Research Article
BibTex RIS Cite

Evaluation of the Vegetation Period According to Climate Change Scenarios: A Case Study in the Inner West Anatolia Subregion of Turkey

Year 2019, , 29 - 39, 30.12.2019
https://doi.org/10.26650/JGEOG2019-0018

Abstract

In this research, 15 meteorological stations located in western Anatolia in Turkey were investigated for determining temperature properties. The vegetation season has been determined according to days when the daily temperature was greater than or equal to 8°C. The research area has 3 different vegetation durations as longer (more than 225 days in the western and southern parts), moderate (210-220 days in plateaus around Uşak, Gediz and Demirci), and shorter (180-195 days in the eastern part and less than 180 days in mountainous areas). Then, the vegetation has been reinvestigated according to climate change scenarios (RCP 4.5 and 8.5). For this purpose, the daily mean temperatures were raised by 2.6°C and 4.8°C for RCP 4.5 and RCP 8.5, respectively. In the reinvestigation period, the vegetation period will increase about 15-20 days or over 40 days according to RCP 4.5 and 8.5, respectively. Along with the increase in temperature throughout the research area, growing seasons will be significantly affected, beginning and ending dates of vegetation would shift. Owing to climate change effects, mountainous areas may be affected more than low altitude areas. As a conclusion due to the result of increasing temperature, plant development and distribution will be affected, and new plant species may occur. 

Thanks

We would like to thank the Turkish State Meteorological Service (Ankara, Turkey) for providing the climate data.

