maize landrace. Rhizosphere, 24, 100601. https://doi.org/10.1016/j.rhisph.2022.100601
  • Chen, C., Guo, J., Kahramanoǧlu, İ., Wan, C., Gan, Z., & Chen, J. (2021). Biocontrol Bacterium Paenibacillus brasilensis YS-1 Fermented Broth Enhances the Quality Attributes and Storability of Harvested “Newhall” Navel Oranges. ACS Food Science and Technology, 1(1), 88-95. https://doi.org/10.1021/acsfoodscitech.0c00038
  • Chen, K., Tian, Z., He, H., Long, C., & Jiang, F. (2020). Bacillus species as potential biocontrol agents against citrus diseases. Biological Control, 151, 104419. https://doi.org/10.1016/j.biocontrol.2020.104419
  • Cheng, L., Zhou, L., Li, D., Gao, Z., Teng, J., Nie, X., Guo, F., Wang, C., Wang, X., Li, S., & Li, X. (2023). Combining the biocontrol agent Meyerozyma guilliermondii with UV-C treatment to manage postharvest gray mold on kiwifruit. Biological Control, 180, 105198. https://doi.org/10.1016/j.biocontrol.2023.105198
  • Contarino, R., Brighina, S., Fallico, B., Cirvilleri, G., Parafati, L., & Restuccia, C. (2019). Volatile organic compounds (VOCs) produced by biocontrol yeasts. Food Microbiology, 82, 70-74. https://doi.org/10.1016/j.fm.2019.01.008
  • Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361(6405), 916-919. https://doi.org/10.1126/science.aat3466
  • Devi, A. P., Jesumaharaja, G. L., Balasundaram, K., Sahana, N., Battacharya, P. M., Roy, A., Bandyopadhyay, S., & Khalko, S. (2022). Streptomyces sp.: A feasible biocontrol agent for sustainable management of crop diseases. Içinde Microbes and Microbial Biotechnology for Green Remediation (ss. 377-388). Elsevier. https://doi.org/10.1016/B978-0-323-90452-0.00025-6
  • Di Canito, A., Mateo-Vargas, M. A., Mazzieri, M., Cantoral, J., Foschino, R., Cordero-Bueso, G., & Vigentini, I. (2021). The Role of Yeasts as Biocontrol Agents for Pathogenic Fungi on Postharvest Grapes: A Review. Foods, 10(7), 1650. https://doi.org/10.3390/foods10071650
  • Di Francesco, A., Milella, F., Mari, M., & Roberti, R. (2017). A preliminary investigation into Aureobasidium pullulans as a potential biocontrol agent against Phytophthora infestans of tomato. Biological Control, 114, 144-149. https://doi.org/10.1016/j.biocontrol.2017.08.010
  • Ding, Y., Liu, F., Yang, J., Fan, Y., Yu, L., Li, Z., Jiang, N., An, J., Jiao, Z., & Wang, C. (2023). Isolation and identification of Bacillus mojavensis YL-RY0310 and its biocontrol potential against Penicillium expansum and patulin in apples. Biological Control, 182, 105239. https://doi.org/10.1016/j.biocontrol.2023.105239
  • Droby, S., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E., & Porat, R. (2002). Induction of Resistance to Penicillium digitatum in Grapefruit by the Yeast Biocontrol Agent Candida oleophila. Phytopathology®, 92(4), 393-399. https://doi.org/10.1094/PHYTO.2002.92.4.393
  • El-Wakeil, N., Saleh, M., & Abu-hashim, M. (Ed.). (2020). Cottage Industry of Biocontrol Agents and Their Applications: Practical Aspects to Deal Biologically with Pests and Stresses Facing Strategic Crops. Springer International Publishing. https://doi.org/10.1007/978-3-030-33161-0
  • Erazo, J. G., Palacios, S. A., Pastor, N., Giordano, F. D., Rovera, M., Reynoso, M. M., Venisse, J. S., & Torres, A. M. (2021). Biocontrol mechanisms of Trichoderma harzianum ITEM 3636 against peanut brown root rot caused by Fusarium solani RC 386. Biological Control, 164, 104774. https://doi.org/10.1016/j.biocontrol.2021.104774
  • Evans, A. (2009). The feeding of the nine billion: Global food security for the 21st century. Royal Institute of International Affairs.
