Research Article
BibTex RIS Cite

Year 2025, Issue: 50, 39 - 46, 24.07.2025
https://doi.org/10.26650/JGEOG2025-1568294

Abstract

References

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthlY climate and climatic water balance from 1958-2015. Scientific data, 5(i), 1-12. google scholar
  • Al-MuhYi, A. H. A., and Aleedani, F. Y. K. (2022). Impacts of global climate change on temperature and precipitation in basra citY, Iraq. Basrah Journal of Sciences, 40(1), 215-230. google scholar
  • Al-Taei, A. I., Alesheikh, A. A., &Boloorani, A. (2023). Land Use/Land Cover Change Analysis Using Multi-Temporal Remote Sensing Data: A Case Study of the Tigris and Euphrates Rivers Basin. Land, 12(5), 1101. google scholar
  • Al-Taei, A. I., Alesheikh, A. A., &Boloorani, A. (2024). Hazardous Dust Source SusceptibilitY Mapping in Wet and DrY Periods of the Tigris-Euphrates Basin: A Meta-Heuristics and Machine Learning. Environmental Management Hazards, 10(4), 355-370. google scholar
  • Alahacoon, N., Edirisinghe, M., & Ranagalage, M. (2021). Satellite-based meteorological and agricultural drought monitoring for agricultural sustainabilitY in Sri Lanka. Sustainability, 13(6), 3427. google scholar
  • Bachmann, A., Tice, V., Al-Obeidi, L. A., & Kilıç, D. T. (2019). Tigris-Euphrates River ecosYstem: A status report. In Mesopotamia Water Forum. google scholar
  • Behifar, M., Kakroodi, A. A., Kiavarz, M., & Azizi, G. (2023). Satellite-based drought monitoring using optimal indices for diverse climates and land tYpes. Ecological Informatics, 76, 102143. google scholar
  • BhattacharYa, A., & BhattacharYa, A. (2021). Effects of soil water deficit on growth and development of plants: a review. Soil water deficit and physiological issues in plants, 393-488. google scholar
  • Boloorani, A. D., Soleimani, M., Papi, R., Nasiri, N., Samany, N. N., Mirzaei, S., & Al-Hemoud, A. (2024a). Assessing the role of drought in dust storm formation in the Tigris and Euphrates basin. Science of The Total Environment, 921, 171193. google scholar
  • Boloorani, A. D., Soleimani, M., Papi, R., Nasiri, N., Samany, N. N., Mirzaei, S., and Al-Hemoud, A. (2024b). Assessing the role of drought in dust storm formation in the Tigris and Euphrates basin. Science of The Total Environment, 921, 171193. google scholar
  • Chang, L.-L. and Niu, G.-Y. (2023). Impact of Interannual Climate VariabilitY on the Declining Terrestrial Water Storage Trend over the Tigris-Euphrates River Basin. Journal of Hydrometeorology, 24(3), 549-560. google scholar
  • C.V, A., Pachore, A., & Remesan, R. (2024). Agricultural drought response to meteorological drought over different agro-climatic zones of the Ganga River basin. Journal of Water and Climate Change, 15(3), 998-1017. google scholar
  • Darvishi Boloorani, A., R. Papi, M. Soleimani, L. Karami, F. Amiri, and N. N. Samany (2021). Water body changes in the Tigris and Euphrates basins have affected the phenomenon of dust storms.Aeolian Research, 50, 100698. google scholar
  • Douris, J., & Kim, G. (2021). The Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970-2019). WMO, Switzerland. Retrieved from https:// coilink.org/20.500.12592/b3d1n6 google scholar
  • Friedl, M., & Sulla-Menashe, D. (2022). MODIS/Terra+ Aqua land cover type yearly L3 global 500 m SIN grid V061 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Centre. Retrieved from https://doi.org/10.5067/MODIS/MCD12Q1.061 google scholar
  • Haghighi, A. t., Akbari, M., Noori, R., Mehr, A. d., Gohari, A., Sönmez, M. E., ... & Klöve, B. (2023). The impact of Turkey’s water resource development on the flow regime of the Tigris River in Iraq. Journal of Hydrology: Regional Studies, 48, 101454. google scholar
  • Ji, L., Zhang, L., & Wylie, B. (2009). Analysis of dynamic thresholds for the normalised difference water index. Photogrammetric engineering & remote sensing, 75(11), 1307-1317. google scholar
  • Kale, M. M. (2021a). Akarçay Kapalı Havzası için hidrolojik kuraklık analizi. Coğrafya Dergisi, (42), 165-180. google scholar
  • Kale, M. M. (2021b). Manavgat Çayı kuraklık analizi. Ege Coğrafya Dergisi, 30(1), 107-123. google scholar