References

  • Ackerly, D.D., Cornwell, W.K., Weiss, S.B., Flint, L.E., Flint, A.L. (2015). A geographic mosaic of climate change impacts on terrestrial vegetation: which areas are most at risk?. PLoS One, 10(6), e0130629.
  • Ackerly, D.D., Loarie, S.R., Cornwell, W.K., Weiss, S.B., Hamilton, H., Branciforte, R., Kraft, N.J.B. (2010). The geography of climate change: implications for conservation biogeography. Diversity and Distributions, 16, 476-487.
  • Aksoy, H., Unal, N.E., Alexandrov, V., Dakova, S., Yoon, J. (2008). Hydrometeorological analysis of northwestern Turkey with links to climate change. International Journal of Climatology, 28(8), 10471060. Aktaş, H. (1992). Plant Geography of Middle Black Sea Region (Between Yeşilırmak-Melet stream and Kelkit valley). İstanbul University, unpublished PhD thesis, İstanbul (in Turkish).
  • Albek, M., Öğütveren, Ü. B., Albek, E. (2004). Hydrological modeling of Seydi Suyu watershed (Turkey) with HSPF. Journal of Hydrology, 285(1), 260-271.
  • An, S., Zhu, X., Shen, M., Wang, Y., Cao, R., Chen, X., Yang, W., Chen, J., Tang, Y. (2018). Mismatch in elevational shifts between satellite observed vegetation greenness and temperature isolines during 2000-2016 on the Tibetan Plateau. Global Change Biology, 24, 5411-5425.
  • Angert, A.L., LaDeau, S.L., Ostfeld, R.S. (2013) Climate change and species interactions: ways forward. Annals of the New York Academy of Sciences, 1297(1), 1-7.
  • Atalay, İ. (1994). Vegetation Geography of Turkey. Ege University, İzmir (in Turkish).
  • Avcı, M. (1990). Plant geography in the western of Lakes Region in Turkey. İstanbul University, unpublished PhD thesis, İstanbul (in Turkish).
  • Avcı, M. (1995). Plant communities and their distribution on the western part of the Lakes District, Review of the Department of Geography University of İstanbul, 2, 47-72.
  • Avcı, M. (1996). Relationships between climatic characteristics and vegetation on the western part of the Lakes District. İstanbul Üniversitesi Coğrafya Dergisi, 4, 227-264 (in Turkish).
  • Avcı, M. (1997). Forest remnants on the field between Karasu and Tuzla Stream. İstanbul Üniversitesi Coğrafya Dergisi, 5, 179-224 (in Turkish).
  • Avcı, M. (1998). Plant geography of Ilgaz mountains and its surroundings I: Geographic conditions of plant cover. İstanbul Üniversitesi Coğrafya Dergisi, 6, 137-216 (in Turkish).
  • Darkot, B., Tuncel, M. (1995). Geography of the Aegean Region. İstanbul University, İstanbul (in Turkish).
  • Demircan, M., Gürkan, H., Eskioğlu, O., Arabacı, H., Coşkun, M. (2017). Climate change projections for Turkey: Three models and two scenarios. Türkiye Su Bilimleri ve Yönetimi Dergisi, 1(1), 22-43.
  • Dönmez, Y. (1972). Physical Geography Around the Kütahya Plains. İstanbul University, İstanbul (in Turkish).
  • Dönmez, Y. (1985). Geography of Plants. İstanbul University, İstanbul (in Turkish).
  • Elibüyük, M., Yılmaz, E. (2010). Altitude steps and slope groups of Turkey in comparison with geographical regions and sub-regions. Coğrafi Bilimler Dergisi, 8(1), 27-55 (in Turkish).
  • Engin, İ. (1992). Plant Geography of the area between DeğirmendereYanbolu creek and Harşit stream. İstanbul University, unpublished PhD thesis, İstanbul (in Turkish).
  • Erinç, S. (1984). Climatology and Methods. Istanbul University, İstanbul (in Turkish).
  • Erlat, E., Türkeş, M. (2017). Observed variations and trends in number of tropical nights in Turkey. Aegean Geographic Journal, 26(2), 95106 (in Turkish).
  • ESRI. (2013). ArcGIS 10.2 Environmental Systems Research Institute, Inc. Redlands, USA.
  • Fairbridge, R.W., Oliver, J.E. (2005). Lapse Rate. Encyclopedia of World Climatology. New York: Springer, 448-450.
  • Fortems-Cheiney, A., Foret, G., Siour, G., Vautard, R., Szopa, S., Dufour, G., Colette, A., Lacressonniere, G., Beekmann, M. (2017). A 3°C global RCP8.5 emission trajectory cancels benefits of European emission reductions on air quality. Nature Communications, 8(1), 89.
  • Frederiks, T.M., Christopher, J.T., Harvey, G.L., Sutherland, M.W., Borrell, A.K. (2012). Current and emerging screening methods to identify post-head-emergence frost adaptation in wheat and barley. Journal of Experimental Botany, 63(15), 5405-5416.
  • Fujihara, Y., Tanaka, K., Watanabe, T., Nagano, T., Kojiri, T. (2008). Assessing the impacts of climate change on the water resources of the Seyhan River Basin in Turkey: Use of dynamically downscaled data for hydrologic simulations. Journal of Hydrology, 353(1), 33-48.
  • Günal, N. (1986). Plant Geography Between Gediz and Büyük Menderes. İstanbul University, unpublished PhD thesis, İstanbul (in Turkish).
  • Günal, N. (1997). Geographical Distribution, Ecological and Floristic Characteristics of Principal Tree Species in Turkey. Çantay Press, İstanbul (in Turkish).
  • Günal, N. (2003). Plant Geography of Upper Gediz Basin. Çantay Press, İstanbul (in Turkish).
  • Günal, N. (2013). Effect of climate on natural plant vegetation in Turkey. Acta Turcica Çevrimiçi Tematik Türkoloji Dergisi, V(1), 1-22 (in Turkish).
  • Güngördü, M. (1993). Plant geography of southern Marmara Region (part of west). İstanbul University, unpublished essay, İstanbul (in Turkish).
  • Inouye, D.W. (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology, 89(2), 353-362.
  • IPCC. (2007). “Contribution of Working Groups I. II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change” Climate Change 2007: Synthesis Report. Geneva, Switzerland.