  • Fathi, F., Saberi-Riseh, R., & Khodaygan, P. (2021). Survivability and controlled release of alginate-microencapsulated Pseudomonas fluorescens VUPF506 and their effects on biocontrol of Rhizoctonia solani on potato. International Journal of Biological Macromolecules, 183, 627-634. https://doi.org/10.1016/j.ijbiomac.2021.04.159
  • Favaro, L., Barretto Penna, A. L., & Todorov, S. D. (2015). Bacteriocinogenic LAB from cheeses – Application in biopreservation? Trends in Food Science & Technology, 41(1), 37-48. https://doi.org/10.1016/j.tifs.2014.09.001
  • Fenibo, E. O., Ijoma, G. N., & Matambo, T. (2021). Biopesticides in Sustainable Agriculture: A Critical Sustainable Development Driver Governed by Green Chemistry Principles. Frontiers in Sustainable Food Systems, 5, 619058. https://doi.org/10.3389/fsufs.2021.619058
  • Fernandez-San Millan, A., Larraya, L., Farran, I., Ancin, M., & Veramendi, J. (2021). Successful biocontrol of major postharvest and soil-borne plant pathogenic fungi by antagonistic yeasts. Biological Control, 160, 104683. https://doi.org/10.1016/j.biocontrol.2021.104683
  • Freimoser, F. M., Rueda-Mejia, M. P., Tilocca, B., & Migheli, Q. (2019). Biocontrol yeasts: Mechanisms and applications. World Journal of Microbiology and Biotechnology, 35(10), 154. https://doi.org/10.1007/s11274-019-2728-4
  • Gajera, H. P., Hirpara, D. G., Katakpara, Z. A., Patel, S. V., & Golakiya, B. A. (2016). Molecular evolution and phylogenetic analysis of biocontrol genes acquired from SCoT polymorphism of mycoparasitic Trichoderma koningii inhibiting phytopathogen Rhizoctonia solani Kuhn. Infection, Genetics and Evolution, 45, 383-392. https://doi.org/10.1016/j.meegid.2016.09.026
  • Gao, Z., Zhang, R., & Xiong, B. (2021). Management of postharvest diseases of kiwifruit with a combination of the biocontrol yeast Candida oleophila and an oligogalacturonide. Biological Control, 156, 104549. https://doi.org/10.1016/j.biocontrol.2021.104549
  • Garvey, M. (2022). Bacteriophages and Food Production: Biocontrol and Bio-Preservation Options for Food Safety. Antibiotics, 11(10), 1324. https://doi.org/10.3390/antibiotics11101324
  • Ghent University, Belgium, & Höfte, M. (2021). The use of Pseudomonas spp. As bacterial biocontrol agents to control plant diseases. Içinde Wageningen University & Research, The Netherlands & J. Köhl (Ed.), Burleigh Dodds Series in Agricultural Science (ss. 301-374). Burleigh Dodds Science Publishing. https://doi.org/10.19103/AS.2021.0093.11
  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food Security: The Challenge of Feeding 9 Billion People. Science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383
  • Gohel, N. M., Raghunandan, B. L., Patel, N. B., Parmar, H. V., & Raval, D. B. (2022). Role of Fungal Biocontrol Agents for Sustainable Agriculture. Içinde V. R. Rajpal, I. Singh, & S. S. Navi (Ed.), Fungal diversity, ecology and control management (ss. 577-606). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-8877-5_28
  • Guzmán-Guzmán, P., Kumar, A., De Los Santos-Villalobos, S., Parra-Cota, F. I., Orozco-Mosqueda, Ma. D. C., Fadiji, A. E., Hyder, S., Babalola, O. O., & Santoyo, G. (2023). Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases—A Review. Plants, 12(3), 432. https://doi.org/10.3390/plants12030432