  • Khan, S., Gabriel, H., & Rana, T. (2008). Standard precipitation index to track drought and assess the impact of rainfall on water tables in irrigation areas. Irrigation and Drainage Systems, 22, 159-177. google scholar
  • Knutzen, F., Averbeck, P., Barrasso, C., Bouwer, L. M., Gardiner, B., Grünzweig, J. M., . . . Kollet, S. (2023). Impacts and damages of the European multi-year drought and heat event 2018-2022 on forests, a review. Egusphere, 2023, 1-56. google scholar
  • Köle, M. M. (2017). 1954-2016 DÖNEMİ TÜRKİYE SINIRAŞAN SULAR POLİTİKASI. Marmara Coğrafya Dergisi, (35), 122-133. google scholar
  • Laimighofer, J., & Laaha, G. (2022). How standard are standardised drought indices? Uncertainty components in the SPI & SPEI case. Journal of HyDrology 613, 128385128385. google scholar
  • Liu, X., Zhu, X., Pan, Y., Li, S., Liu, Y., and Ma, Y. (2016). Agricultural drought monitoring: Progress, challenges, and prospects. Journal of Geographical Sciences, 26, 750-767. google scholar
  • Lloyd-Hughes, B., & Saunders, M. A. (2002). A drought climatology for Europe. International Journal of Climatology, 22(13), 1571-1592. google scholar
  • Martinez-Villalobos, C., and J. D. (2019). Why do precipitation intensities tend to follow gamma distributions? J Atmos Sci. 76(11), 3611-3631. google scholar
  • McFeeters, S. K. (1996). Use of the Normalised Difference Water Index (NDWI) for delineating open water features. International journal of remote sensing, 17(7), 1425-1432. google scholar
  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183). google scholar
  • Mdemu, M. V. (2021). ‘Community’s vulnerability to drought-driven water scarcity and food insecurity in central and northern semi-arid areas of Tanzania. Frontiers in Climate, 3, 737655. google scholar
  • Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. J Hydrol., 391(1-2), 202-216. google scholar
  • Naqi, N. M., Al-Jiboori, M. H., & Al-Madhhachi, A. S. T. (2021). Statistical analysis of extreme weather events in the Diyala River basin, Iraq. Journal of Water and Climate Change, 12(8), 3770-3785. google scholar
  • Rahi, K. A.; Al-Madhhachi, A.-S. T.; Al-Hussaini, S. N. (2019). Assessment of surface water resources in eastern Iraq. Hydrology, 6(3), 57. google scholar
  • Schaaf, C., & Wang, Z. (2021). MODIS/Terra+ Aqua BRDF/Albedo Daily L3 Global—500m V061 [Data set]. NASA EOSDIS Land Processes DAAC.https://doi.org/10.5067/MODIS/ MCD43C3.061 google scholar
  • Smith, S. M., and Edwards, E. C. (2021). Water storage and agricultural resilience against drought: historical evidence of the capacity and institutional limits of the United States. Environmental Research Letters, 16(12), 1240-1240, 2012. google scholar
  • Svoboda, M., Hayes, M., & Wood, D. (2012). Standardised precipitation index: user guide. google scholar
  • UNESCWA. (2013). Inventory of shared water resources in Western Asia. Beirut: United Nations. Retrieved January 13, 2025, from https://www.unescwa.org/publications/ inventory-shared-water-resources-western-asia google scholar
  • Van Loon, A., and Laaha, G. (2015). Hydrological drought severity is explained by climate and catchment characteristics. Journal of Hydrology, 526, 3-14. google scholar
  • Xu, Z., Wu, Z., Shao, Q., He, H., & Guo, X. (2023). From meteorological to agricultural drought: Propagation time and probabilistic linkages. Journal of Hydrology: Regional Studies, 46, 101329. google scholar
  • Yang, X., Liao, X., Di, D., & Shi, W. (2023). A Review of Drought Disturbance on Socioeconomic Development. Water, 15(22), 3912. google scholar
  • Zeng, J., Li, J., Lu, X., Wei, Z., Shangguan, W., ZhangS. . . Zhang, S. (2022). Assessment of global meteorological, hydrological, and agricultural droughts under future warming based on CMIP6. Atmospheric and Oceanic Science Letters, 15(1), 100143. google scholar
  • Zhang, X., Schaaf, C. B., Friedl, M. A., Strahler, A. H., Gao, F., & Hodges, J. C. (2002). MODIS tasselled cap transformation and its utility. In IEEE International Geoscience and Remote Sensing Symposium (Vol. 2, pp. 1063-1065). IEEE. google scholar

