Research Article
BibTex RIS Cite

Türkiye’deki Hayvancılık Alanının Mekansal Kalıplarını Coğrafi Varyanslarla Bağlama

Year 2020, Issue: 40, 109 - 117, 03.04.2020
https://doi.org/10.26650/JGEOG2019-0050

Abstract

Hayvancılık sektörü, dünyada gelişmekte olan birçok ülkenin ekonomi politikalarında önemli bir ekonomik kaynak olarak kabul edilmektedir. Bu araştırma, Türkiye’de hayvancılığın mekansal ilişkisini ve bağımlılığını araştırmacı mekansal veri analizi (ESDA) tekniği ile analiz etmeyi amaçlamaktadır. 2004’ten 2017’ye kadar 966 şehrin hayvancılık verileri, sığırların ve küçük ruminant popülasyonlarının mekansal dağılımını, kümelerini ve sıcak nokta alanlarını tespit etmek için kullanılmıştır. Bu hayvancılık üretimi güçlü ülke çapında mekansal birimlerin doğal çevre özellikleri ile ilişkili olduğu ortaya çıkmıştır. Mekansal otokorelasyon hem sığır lar hem de küçük geviş geviş ve görenler için olumlu değerler göstermiştir ancak daha sonra için daha güçlüdür. Ayrıca, sığır popülasyonlarının kümelerinde bir değişim de seçilen dönemde gözlenmiştir. Doğal çevresel faktörlerin yanı sıra, kırsal göç, hükümet politikaları, endüstriyel gereksinimler ve bölgesel eşitsizlikler gibi çeşitli sosyo-ekonomik sorunlar da hayvancılığın mekansal kalıplarının değişmesinden sorumlu bulunmuştur. Araştırma, hayvancılık sektörünün gelişmesi için öncelikli alanlarda kaynakların daha iyi tahsisi için önemli sonuçlar sağlamaktadır. Türkiye, birkaç yıllarında hayvancılık sektöründe ciddi azalma göstermiştir. Bu araştırmanın sonuçlarına göre hayvancılık sektörün gelişebilmesi için en uygun alanların belirlenmesi bu alanlarında yatırım yapmasında ve politika gelişrimesinde önemli katkı sağlayacak. Ayrıca, gelecekte hayvancılık geliştirme potansiyel alanlara işaret kolaylaştırır.