  • Hernandez-Montiel, L. G., Droby, S., Preciado-Rangel, P., Rivas-García, T., González-Estrada, R. R., Gutiérrez-Martínez, P., & Ávila-Quezada, G. D. (2021). A Sustainable Alternative for Postharvest Disease Management and Phytopathogens Biocontrol in Fruit: Antagonistic Yeasts. Plants, 10(12), 2641. https://doi.org/10.3390/plants10122641
  • Hough, J., Howard, J. D., Brown, S., Portwood, D. E., Kilby, P. M., & Dickman, M. J. (2022). Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides. Frontiers in Bioengineering and Biotechnology, 10, 980592. https://doi.org/10.3389/fbioe.2022.980592
  • Huang, K., Zou, Y., Luo, J., & Liu, Y. (2015). Combining UV-C treatment with biocontrol yeast to control postharvest decay of melon. Environmental Science and Pollution Research, 22(18), 14307-14313. https://doi.org/10.1007/s11356-015-4687-0
  • Islam, M. T., Rahman, M., Pandey, P., Jha, C. K., & Aeron, A. (Ed.). (2016). Bacilli and Agrobiotechnology. Springer International Publishing. https://doi.org/10.1007/978-3-319-44409-3
  • Jaiswal, D. K., Gawande, S. J., Soumia, P. S., Krishna, R., Vaishnav, A., & Ade, A. B. (2022). Biocontrol strategies: An eco-smart tool for integrated pest and diseases management. BMC Microbiology, 22(1), 324. https://doi.org/10.1186/s12866-022-02744-2
  • Kharazian, Z. A., Salehi Jouzani, G., Aghdasi, M., Khorvash, M., Zamani, M., & Mohammadzadeh, H. (2017). Biocontrol potential of Lactobacillus strains isolated from corn silages against some plant pathogenic fungi. Biological Control, 110, 33-43. https://doi.org/10.1016/j.biocontrol.2017.04.004
  • Klein, M. N., & Kupper, K. C. (2018). Biofilm production by Aureobasidium pullulans improves biocontrol against sour rot in citrus. Food Microbiology, 69, 1-10. https://doi.org/10.1016/j.fm.2017.07.008
  • Li, W., Zhang, H., Li, P., Apaliya, M. T., Yang, Q., Peng, Y., & Zhang, X. (2016). Biocontrol of postharvest green mold of oranges by Hanseniaspora uvarum Y3 in combination with phosphatidylcholine. Biological Control, 103, 30-38. https://doi.org/10.1016/j.biocontrol.2016.07.014
  • Li, X., Jing, T., Zhou, D., Zhang, M., Qi, D., Zang, X., Zhao, Y., Li, K., Tang, W., Chen, Y., Qi, C., Wang, W., & Xie, J. (2021). Biocontrol efficacy and possible mechanism of Streptomyces sp. H4 against postharvest anthracnose caused by Colletotrichum fragariae on strawberry fruit. Postharvest Biology and Technology, 175, 111401. https://doi.org/10.1016/j.postharvbio.2020.111401
  • Li, X., Yu, L., An, F., Bai, H., Wisniewski, M., & Wang, Z. (2023). Caffeic acid increases the fitness of Candida oleophila to the microenvironment of kiwifruit and its biocontrol performance against postharvest decay fungi. Postharvest Biology and Technology, 196, 112177. https://doi.org/10.1016/j.postharvbio.2022.112177
  • Lima, F. B. D., Félix, C., Osório, N., Alves, A., Vitorino, R., Domingues, P., Correia, A., Da Silva Ribeiro, R. T., & Esteves, A. C. (2016). Secretome analysis of Trichoderma atroviride T17 biocontrol of Guignardia citricarpa. Biological Control, 99, 38-46. https://doi.org/10.1016/j.biocontrol.2016.04.009