  • IPCC. (2013). “Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change” Climate Change 2013: The Physical Science Basis. Cambridge University Press, New York, USA.
  • IPCC. (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (Eds. Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield). https://www.ipcc.ch/site/ assets/uploads/sites/2/2019/06/SR15_Full_Report_Low_Res.pdf.
  • Kläring, H.P., Klopotek, Y., Krumbein, A., Schwarz, D. (2015). The effect of reducing the heating set point on the photosynthesis, growth, yield and fruit quality in greenhouse tomato production. Agricultural and Forest Meteorology, 214-215, 178-188.
  • Körner, C. (2015). Paradigm shift in plant growth control. Current Opinion in Plant Biology, 25, 107-114.
  • Leibundgut, H. (1970). Der Wald.Verlag Huber, Frauenfeld und Stuttgart.
  • Liu, Q., Piao, S., Janssens, I.A., Fu, Y., Peng, S., Lian, X., Ciais, P., Myneni, R.B., Peñuelas, J., Wang, T. (2018). Extension of the growing season increases vegetation exposure to frost. Nature Communications, 9(1), 426.
  • Lizana, X.C., Avila, A., Tolaba, A., Martinez, J.P. (2017). Field responses of potato to increased temperature during tuber bulking: Projection for climate change scenarios, at high-yield environments of Southern Chile. Agricultural and Forest Meteorology, 239, 192201.
  • Mathur, S., Agrawal, D., Jajoo, A. (2014). Photosynthesis: response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 137, 116-126. Mazurczyk, W., Lutomirska, B., Wierzbicka, A. (2003). Relation between air temperature and length of vegetation period of potato crops. Agricultural and Forest Meteorology, 118(3), 169-172.
  • Meinshausen, M., Smith, S.J., Calvin, K., Daniel, J.S., Kainuma, M.L.T, Lamarque, J.F., Matsumoto, K., Montzka, S.A., Raper, S.C.B, Riahi, K., Thomson, A., Velders, G.J.M., van Vuuren, D.P.P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. ‎ Climatic Change, 109(1-2), 213.
  • Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15-19.
  • Nolan, C., Overpeck, J. T., Allen, J. R., Anderson, P. M., Betancourt, J. L., Binney, H. A., ... & Jackson, S.T. (2018). Past and future global transformation of terrestrial ecosystems under climate change. Science, 361(6405), 920-923.
  • Önol, B., Ünal, Y.S., Dalfes, H.N. (2009). Modeling impacts of climate change scenario over Turkey. ITU Journal Series D: Engineering, 8(5), 169-177 (in Turkish).
  • Özdoğan, M. (2011). Modeling the impacts of climate change on wheat yields in Northwestern Turkey. Agriculture, Ecosystems and Environment, 141(1-2), 1-12.
  • Ozkan, B., Akcaoz, H. (2002). Impacts of climate factors on yields for selected crops in the southern Turkey. Mitigation and Adaptation Strategies for Global Change, 7(4), 367-380.
  • Pauli, H., Gottfried, M., Grabherr, G. (2014). Effects of climate change on the alpine and nival vegetation of the Alps. Journal of Mountain Ecology, 7, 9-12.
  • Porter, J.R., Gawith, M. (1999). Temperatures and the growth and development of wheat: a review. European Journal of Agronomy, 10(1), 23-36.
  • Primault, B. (1992). Temperature data used to determine a theoretical start to forest tree growth in spring. Theoretical and Applied Climatology, 45(2), 139-143.
  • Şar, T. (2018). Vegetation period in the inner West Anatolia subregion and evaluation of climate change scenarios. İstanbul University, unpublished Master’s thesis, İstanbul (in Turkish).
  • Scheiter, S., Savadogo, P. (2017). Ecosystem management can mitigate vegetation shifts induced by climate change in African savannas. EGU General Assembly Conference Abstracts 19:2076.
  • Schmid, M., Ehlers, T., Werner, C., Hickler, T. (2018). Effect of vegetation change on denudation: Landscape response to transient climate and vegetation cover. EGU General Assembly Conference Abstracts 20:13659.
  • Sen, B., Topcu, S., Türkeș, M.,Sen, B., Warner, J.F. (2012). Projecting climate change, drought conditions and crop productivity in Turkey. Climate Research, 52, 175-191.
  • Svenning, J.S., Eiserhardt, W.L., Normand, S., Ordonez, A., Sandel, B. (2015). The Influence of paleoclimate on present-day patterns in biodiversity and ecosystems. The Annual Review of Ecology, Evolution, and Systematics, 46, 551-572.
  • Svenning, J.S., Sandel, B. (2013). Disequilibrium vegetation dynamics under future climate change. American Journal of Botany, 100(7), 1266-1286.
  • Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi K.R., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., Rose, S.K., (2011). The representative concentration pathways: an overview. Climatic Change, 109, 5-31.
  • Werner, C., Johan, L., Manuel, S., Juan-Pablo, F., Todd, A.E. Thomas, H. (2017). Simulating vegetation dynamics in Chile from 21ka BP to present: Effects of climate change on vegetation functions and cover. EGU General Assembly Conference Abstracts 19, 16673.
  • Wu, D., Zhao, X., Liang, S., Zhou, T., Huang, K., Tang, B., Zhao, W. (2015). Time-lag effects of global vegetation responses to climate change. Global Change Biology, 21(9), 3520-3531.
  • Yano, T., Aydin, M., Haraguchi, T. (2007). Impact of climate change on irrigation demand and crop growth in a Mediterranean environment of Turkey. Sensors, 7(10), 2297-2315.
  • Yılmaz, Ö. (2001). Vegetation of Afyon and its surroundings. Türk Coğrafya Dergisi, 37, 47-77 (in Turkish).
  • Zandalinas, S.I., Mittler, R., Balfagón, D., Arbona, V., Gómez-Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162(1), 2-12.
  • Zhang, X., Yang, F. 2004. ETCCDI/CRD climate change indices. RClimDex (1.0). http://etccdi. pacificclimate.org (accessed 4 November 2018).