References

  • Akbay, C. (2019). Turkey ’ s livestock sector : Production , consumption and policies. (March).
  • Anselin, L. (1999). Interactive techniques and exploratory spatial data analysis. 253–266. Retrieved from http://www.geos.ed.ac. uk/~gisteac/gis_book_abridged/files/ch17.pdf
  • Anselin, L., Syabri, I., & Kho, Y. (2006). GeoDa: An introduction to spatial data analysis. Geographical Analysis, 38(1), 5–22. https:// doi.org/10.1111/j.0016-7363.2005.00671.x
  • Bonaudo, T., Bendahan, A. B., Sabatier, R., Ryschawy, J., Bellon, S., Leger, F. … Tichit, M. (2014). Agroecological principles for the redesign of integrated crop-livestock systems. European Journal of Agronomy, 57, 43–51. https://doi.org/10.1016/j.eja.2013.09.010
  • Cecchi, G., Wint, W., Shaw, A., Marletta, A., Mattioli, R., & Robinson, T. (2010). Geographic distribution and environmental characterization of livestock production systems in Eastern Africa. Agriculture, Ecosystems and Environment, 135(1–2), 98–110. https://doi.org/10.1016/j.agee.2009.08.011
  • Celebioglu, F., & Dall’erba, S. (2010). Spatial disparities across the regions of Turkey: An exploratory spatial data analysis. Annals of Regional Science, 45(2), 379–400. https://doi.org/10.1007/s00168009-0313-8
  • Çevik, B. (2018). Büyükbaş hayvancılık sektörü.
  • Chhetri, A., Chhetri, P., Arrowsmith, C., & Corcoran, J. (2017). Modelling tourism and hospitality employment clusters: a spatial econometric approach. Tourism Geographies, 19(3), 398–424. https://doi.org/10.1080/14616688.2016.1253765
  • FAO, & OECD. (2018). Chapter 6. Meat. OECD-FAO Agricultural Outlook 2018-2027, 149–162. https://doi.org/10.1787/agr-outldata-en
  • Fu, Q., Zhu, Y., Kong, Y., & Sun, J. (2012). Spatial analysis and districting of the livestock and poultry breeding in China. Journal of Geographical Sciences, 22(6), 1079–1100. https://doi.org/10.1007/ s11442-012-0984-4
  • Griffith, D. A., Scott Morris, E., & Thakar, V. (2016). Spatial autocorrelation and qualitative sampling: The case of snowball type sampling designs. Annals of the American Association of Geographers, 106(4), 773–787. https://doi.org/10.1080/24694452. 2016.1164580
  • Gürsoy, O. (2009). Türkiye ve Avrupa Birli ğ inde Küçükba ş Hayvan Yeti ş tiricili ğ inde Örgütlenme Turkey and the European Union Organizing in the Small Ruminant Breeding. 95, 79–95.
  • Tarım İşletmeleri Genel Müdürlüğü. (2017). Hayvancılık, Hayvancılık Sektör Raporu. Retrieved from https://www.tigem.gov.tr/
  • Hu, X., Neelam, C., & Green, G. (2016). Spatial analysis of international tourism growth in China’s cities. Current Politics and Economics of Northern and Western Asia, 25(2), 149–175. Retrieved from https:// search-proquest-com.libproxy.murdoch.edu.au/docview/1903327 216?pq-origsite=summon&accountid=12629&selectids=100000 39,1006985,10000155
  • Kang, S., Kim, J., & Nicholls, S. (2014). National Tourism Policy and Spatial Patterns of Domestic Tourism in South Korea. Journal of Travel Research, 53(6), 791–804. https://doi.org/10.1177/0047287514522875
  • Karakuş, K. (2011). Türkiye ’ nin Canlı Hayvan ve Kırmızı Et İthaline Genel Bir Bakış. Iğdır Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 1(1), 75–79.
  • Kaymakçı, M., Eliçin, A., Tuncel, E., Pekel, E., Karaca, O., Işın, F. … Sönmez, R. (2000). Türkiye’de Küçükbaş Hayvan Yetiştiriciliği. Türkiye Ziraat Mühendisliği V. Teknik Kongresi 2, 765–793.
  • Klimek, S., Lohss, G., & Gabriel, D. (2014). Modelling the spatial distribution of species-rich farmland to identify priority areas for conservation actions. Biological Conservation, 174, 65–74. https:// doi.org/10.1016/j.biocon.2014.03.019
  • Lemaire, G., Franzluebbers, A., Carvalho, P. C. de F., & Dedieu, B. (2014). Integrated crop-livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agriculture, Ecosystems and Environment, 190, 4–8. https://doi. org/10.1016/j.agee.2013.08.009
  • Leta, S., & Mesele, F. (2014). Spatial analysis of cattle and shoat population in Ethiopia: Growth trend, distribution and market access. SpringerPlus, 3(1), 1–10. https://doi.org/10.1186/2193-1801-3-310
  • Neumann, K., Elbersen, B. S., Verburg, P. H., Staritsky, I., Pérez-Soba, M., de Vries, W., & Rienks, W. A. (2009). Modelling the spatial distribution of livestock in Europe. Landscape Ecology, 24(9), 1207–1222. https://doi.org/10.1007/s10980-009-9357-5
  • Ord, J. K., & Getis, A. (1995). Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geographical Analysis, 27(4), 286–306. https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
  • Robinson, T. P., William Wint, G. R., Conchedda, G., Van Boeckel, T. P., Ercoli, V., Palamara, E., … Gilbert, M. (2014). Mapping the global distribution of livestock. PLoS ONE, 9(5). https://doi. org/10.1371/journal.pone.0096084
  • Robinson, T., Wint, W., Conchedda, G., Cinardi, G., Boeckel, T. Van, Macleod, M., … Gilbert, M. (2015). The global livestock sector : Trends , drivers and implications for society , health and the environment. (April), 255.
  • Saizen, I., Maekawa, A., & Yamamura, N. (2010). Spatial analysis of time-series changes in livestock distribution by detection of local spatial associations in Mongolia. Applied Geography, 30(4), 639– 649. https://doi.org/10.1016/j.apgeog.2010.01.002
  • Tibbo, M. (2012). Livestock and Climate Change in the Near East Region;Measures to adapt to and mitigate climate change. https:// doi.org/10.13140/RG.2.1.1493.6086
  • Tichenor, N. E., van Zanten, H. H. E., de Boer, I. J. M., Peters, C. J., McCarthy, A. C., & Griffin, T. S. (2017). Land use efficiency of beef systems in the Northeastern USA from a food supply perspective. Agricultural Systems, 156(November 2016), 34–42. https://doi.org/10.1016/j.agsy.2017.05.011
  • Vural, H., & Fidan, H. (2007). Türkiye’de hayvansal üretim ve hayvancılık işletmelerinin özellikleri. Tarım Ekonomisi Dergisi, 13 (1-2), 49-59. Retrieved from htttp://journal.tarekoder.org/ archive/2007/2007_02_02.pdf
  • Williams, D. R., Alvarado, F., Green, R. E., Manica, A., Phalan, B., & Balmford, A. (2017). Land-use strategies to balance livestock production, biodiversity conservation and carbon storage in Yucatán, Mexico. Global Change Biology, 23(12), 5260–5272. https://doi.org/10.1111/gcb.13791
  • Zhou, J., Tu, Y., Chen, Y., & Wang, H. (2017). Estimating Spatial Autocorrelation With Sampled Network Data. Journal of Business & Economic Statistics, 35(1), 130–138. https://doi.org/10.1080/073 50015.2015.1061437