  • Ling, L., Jiang, K., Cheng, W., Wang, Y., Pang, M., Luo, H., Lu, L., Gao, K., & Tu, Y. (2022). Biocontrol of volatile organic compounds obtained from Bacillus subtilis CL2 against Aspergillus flavus in peanuts during storage. Biological Control, 176, 105094. https://doi.org/10.1016/j.biocontrol.2022.105094
  • Liu, J., Qin, D., Huang, W., Wang, X., Li, Y., & Zhang, R. (2023). Biocontrol ability and action mechanism of Bacillus amyloliquefaciens Baf1 against Fusarium incarnatum causing fruit rot in postharvest muskmelon (cv. Yugu) fruit. LWT, 181, 114714. https://doi.org/10.1016/j.lwt.2023.114714
  • Liu, Z., Du, S., Ren, Y., & Liu, Y. (2018). Biocontrol ability of killer yeasts ( Saccharomyces cerevisiae ) isolated from wine against Colletotrichum gloeosporioides on grape. Journal of Basic Microbiology, 58(1), 60-67. https://doi.org/10.1002/jobm.201700264
  • Lopes, M. R., Klein, M. N., Ferraz, L. P., Da Silva, A. C., & Kupper, K. C. (2015). Saccharomyces cerevisiae: A novel and efficient biological control agent for Colletotrichum acutatum during pre-harvest. Microbiological Research, 175, 93-99. https://doi.org/10.1016/j.micres.2015.04.003
  • Marican, A., & Durán-Lara, E. F. (2018). A review on pesticide removal through different processes. Environmental Science and Pollution Research, 25(3), 2051-2064. https://doi.org/10.1007/s11356-017-0796-2
  • Matas-Baca, M. Á., Urías García, C., Pérez-Álvarez, S., Flores-Córdova, M. A., Escobedo-Bonilla, C. M., Magallanes-Tapia, M. A., & Sánchez Chávez, E. (2022). Morphological and molecular characterization of a new autochthonous Trichoderma sp. Isolate and its biocontrol efficacy against Alternaria sp. Saudi Journal of Biological Sciences, 29(4), 2620-2625. https://doi.org/10.1016/j.sjbs.2021.12.052
  • Mateo, E. M., Tarazona, A., Aznar, R., & Mateo, F. (2023). Exploring the impact of lactic acid bacteria on the biocontrol of toxigenic Fusarium spp. And their main mycotoxins. International Journal of Food Microbiology, 387, 110054. https://doi.org/10.1016/j.ijfoodmicro.2022.110054
  • Medhioub, I., Cheffi, M., Tounsi, S., & Triki, M. A. (2022). Study of Bacillus velezensis OEE1 potentialities in the biocontrol against Erwinia amylovora, causal agent of fire blight disease of rosaceous plants. Biological Control, 167, 104842. https://doi.org/10.1016/j.biocontrol.2022.104842
  • Neves, T. T. D., Brandão, R. M., Barbosa, R. B., Cardoso, M. D. G., Batista, L. R., & Silva, C. F. (2021). Simulation of coffee beans contamination by Aspergillus species under different environmental conditions and the biocontrol effect by Saccharomyces cerevisiae. LWT, 148, 111610. https://doi.org/10.1016/j.lwt.2021.111610
  • Nie, X., Zhang, C., Jiang, C., Zhang, R., Guo, F., & Fan, X. (2019). Trehalose increases the oxidative stress tolerance and biocontrol efficacy of Candida oleophila in the microenvironment of pear wounds. Biological Control, 132, 23-28. https://doi.org/10.1016/j.biocontrol.2019.01.015
  • Ou, C., Liu, Y., Wang, W., & Dong, D. (2016). Integration of UV-C with antagonistic yeast treatment for controlling post-harvest disease and maintaining fruit quality of Ananas comosus. BioControl, 61(5), 591-603. https://doi.org/10.1007/s10526-016-9740-5