Vejetasyon Döneminin İklim Değişimi Senaryolarına Göre Değerlendirilmesi: İç Batı Anadolu Bölümü Örneği

Year 2019, , 29 - 39, 30.12.2019
https://doi.org/10.26650/JGEOG2019-0018

Abstract

Araştırma alanı Türkiye’nin batısında yer alan İç Batı Anadolu Bölümüdür. Bu çalışmada bölümün sıcaklık özelliklerinin belirlenmesi için 15 farklı meteoroloji istasyonun verileri kullanılmıştır. Vejetasyon dönemi, günlük sıcaklık değerlerinin 8°C ve üzerinde olan gün sayısına göre belirlenmiştir. Araştırma alanında kısa (doğuda 180-195 gün arasında ve dağlık alanlarda 180 günün altında), orta (Uşak, Gediz ve Demirci platoları civarında 210-220 gün) ve uzun (batıda ve güneyde 225 günün üzerinde) dönem olmak üzere 3 farklı vejetasyon döneminin olduğu görülmüştür. Ayrıca, vejetasyon dönemi iklim değişimi senaryolarına (RCP 4.5 ve 8.5) göre yeniden belirlenmiştir. Bunun için günlük ortalama sıcaklıklar RCP 4.5 ve 8.5 senaryolarına göre sırasıyla 2.6°C ve 4.8°C arttırılmıştır. İklim değişimi etkileri ile günlük ortalama sıcaklıklar tekrardan incelendiğinde, vejetasyon süresinde RCP 4.5 senaryosuna göre 15-20 gün, 8.5 senaryosuna göre ise 40 günün üzerinde artış olabilir. Araştırma alanında bu sıcaklık artışları ile vejetasyon devresi önemli olarak etkilenebilir, vejetasyon döneminin başlangıcı ve sona erme tarihlerinde kaymalar olabilir. İklim değişimi etkisi yükseltisi az olan alanlara göre en çok dağlık alanlarda hissedilebilir. Bu çalışmanın sonucuna göre, araştırma alanındaki sıcaklık artışı bitkilerin gelişimi ile dağılışını etkileyebilir ve bu sahalara yeni bitki türleri de sokulabilir.