Linking Spatial Patterns of Livestock to the Geographical Variances in Turkey

Year 2020, Issue: 40, 109 - 117, 03.04.2020
https://doi.org/10.26650/JGEOG2019-0050

Abstract

The livestock sector is considered as an essential economic source in the economic policies of many developing countries in the world. The present research aims to analyse the spatial association and dependence of livestock in Turkey by using the exploratory spatial data analysis (ESDA) technique. Livestock data of 966 cities from 2004 to 2017 have been used to detect spatial distribution, clusters and hotspot areas of cattle and small ruminants’ populations. It has been revealed that livestock production is strongly associated with the natural environmental characteristics of spatial units throughout the country. Spatial autocorrelation has shown the positive values for both cattle and small ruminants, but stronger for the latter. Besides, a change in the clusters of cattle populations has also been observed over the selected period. Apart from the natural environmental factors, several socio-economic issues like rural outmigration, government policies, industrial requirements and regional disparities have also been found responsible for the change in the spatial patterns of livestock. The research provides significant outcomes for better allocation of resources in priority areas to develop the livestock sector. Moreover, it also facilitates pointing out the potential areas of livestock development in the future.

References

  • Akbay, C. (2019). Turkey ’ s livestock sector : Production , consumption and policies. (March).
  • Anselin, L. (1999). Interactive techniques and exploratory spatial data analysis. 253–266. Retrieved from http://www.geos.ed.ac. uk/~gisteac/gis_book_abridged/files/ch17.pdf
  • Anselin, L., Syabri, I., & Kho, Y. (2006). GeoDa: An introduction to spatial data analysis. Geographical Analysis, 38(1), 5–22. https:// doi.org/10.1111/j.0016-7363.2005.00671.x
  • Bonaudo, T., Bendahan, A. B., Sabatier, R., Ryschawy, J., Bellon, S., Leger, F. … Tichit, M. (2014). Agroecological principles for the redesign of integrated crop-livestock systems. European Journal of Agronomy, 57, 43–51. https://doi.org/10.1016/j.eja.2013.09.010
  • Cecchi, G., Wint, W., Shaw, A., Marletta, A., Mattioli, R., & Robinson, T. (2010). Geographic distribution and environmental characterization of livestock production systems in Eastern Africa. Agriculture, Ecosystems and Environment, 135(1–2), 98–110. https://doi.org/10.1016/j.agee.2009.08.011
  • Celebioglu, F., & Dall’erba, S. (2010). Spatial disparities across the regions of Turkey: An exploratory spatial data analysis. Annals of Regional Science, 45(2), 379–400. https://doi.org/10.1007/s00168009-0313-8
  • Çevik, B. (2018). Büyükbaş hayvancılık sektörü.
  • Chhetri, A., Chhetri, P., Arrowsmith, C., & Corcoran, J. (2017). Modelling tourism and hospitality employment clusters: a spatial econometric approach. Tourism Geographies, 19(3), 398–424. https://doi.org/10.1080/14616688.2016.1253765
  • FAO, & OECD. (2018). Chapter 6. Meat. OECD-FAO Agricultural Outlook 2018-2027, 149–162. https://doi.org/10.1787/agr-outldata-en
  • Fu, Q., Zhu, Y., Kong, Y., & Sun, J. (2012). Spatial analysis and districting of the livestock and poultry breeding in China. Journal of Geographical Sciences, 22(6), 1079–1100. https://doi.org/10.1007/ s11442-012-0984-4
  • Griffith, D. A., Scott Morris, E., & Thakar, V. (2016). Spatial autocorrelation and qualitative sampling: The case of snowball type sampling designs. Annals of the American Association of Geographers, 106(4), 773–787. https://doi.org/10.1080/24694452. 2016.1164580
  • Gürsoy, O. (2009). Türkiye ve Avrupa Birli ğ inde Küçükba ş Hayvan Yeti ş tiricili ğ inde Örgütlenme Turkey and the European Union Organizing in the Small Ruminant Breeding. 95, 79–95.
  • Tarım İşletmeleri Genel Müdürlüğü. (2017). Hayvancılık, Hayvancılık Sektör Raporu. Retrieved from https://www.tigem.gov.tr/