  • Oztekin, S., & Karbancioglu-Guler, F. (2021). Bioprospection of Metschnikowia sp. İsolates as biocontrol agents against postharvest fungal decays on lemons with their potential modes of action. Postharvest Biology and Technology, 181, 111634. https://doi.org/10.1016/j.postharvbio.2021.111634
  • Palmieri, D., Ianiri, G., Del Grosso, C., Barone, G., De Curtis, F., Castoria, R., & Lima, G. (2022). Advances and Perspectives in the Use of Biocontrol Agents against Fungal Plant Diseases. Horticulturae, 8(7), 577. https://doi.org/10.3390/horticulturae8070577
  • Panpatte, D. G., Jhala, Y. K., Shelat, H. N., & Vyas, R. V. (2016). Pseudomonas fluorescens: A Promising Biocontrol Agent and PGPR for Sustainable Agriculture. Içinde D. P. Singh, H. B. Singh, & R. Prabha (Ed.), Microbial Inoculants in Sustainable Agricultural Productivity (ss. 257-270). Springer India. https://doi.org/10.1007/978-81-322-2647-5_15
  • Peshin, R., & Zhang, W. (2014). Integrated Pest Management and Pesticide Use. Içinde D. Pimentel & R. Peshin (Ed.), Integrated Pest Management (ss. 1-46). Springer Netherlands. https://doi.org/10.1007/978-94-007-7796-5_1
  • Pu, L., Yuan-yuan, S., Lifeng, C., & Chao-an, L. (2014). Farnesol produced by the biocontrol agent Candida ernobii can be used in controlling the postharvest pathogen Penicillium expansum. African Journal of Microbiology Research, 8(9), 922-928. https://doi.org/10.5897/AJMR2013.5976
  • Qin, X., Xiao, H., Xue, C., Yu, Z., Yang, R., Cai, Z., & Si, L. (2015). Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest Biology and Technology, 100, 160-167. https://doi.org/10.1016/j.postharvbio.2014.09.010
  • Quattrini, M., Bernardi, C., Stuknytė, M., Masotti, F., Passera, A., Ricci, G., Vallone, L., De Noni, I., Brasca, M., & Fortina, M. G. (2018). Functional characterization of Lactobacillus plantarum ITEM 17215: A potential biocontrol agent of fungi with plant growth promoting traits, able to enhance the nutritional value of cereal products. Food Research International, 106, 936-944. https://doi.org/10.1016/j.foodres.2018.01.074
  • Raymaekers, K., Ponet, L., Holtappels, D., Berckmans, B., & Cammue, B. P. A. (2020). Screening for novel biocontrol agents applicable in plant disease management – A review. Biological Control, 144, 104240. https://doi.org/10.1016/j.biocontrol.2020.104240
  • Ren, Y., Yao, M., Chang, P., Sun, Y., Li, R., Meng, D., Xia, X., & Wang, Y. (2021). Isolation and characterization of a Pseudomonas poae JSU-Y1 with patulin degradation ability and biocontrol potential against Penicillium expansum. Toxicon, 195, 1-6. https://doi.org/10.1016/j.toxicon.2021.02.014
  • Roberti, R., Di Francesco, A., Innocenti, G., & Mari, M. (2019). Potential for biocontrol of Pleurotus ostreatus green mould disease by Aureobasidium pullulans De Bary (Arnaud). Biological Control, 135, 9-15. https://doi.org/10.1016/j.biocontrol.2019.04.016
  • Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3(3), 430-439. https://doi.org/10.1038/s41559-018-0793-y
  • Shaik, F., Mohammed, N., Ahmed, F., & Rao, L. N. (2023). Advanced technologies for the treatment of pesticides. 020023. https://doi.org/10.1063/5.0119507
  • Sharma, V., Sharma, A., Malannavar, A. B., & Salwan, R. (2020). Molecular aspects of biocontrol species of Streptomyces in agricultural crops. Içinde Molecular Aspects of Plant Beneficial Microbes in Agriculture (ss. 89-109). Elsevier. https://doi.org/10.1016/B978-0-12-818469-1.00008-0