References

  • Ackerly, D.D., Cornwell, W.K., Weiss, S.B., Flint, L.E., Flint, A.L. (2015). A geographic mosaic of climate change impacts on terrestrial vegetation: which areas are most at risk?. PLoS One, 10(6), e0130629.
  • Ackerly, D.D., Loarie, S.R., Cornwell, W.K., Weiss, S.B., Hamilton, H., Branciforte, R., Kraft, N.J.B. (2010). The geography of climate change: implications for conservation biogeography. Diversity and Distributions, 16, 476-487.
  • Aksoy, H., Unal, N.E., Alexandrov, V., Dakova, S., Yoon, J. (2008). Hydrometeorological analysis of northwestern Turkey with links to climate change. International Journal of Climatology, 28(8), 10471060. Aktaş, H. (1992). Plant Geography of Middle Black Sea Region (Between Yeşilırmak-Melet stream and Kelkit valley). İstanbul University, unpublished PhD thesis, İstanbul (in Turkish).
  • Albek, M., Öğütveren, Ü. B., Albek, E. (2004). Hydrological modeling of Seydi Suyu watershed (Turkey) with HSPF. Journal of Hydrology, 285(1), 260-271.
  • An, S., Zhu, X., Shen, M., Wang, Y., Cao, R., Chen, X., Yang, W., Chen, J., Tang, Y. (2018). Mismatch in elevational shifts between satellite observed vegetation greenness and temperature isolines during 2000-2016 on the Tibetan Plateau. Global Change Biology, 24, 5411-5425.
  • Angert, A.L., LaDeau, S.L., Ostfeld, R.S. (2013) Climate change and species interactions: ways forward. Annals of the New York Academy of Sciences, 1297(1), 1-7.
  • Atalay, İ. (1994). Vegetation Geography of Turkey. Ege University, İzmir (in Turkish).
  • Avcı, M. (1990). Plant geography in the western of Lakes Region in Turkey. İstanbul University, unpublished PhD thesis, İstanbul (in Turkish).
  • Avcı, M. (1995). Plant communities and their distribution on the western part of the Lakes District, Review of the Department of Geography University of İstanbul, 2, 47-72.
  • Avcı, M. (1996). Relationships between climatic characteristics and vegetation on the western part of the Lakes District. İstanbul Üniversitesi Coğrafya Dergisi, 4, 227-264 (in Turkish).
  • Avcı, M. (1997). Forest remnants on the field between Karasu and Tuzla Stream. İstanbul Üniversitesi Coğrafya Dergisi, 5, 179-224 (in Turkish).
  • Avcı, M. (1998). Plant geography of Ilgaz mountains and its surroundings I: Geographic conditions of plant cover. İstanbul Üniversitesi Coğrafya Dergisi, 6, 137-216 (in Turkish).
  • Darkot, B., Tuncel, M. (1995). Geography of the Aegean Region. İstanbul University, İstanbul (in Turkish).
  • Demircan, M., Gürkan, H., Eskioğlu, O., Arabacı, H., Coşkun, M. (2017). Climate change projections for Turkey: Three models and two scenarios. Türkiye Su Bilimleri ve Yönetimi Dergisi, 1(1), 22-43.
  • Dönmez, Y. (1972). Physical Geography Around the Kütahya Plains. İstanbul University, İstanbul (in Turkish).
  • Dönmez, Y. (1985). Geography of Plants. İstanbul University, İstanbul (in Turkish).
  • Elibüyük, M., Yılmaz, E. (2010). Altitude steps and slope groups of Turkey in comparison with geographical regions and sub-regions. Coğrafi Bilimler Dergisi, 8(1), 27-55 (in Turkish).
  • Engin, İ. (1992). Plant Geography of the area between DeğirmendereYanbolu creek and Harşit stream. İstanbul University, unpublished PhD thesis, İstanbul (in Turkish).
  • Erinç, S. (1984). Climatology and Methods. Istanbul University, İstanbul (in Turkish).
  • Erlat, E., Türkeş, M. (2017). Observed variations and trends in number of tropical nights in Turkey. Aegean Geographic Journal, 26(2), 95106 (in Turkish).
  • ESRI. (2013). ArcGIS 10.2 Environmental Systems Research Institute, Inc. Redlands, USA.
  • Fairbridge, R.W., Oliver, J.E. (2005). Lapse Rate. Encyclopedia of World Climatology. New York: Springer, 448-450.