  • Hu, X., Neelam, C., & Green, G. (2016). Spatial analysis of international tourism growth in China’s cities. Current Politics and Economics of Northern and Western Asia, 25(2), 149–175. Retrieved from https:// search-proquest-com.libproxy.murdoch.edu.au/docview/1903327 216?pq-origsite=summon&accountid=12629&selectids=100000 39,1006985,10000155
  • Kang, S., Kim, J., & Nicholls, S. (2014). National Tourism Policy and Spatial Patterns of Domestic Tourism in South Korea. Journal of Travel Research, 53(6), 791–804. https://doi.org/10.1177/0047287514522875
  • Karakuş, K. (2011). Türkiye ’ nin Canlı Hayvan ve Kırmızı Et İthaline Genel Bir Bakış. Iğdır Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 1(1), 75–79.
  • Kaymakçı, M., Eliçin, A., Tuncel, E., Pekel, E., Karaca, O., Işın, F. … Sönmez, R. (2000). Türkiye’de Küçükbaş Hayvan Yetiştiriciliği. Türkiye Ziraat Mühendisliği V. Teknik Kongresi 2, 765–793.
  • Klimek, S., Lohss, G., & Gabriel, D. (2014). Modelling the spatial distribution of species-rich farmland to identify priority areas for conservation actions. Biological Conservation, 174, 65–74. https:// doi.org/10.1016/j.biocon.2014.03.019
  • Lemaire, G., Franzluebbers, A., Carvalho, P. C. de F., & Dedieu, B. (2014). Integrated crop-livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agriculture, Ecosystems and Environment, 190, 4–8. https://doi. org/10.1016/j.agee.2013.08.009
  • Leta, S., & Mesele, F. (2014). Spatial analysis of cattle and shoat population in Ethiopia: Growth trend, distribution and market access. SpringerPlus, 3(1), 1–10. https://doi.org/10.1186/2193-1801-3-310
  • Neumann, K., Elbersen, B. S., Verburg, P. H., Staritsky, I., Pérez-Soba, M., de Vries, W., & Rienks, W. A. (2009). Modelling the spatial distribution of livestock in Europe. Landscape Ecology, 24(9), 1207–1222. https://doi.org/10.1007/s10980-009-9357-5
  • Ord, J. K., & Getis, A. (1995). Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geographical Analysis, 27(4), 286–306. https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
  • Robinson, T. P., William Wint, G. R., Conchedda, G., Van Boeckel, T. P., Ercoli, V., Palamara, E., … Gilbert, M. (2014). Mapping the global distribution of livestock. PLoS ONE, 9(5). https://doi. org/10.1371/journal.pone.0096084
  • Robinson, T., Wint, W., Conchedda, G., Cinardi, G., Boeckel, T. Van, Macleod, M., … Gilbert, M. (2015). The global livestock sector : Trends , drivers and implications for society , health and the environment. (April), 255.
  • Saizen, I., Maekawa, A., & Yamamura, N. (2010). Spatial analysis of time-series changes in livestock distribution by detection of local spatial associations in Mongolia. Applied Geography, 30(4), 639– 649. https://doi.org/10.1016/j.apgeog.2010.01.002
  • Tibbo, M. (2012). Livestock and Climate Change in the Near East Region;Measures to adapt to and mitigate climate change. https:// doi.org/10.13140/RG.2.1.1493.6086
  • Tichenor, N. E., van Zanten, H. H. E., de Boer, I. J. M., Peters, C. J., McCarthy, A. C., & Griffin, T. S. (2017). Land use efficiency of beef systems in the Northeastern USA from a food supply perspective. Agricultural Systems, 156(November 2016), 34–42. https://doi.org/10.1016/j.agsy.2017.05.011
  • Vural, H., & Fidan, H. (2007). Türkiye’de hayvansal üretim ve hayvancılık işletmelerinin özellikleri. Tarım Ekonomisi Dergisi, 13 (1-2), 49-59. Retrieved from htttp://journal.tarekoder.org/ archive/2007/2007_02_02.pdf
  • Williams, D. R., Alvarado, F., Green, R. E., Manica, A., Phalan, B., & Balmford, A. (2017). Land-use strategies to balance livestock production, biodiversity conservation and carbon storage in Yucatán, Mexico. Global Change Biology, 23(12), 5260–5272. https://doi.org/10.1111/gcb.13791
  • Zhou, J., Tu, Y., Chen, Y., & Wang, H. (2017). Estimating Spatial Autocorrelation With Sampled Network Data. Journal of Business & Economic Statistics, 35(1), 130–138. https://doi.org/10.1080/073 50015.2015.1061437
There are 30 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Ashfak Ahmad Khan This is me 0000-0003-1919-950X