  • Shi, Y., Yang, Q., Zhao, Q., Dhanasekaran, S., Ahima, J., Zhang, X., Zhou, S., Droby, S., & Zhang, H. (2022). Aureobasidium pullulans S-2 reduced the disease incidence of tomato by influencing the postharvest microbiome during storage. Postharvest Biology and Technology, 185, 111809. https://doi.org/10.1016/j.postharvbio.2021.111809
  • Smetana, S., Oehen, B., Goyal, S., & Heinz, V. (2020). Environmental sustainability issues for western food production. Içinde Nutritional and Health Aspects of Food in Western Europe (ss. 173-200). Elsevier. https://doi.org/10.1016/B978-0-12-813171-8.00010-X
  • Souza, M. C. O., Cruz, J. C., Cesila, C. A., Gonzalez, N., Rocha, B. A., Adeyemi, J. A., Nadal, M., Domingo, J. L., & Barbosa, F. (2023). Recent trends in pesticides in crops: A critical review of the duality of risks-benefits and the Brazilian legislation issue. Environmental Research, 228, 115811. https://doi.org/10.1016/j.envres.2023.115811
  • Stewart, G. G. (2014). SACCHAROMYCES | Saccharomyces cerevisiae. Içinde Encyclopedia of Food Microbiology (ss. 309-315). Elsevier. https://doi.org/10.1016/B978-0-12-384730-0.00292-5
  • Sui, Y., Wisniewski, M., Droby, S., Piombo, E., Wu, X., & Yue, J. (2020). Genome Sequence, Assembly, and Characterization of the Antagonistic Yeast Candida oleophila Used as a Biocontrol Agent Against Post-harvest Diseases. Frontiers in Microbiology, 11, 295. https://doi.org/ 10.3389/ fmicb.2020.00295
  • Thambugala, K. M., Daranagama, D. A., Phillips, A. J. L., Kannangara, S. D., & Promputtha, I. (2020). Fungi vs. Fungi in Biocontrol: An Overview of Fungal Antagonists Applied Against Fungal Plant Pathogens. Frontiers in Cellular and Infection Microbiology, 10, 604923. https://doi.org/10.3389/fcimb.2020.604923
  • FAO, IFAD, UNICEF, WFP and WHO. (2023) The State of Food Security and Nutrition in the World 2023. Urbanization, agrifood systems transformation and healthy diets across the rural–urban continuum. Rome, FAO. https://doi.org/10.4060/cc3017en
  • Trias, R., Badosa, E., Montesinos, E., & Bañeras, L. (2008). Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables. International Journal of Food Microbiology, 127(1-2), 91-98. https://doi.org/10.1016/j.ijfoodmicro.2008.06.011
  • Vanshree, C. R., Singhal, M., Sexena, M., Sankhla, M. S., Parihar, K., Jadhav, E. B., Awasthi, K. K., & Yadav, C. S. (2022). Microbes as biocontrol agent: From crop protection till food security. Içinde Relationship Between Microbes and the Environment for Sustainable Ecosystem Services, Volume 1 (ss. 215-237). Elsevier. https://doi.org/10.1016/B978-0-323-89938-3.00011-6
  • Vedamurthy, A. B., Varsha, S. L., & Shruthi, S. D. (2021). Regulatory requirement for commercialization of biocontrol agents. Içinde Biocontrol Agents and Secondary Metabolites (ss. 659-675). Elsevier. https://doi.org/10.1016/B978-0-12-822919-4.00029-6
  • Wang, S. Y., Herrera-Balandrano, D. D., Wang, Y. X., Shi, X. C., Chen, X., Jin, Y., Liu, F. Q., & Laborda, P. (2022). Biocontrol Ability of the Bacillus amyloliquefaciens Group, B. amyloliquefaciens , B. velezensis , B. nakamurai , and B. siamensis , for the Management of Fungal Postharvest Diseases: A Review. Journal of Agricultural and Food Chemistry, 70(22),6591-6616.https://doi.org/10.1021/ acs. jafc.2c01745