  • Fortems-Cheiney, A., Foret, G., Siour, G., Vautard, R., Szopa, S., Dufour, G., Colette, A., Lacressonniere, G., Beekmann, M. (2017). A 3°C global RCP8.5 emission trajectory cancels benefits of European emission reductions on air quality. Nature Communications, 8(1), 89.
  • Frederiks, T.M., Christopher, J.T., Harvey, G.L., Sutherland, M.W., Borrell, A.K. (2012). Current and emerging screening methods to identify post-head-emergence frost adaptation in wheat and barley. Journal of Experimental Botany, 63(15), 5405-5416.
  • Fujihara, Y., Tanaka, K., Watanabe, T., Nagano, T., Kojiri, T. (2008). Assessing the impacts of climate change on the water resources of the Seyhan River Basin in Turkey: Use of dynamically downscaled data for hydrologic simulations. Journal of Hydrology, 353(1), 33-48.
  • Günal, N. (1986). Plant Geography Between Gediz and Büyük Menderes. İstanbul University, unpublished PhD thesis, İstanbul (in Turkish).
  • Günal, N. (1997). Geographical Distribution, Ecological and Floristic Characteristics of Principal Tree Species in Turkey. Çantay Press, İstanbul (in Turkish).
  • Günal, N. (2003). Plant Geography of Upper Gediz Basin. Çantay Press, İstanbul (in Turkish).
  • Günal, N. (2013). Effect of climate on natural plant vegetation in Turkey. Acta Turcica Çevrimiçi Tematik Türkoloji Dergisi, V(1), 1-22 (in Turkish).
  • Güngördü, M. (1993). Plant geography of southern Marmara Region (part of west). İstanbul University, unpublished essay, İstanbul (in Turkish).
  • Inouye, D.W. (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology, 89(2), 353-362.
  • IPCC. (2007). “Contribution of Working Groups I. II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change” Climate Change 2007: Synthesis Report. Geneva, Switzerland.
  • IPCC. (2013). “Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change” Climate Change 2013: The Physical Science Basis. Cambridge University Press, New York, USA.
  • IPCC. (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (Eds. Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield). https://www.ipcc.ch/site/ assets/uploads/sites/2/2019/06/SR15_Full_Report_Low_Res.pdf.
  • Kläring, H.P., Klopotek, Y., Krumbein, A., Schwarz, D. (2015). The effect of reducing the heating set point on the photosynthesis, growth, yield and fruit quality in greenhouse tomato production. Agricultural and Forest Meteorology, 214-215, 178-188.
  • Körner, C. (2015). Paradigm shift in plant growth control. Current Opinion in Plant Biology, 25, 107-114.
  • Leibundgut, H. (1970). Der Wald.Verlag Huber, Frauenfeld und Stuttgart.
  • Liu, Q., Piao, S., Janssens, I.A., Fu, Y., Peng, S., Lian, X., Ciais, P., Myneni, R.B., Peñuelas, J., Wang, T. (2018). Extension of the growing season increases vegetation exposure to frost. Nature Communications, 9(1), 426.
  • Lizana, X.C., Avila, A., Tolaba, A., Martinez, J.P. (2017). Field responses of potato to increased temperature during tuber bulking: Projection for climate change scenarios, at high-yield environments of Southern Chile. Agricultural and Forest Meteorology, 239, 192201.
  • Mathur, S., Agrawal, D., Jajoo, A. (2014). Photosynthesis: response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 137, 116-126. Mazurczyk, W., Lutomirska, B., Wierzbicka, A. (2003). Relation between air temperature and length of vegetation period of potato crops. Agricultural and Forest Meteorology, 118(3), 169-172.
  • Meinshausen, M., Smith, S.J., Calvin, K., Daniel, J.S., Kainuma, M.L.T, Lamarque, J.F., Matsumoto, K., Montzka, S.A., Raper, S.C.B, Riahi, K., Thomson, A., Velders, G.J.M., van Vuuren, D.P.P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. ‎ Climatic Change, 109(1-2), 213.
  • Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15-19.