Assessing the Interaction Between Agricultural, Hydrological, and Meteorological Droughts in the Tigris River Basin

Year 2025, Issue: 50, 39 - 46, 24.07.2025
https://doi.org/10.26650/JGEOG2025-1568294

Abstract

Drought is a common meteorological phenomenon that can result in a range of adverse outcomes. The Tigris River Basin (TRB) is located in the arid and semi-arid regions of southwestern Asia, where drought conditions have been observed to intensify. This research aims to understand the relationship between agricultural, hydrological, and meteorological droughts in the basin. To examine meteorological, agricultural, and hydrological droughts, the study employed three indicators: the Standardised Precipitation Index (SPI), derived from Terraclimate precipitation data; the Tasselled Cap greenness index, calculated from Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) multispectral imagery; and surface water area fluctuations based on the MODIS Terra Daily normalised difference water index (NDWI). Our analysis of monthly SPI data from 2003 to 2022 indicates that approximately half of the months experienced meteorological drought conditions. The occurrence of agricultural drought was found to be associated with both 6-month and 21-month accumulation periods of SPI values, underscoring the intricate interrelationship between precipitation deficits and other influential factors in the context of agricultural drought. Hydrological droughts demonstrated significant correlations with meteorological droughts over accumulation periods of 1, 3and 15 months, indicating a rapid onset but prolonged impact on water resources. Our findings indicate that although the various types of drought are interconnected, their relationships are not straightforward. Further research is required to explore the factors driving these patterns.