Publication Date April 3, 2020
Submission Date December 4, 2019
Published in Issue Year 2020 Issue: 40

Cite

APA Khan, A. A. (2020). Linking Spatial Patterns of Livestock to the Geographical Variances in Turkey. Journal of Geography(40), 109-117. https://doi.org/10.26650/JGEOG2019-0050
AMA Khan AA. Linking Spatial Patterns of Livestock to the Geographical Variances in Turkey. Journal of Geography. April 2020;(40):109-117. doi:10.26650/JGEOG2019-0050
Chicago Khan, Ashfak Ahmad. “Linking Spatial Patterns of Livestock to the Geographical Variances in Turkey”. Journal of Geography, no. 40 (April 2020): 109-17. https://doi.org/10.26650/JGEOG2019-0050.
EndNote Khan AA (April 1, 2020) Linking Spatial Patterns of Livestock to the Geographical Variances in Turkey. Journal of Geography 40 109–117.
IEEE A. A. Khan, “Linking Spatial Patterns of Livestock to the Geographical Variances in Turkey”, Journal of Geography, no. 40, pp. 109–117, April 2020, doi: 10.26650/JGEOG2019-0050.
ISNAD Khan, Ashfak Ahmad. “Linking Spatial Patterns of Livestock to the Geographical Variances in Turkey”. Journal of Geography 40 (April 2020), 109-117. https://doi.org/10.26650/JGEOG2019-0050.
JAMA Khan AA. Linking Spatial Patterns of Livestock to the Geographical Variances in Turkey. Journal of Geography. 2020;:109–117.
MLA Khan, Ashfak Ahmad. “Linking Spatial Patterns of Livestock to the Geographical Variances in Turkey”. Journal of Geography, no. 40, 2020, pp. 109-17, doi:10.26650/JGEOG2019-0050.
Vancouver Khan AA. Linking Spatial Patterns of Livestock to the Geographical Variances in Turkey. Journal of Geography. 2020(40):109-17.