  • Nolan, C., Overpeck, J. T., Allen, J. R., Anderson, P. M., Betancourt, J. L., Binney, H. A., ... & Jackson, S.T. (2018). Past and future global transformation of terrestrial ecosystems under climate change. Science, 361(6405), 920-923.
  • Önol, B., Ünal, Y.S., Dalfes, H.N. (2009). Modeling impacts of climate change scenario over Turkey. ITU Journal Series D: Engineering, 8(5), 169-177 (in Turkish).
  • Özdoğan, M. (2011). Modeling the impacts of climate change on wheat yields in Northwestern Turkey. Agriculture, Ecosystems and Environment, 141(1-2), 1-12.
  • Ozkan, B., Akcaoz, H. (2002). Impacts of climate factors on yields for selected crops in the southern Turkey. Mitigation and Adaptation Strategies for Global Change, 7(4), 367-380.
  • Pauli, H., Gottfried, M., Grabherr, G. (2014). Effects of climate change on the alpine and nival vegetation of the Alps. Journal of Mountain Ecology, 7, 9-12.
  • Porter, J.R., Gawith, M. (1999). Temperatures and the growth and development of wheat: a review. European Journal of Agronomy, 10(1), 23-36.
  • Primault, B. (1992). Temperature data used to determine a theoretical start to forest tree growth in spring. Theoretical and Applied Climatology, 45(2), 139-143.
  • Şar, T. (2018). Vegetation period in the inner West Anatolia subregion and evaluation of climate change scenarios. İstanbul University, unpublished Master’s thesis, İstanbul (in Turkish).
  • Scheiter, S., Savadogo, P. (2017). Ecosystem management can mitigate vegetation shifts induced by climate change in African savannas. EGU General Assembly Conference Abstracts 19:2076.
  • Schmid, M., Ehlers, T., Werner, C., Hickler, T. (2018). Effect of vegetation change on denudation: Landscape response to transient climate and vegetation cover. EGU General Assembly Conference Abstracts 20:13659.
  • Sen, B., Topcu, S., Türkeș, M.,Sen, B., Warner, J.F. (2012). Projecting climate change, drought conditions and crop productivity in Turkey. Climate Research, 52, 175-191.
  • Svenning, J.S., Eiserhardt, W.L., Normand, S., Ordonez, A., Sandel, B. (2015). The Influence of paleoclimate on present-day patterns in biodiversity and ecosystems. The Annual Review of Ecology, Evolution, and Systematics, 46, 551-572.
  • Svenning, J.S., Sandel, B. (2013). Disequilibrium vegetation dynamics under future climate change. American Journal of Botany, 100(7), 1266-1286.
  • Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi K.R., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., Rose, S.K., (2011). The representative concentration pathways: an overview. Climatic Change, 109, 5-31.
  • Werner, C., Johan, L., Manuel, S., Juan-Pablo, F., Todd, A.E. Thomas, H. (2017). Simulating vegetation dynamics in Chile from 21ka BP to present: Effects of climate change on vegetation functions and cover. EGU General Assembly Conference Abstracts 19, 16673.
  • Wu, D., Zhao, X., Liang, S., Zhou, T., Huang, K., Tang, B., Zhao, W. (2015). Time-lag effects of global vegetation responses to climate change. Global Change Biology, 21(9), 3520-3531.
  • Yano, T., Aydin, M., Haraguchi, T. (2007). Impact of climate change on irrigation demand and crop growth in a Mediterranean environment of Turkey. Sensors, 7(10), 2297-2315.
  • Yılmaz, Ö. (2001). Vegetation of Afyon and its surroundings. Türk Coğrafya Dergisi, 37, 47-77 (in Turkish).
  • Zandalinas, S.I., Mittler, R., Balfagón, D., Arbona, V., Gómez-Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162(1), 2-12.
  • Zhang, X., Yang, F. 2004. ETCCDI/CRD climate change indices. RClimDex (1.0). http://etccdi. pacificclimate.org (accessed 4 November 2018).
There are 62 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Taner Sar