References

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthlY climate and climatic water balance from 1958-2015. Scientific data, 5(i), 1-12. google scholar
  • Al-MuhYi, A. H. A., and Aleedani, F. Y. K. (2022). Impacts of global climate change on temperature and precipitation in basra citY, Iraq. Basrah Journal of Sciences, 40(1), 215-230. google scholar
  • Al-Taei, A. I., Alesheikh, A. A., &Boloorani, A. (2023). Land Use/Land Cover Change Analysis Using Multi-Temporal Remote Sensing Data: A Case Study of the Tigris and Euphrates Rivers Basin. Land, 12(5), 1101. google scholar
  • Al-Taei, A. I., Alesheikh, A. A., &Boloorani, A. (2024). Hazardous Dust Source SusceptibilitY Mapping in Wet and DrY Periods of the Tigris-Euphrates Basin: A Meta-Heuristics and Machine Learning. Environmental Management Hazards, 10(4), 355-370. google scholar
  • Alahacoon, N., Edirisinghe, M., & Ranagalage, M. (2021). Satellite-based meteorological and agricultural drought monitoring for agricultural sustainabilitY in Sri Lanka. Sustainability, 13(6), 3427. google scholar
  • Bachmann, A., Tice, V., Al-Obeidi, L. A., & Kilıç, D. T. (2019). Tigris-Euphrates River ecosYstem: A status report. In Mesopotamia Water Forum. google scholar
  • Behifar, M., Kakroodi, A. A., Kiavarz, M., & Azizi, G. (2023). Satellite-based drought monitoring using optimal indices for diverse climates and land tYpes. Ecological Informatics, 76, 102143. google scholar
  • BhattacharYa, A., & BhattacharYa, A. (2021). Effects of soil water deficit on growth and development of plants: a review. Soil water deficit and physiological issues in plants, 393-488. google scholar
  • Boloorani, A. D., Soleimani, M., Papi, R., Nasiri, N., Samany, N. N., Mirzaei, S., & Al-Hemoud, A. (2024a). Assessing the role of drought in dust storm formation in the Tigris and Euphrates basin. Science of The Total Environment, 921, 171193. google scholar
  • Boloorani, A. D., Soleimani, M., Papi, R., Nasiri, N., Samany, N. N., Mirzaei, S., and Al-Hemoud, A. (2024b). Assessing the role of drought in dust storm formation in the Tigris and Euphrates basin. Science of The Total Environment, 921, 171193. google scholar
  • Chang, L.-L. and Niu, G.-Y. (2023). Impact of Interannual Climate VariabilitY on the Declining Terrestrial Water Storage Trend over the Tigris-Euphrates River Basin. Journal of Hydrometeorology, 24(3), 549-560. google scholar
  • C.V, A., Pachore, A., & Remesan, R. (2024). Agricultural drought response to meteorological drought over different agro-climatic zones of the Ganga River basin. Journal of Water and Climate Change, 15(3), 998-1017. google scholar
  • Darvishi Boloorani, A., R. Papi, M. Soleimani, L. Karami, F. Amiri, and N. N. Samany (2021). Water body changes in the Tigris and Euphrates basins have affected the phenomenon of dust storms.Aeolian Research, 50, 100698. google scholar
  • Douris, J., & Kim, G. (2021). The Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970-2019). WMO, Switzerland. Retrieved from https:// coilink.org/20.500.12592/b3d1n6 google scholar
  • Friedl, M., & Sulla-Menashe, D. (2022). MODIS/Terra+ Aqua land cover type yearly L3 global 500 m SIN grid V061 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Centre. Retrieved from https://doi.org/10.5067/MODIS/MCD12Q1.061 google scholar
  • Haghighi, A. t., Akbari, M., Noori, R., Mehr, A. d., Gohari, A., Sönmez, M. E., ... & Klöve, B. (2023). The impact of Turkey’s water resource development on the flow regime of the Tigris River in Iraq. Journal of Hydrology: Regional Studies, 48, 101454. google scholar
  • Ji, L., Zhang, L., & Wylie, B. (2009). Analysis of dynamic thresholds for the normalised difference water index. Photogrammetric engineering & remote sensing, 75(11), 1307-1317. google scholar
  • Kale, M. M. (2021a). Akarçay Kapalı Havzası için hidrolojik kuraklık analizi. Coğrafya Dergisi, (42), 165-180. google scholar
  • Kale, M. M. (2021b). Manavgat Çayı kuraklık analizi. Ege Coğrafya Dergisi, 30(1), 107-123. google scholar
  • Khan, S., Gabriel, H., & Rana, T. (2008). Standard precipitation index to track drought and assess the impact of rainfall on water tables in irrigation areas. Irrigation and Drainage Systems, 22, 159-177. google scholar
  • Knutzen, F., Averbeck, P., Barrasso, C., Bouwer, L. M., Gardiner, B., Grünzweig, J. M., . . . Kollet, S. (2023). Impacts and damages of the European multi-year drought and heat event 2018-2022 on forests, a review. Egusphere, 2023, 1-56. google scholar