  • Wang, Z., Zhong, T., Chen, K., Du, M., Chen, G., Chen, X., Wang, K., Zalán, Z., Takács, K., & Kan, J. (2021). Antifungal activity of volatile organic compounds produced by Pseudomonas fluorescens ZX and potential biocontrol of blue mold decay on postharvest citrus. Food Control, 120, 107499. https://doi.org/10.1016/j.foodcont.2020.107499
  • Wei, J., Zhao, J., Suo, M., Wu, H., Zhao, M., & Yang, H. (2023). Biocontrol mechanisms of Bacillus velezensis against Fusarium oxysporum from Panax ginseng. Biological Control, 182,105222. https://doi.org/10.1016/j.biocontrol.2023. 105222
  • Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual review of phytopathology, 40(1), 309-348. https://doi.org/10.1146/annurev.phyto.40.030402.110010
  • Xu, Y., Wang, L., Liang, W., & Liu, M. (2021). Biocontrol potential of endophytic Bacillus velezensis strain QSE-21 against postharvest grey mould of fruit. Biological Control, 161, 104711. https://doi.org/10.1016/j.biocontrol.2021.104711
  • Zhang, C., Chen, K., & Wang, G. (2013). Combination of the biocontrol yeast Cryptococcus laurentii with UV-C treatment for control of postharvest diseases of tomato fruit. BioControl, 58(2), 269-281.
  • Zhang, H., Kong, N., Liu, B., Yang, Y., Li, C., Qi, J., Ma, Y., Ji, S., & Liu, Z. (2022). Biocontrol potential of Trichoderma harzianum CGMCC20739 (Tha739) against postharvest bitter rot of apples. Microbiological Research, 265, 127182. https://doi.org/10.1016/j.micres.2022.127182
  • Zhang, X., Li, B., Zhang, Z., Chen, Y., & Tian, S. (2020). Antagonistic Yeasts: A Promising Alternative to Chemical Fungicides for Controlling Postharvest Decay of Fruit. Journal of Fungi, 6(3), 158. https://doi.org/10.3390/jof6030158
  • Zhimo, V. Y., Kumar, A., Biasi, A., Salim, S., Feygenberg, O., Toamy, M. A., Abdelfattaah, A., Medina, S., Freilich, S., Wisniewski, M., & Droby, S. (2021). Compositional shifts in the strawberry fruit microbiome in response to near-harvest application of Metschnikowia fructicola, a yeast biocontrol agent. Postharvest Biology and Technology, 175, 111469. https://doi.org/10.1016/j.postharvbio.2021.111469
  • Zhou, D., Jing, T., Chen, Y., Yun, T., Qi, D., Zang, X., Zhang, M., Wei, Y., Li, K., Zhao, Y., Wang, W., & Xie, J. (2022). Biocontrol potential of a newly isolated Streptomyces sp. HSL-9B from mangrove forest on postharvest anthracnose of mango fruit caused by Colletotrichum gloeosporioides. Food Control, 135, 108836. https://doi.org/10.1016/j.foodcont.2022.108836
There are 91 citations in total.

Details

Primary Language Turkish
Subjects Food Safety, Traceability, Certification and Authenticity, Food Microbiology
Journal Section Reviews
Authors

Ege Duraçe This is me 0009-0007-9139-3506

Dilara Nur Dikmetaş This is me 0000-0002-1514-7166

Funda Karbancıoğlu Güler 0000-0001-6576-0084

Publication Date March 28, 2024
Submission Date January 8, 2024
Acceptance Date March 12, 2024
Published in Issue Year 2024 Volume: 2 Issue: 1

Cite

APA Duraçe, E., Dikmetaş, D. N., & Karbancıoğlu Güler, F. (2024). Biyokontrol Yaklaşımı ile Küflerin Kontrolü. ITU Journal of Food Science and Technology, 2(1), 29-40.