Sedat Avcı

Meral Avcı

Publication Date December 30, 2019
Submission Date July 3, 2019
Published in Issue Year 2019

Cite

APA Sar, T., Avcı, S., & Avcı, M. (2019). Evaluation of the Vegetation Period According to Climate Change Scenarios: A Case Study in the Inner West Anatolia Subregion of Turkey. Journal of Geography(39), 29-39. https://doi.org/10.26650/JGEOG2019-0018
AMA Sar T, Avcı S, Avcı M. Evaluation of the Vegetation Period According to Climate Change Scenarios: A Case Study in the Inner West Anatolia Subregion of Turkey. Journal of Geography. December 2019;(39):29-39. doi:10.26650/JGEOG2019-0018
Chicago Sar, Taner, Sedat Avcı, and Meral Avcı. “Evaluation of the Vegetation Period According to Climate Change Scenarios: A Case Study in the Inner West Anatolia Subregion of Turkey”. Journal of Geography, no. 39 (December 2019): 29-39. https://doi.org/10.26650/JGEOG2019-0018.
EndNote Sar T, Avcı S, Avcı M (December 1, 2019) Evaluation of the Vegetation Period According to Climate Change Scenarios: A Case Study in the Inner West Anatolia Subregion of Turkey. Journal of Geography 39 29–39.
IEEE T. Sar, S. Avcı, and M. Avcı, “Evaluation of the Vegetation Period According to Climate Change Scenarios: A Case Study in the Inner West Anatolia Subregion of Turkey”, Journal of Geography, no. 39, pp. 29–39, December 2019, doi: 10.26650/JGEOG2019-0018.
ISNAD Sar, Taner et al. “Evaluation of the Vegetation Period According to Climate Change Scenarios: A Case Study in the Inner West Anatolia Subregion of Turkey”. Journal of Geography 39 (December 2019), 29-39. https://doi.org/10.26650/JGEOG2019-0018.
JAMA Sar T, Avcı S, Avcı M. Evaluation of the Vegetation Period According to Climate Change Scenarios: A Case Study in the Inner West Anatolia Subregion of Turkey. Journal of Geography. 2019;:29–39.
MLA Sar, Taner et al. “Evaluation of the Vegetation Period According to Climate Change Scenarios: A Case Study in the Inner West Anatolia Subregion of Turkey”. Journal of Geography, no. 39, 2019, pp. 29-39, doi:10.26650/JGEOG2019-0018.
Vancouver Sar T, Avcı S, Avcı M. Evaluation of the Vegetation Period According to Climate Change Scenarios: A Case Study in the Inner West Anatolia Subregion of Turkey. Journal of Geography. 2019(39):29-3.