  • Köle, M. M. (2017). 1954-2016 DÖNEMİ TÜRKİYE SINIRAŞAN SULAR POLİTİKASI. Marmara Coğrafya Dergisi, (35), 122-133. google scholar
  • Laimighofer, J., & Laaha, G. (2022). How standard are standardised drought indices? Uncertainty components in the SPI & SPEI case. Journal of HyDrology 613, 128385128385. google scholar
  • Liu, X., Zhu, X., Pan, Y., Li, S., Liu, Y., and Ma, Y. (2016). Agricultural drought monitoring: Progress, challenges, and prospects. Journal of Geographical Sciences, 26, 750-767. google scholar
  • Lloyd-Hughes, B., & Saunders, M. A. (2002). A drought climatology for Europe. International Journal of Climatology, 22(13), 1571-1592. google scholar
  • Martinez-Villalobos, C., and J. D. (2019). Why do precipitation intensities tend to follow gamma distributions? J Atmos Sci. 76(11), 3611-3631. google scholar
  • McFeeters, S. K. (1996). Use of the Normalised Difference Water Index (NDWI) for delineating open water features. International journal of remote sensing, 17(7), 1425-1432. google scholar
  • McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183). google scholar
  • Mdemu, M. V. (2021). ‘Community’s vulnerability to drought-driven water scarcity and food insecurity in central and northern semi-arid areas of Tanzania. Frontiers in Climate, 3, 737655. google scholar
  • Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. J Hydrol., 391(1-2), 202-216. google scholar
  • Naqi, N. M., Al-Jiboori, M. H., & Al-Madhhachi, A. S. T. (2021). Statistical analysis of extreme weather events in the Diyala River basin, Iraq. Journal of Water and Climate Change, 12(8), 3770-3785. google scholar
  • Rahi, K. A.; Al-Madhhachi, A.-S. T.; Al-Hussaini, S. N. (2019). Assessment of surface water resources in eastern Iraq. Hydrology, 6(3), 57. google scholar
  • Schaaf, C., & Wang, Z. (2021). MODIS/Terra+ Aqua BRDF/Albedo Daily L3 Global—500m V061 [Data set]. NASA EOSDIS Land Processes DAAC.https://doi.org/10.5067/MODIS/ MCD43C3.061 google scholar
  • Smith, S. M., and Edwards, E. C. (2021). Water storage and agricultural resilience against drought: historical evidence of the capacity and institutional limits of the United States. Environmental Research Letters, 16(12), 1240-1240, 2012. google scholar
  • Svoboda, M., Hayes, M., & Wood, D. (2012). Standardised precipitation index: user guide. google scholar
  • UNESCWA. (2013). Inventory of shared water resources in Western Asia. Beirut: United Nations. Retrieved January 13, 2025, from https://www.unescwa.org/publications/ inventory-shared-water-resources-western-asia google scholar
  • Van Loon, A., and Laaha, G. (2015). Hydrological drought severity is explained by climate and catchment characteristics. Journal of Hydrology, 526, 3-14. google scholar
  • Xu, Z., Wu, Z., Shao, Q., He, H., & Guo, X. (2023). From meteorological to agricultural drought: Propagation time and probabilistic linkages. Journal of Hydrology: Regional Studies, 46, 101329. google scholar
  • Yang, X., Liao, X., Di, D., & Shi, W. (2023). A Review of Drought Disturbance on Socioeconomic Development. Water, 15(22), 3912. google scholar
  • Zeng, J., Li, J., Lu, X., Wei, Z., Shangguan, W., ZhangS. . . Zhang, S. (2022). Assessment of global meteorological, hydrological, and agricultural droughts under future warming based on CMIP6. Atmospheric and Oceanic Science Letters, 15(1), 100143. google scholar
  • Zhang, X., Schaaf, C. B., Friedl, M. A., Strahler, A. H., Gao, F., & Hodges, J. C. (2002). MODIS tasselled cap transformation and its utility. In IEEE International Geoscience and Remote Sensing Symposium (Vol. 2, pp. 1063-1065). IEEE. google scholar
There are 41 citations in total.

Details

Primary Language English
Subjects Human Geography (Other)
Journal Section Research Article
Authors

Khalil Valizadeh Kamran 0000-0003-4648-842X

Ayat Khaleel Dhiab 0000-0001-5561-8025

Hala Abdulkareem 0009-0009-6100-0155

Publication Date July 24, 2025
Submission Date October 16, 2024
Acceptance Date March 19, 2025
Published in Issue Year 2025 Issue: 50

Cite

APA Kamran, K. V., Dhiab, A. K., & Abdulkareem, H. (2025). Assessing the Interaction Between Agricultural, Hydrological, and Meteorological Droughts in the Tigris River Basin. Journal of Geography(50), 39-46. https://doi.org/10.26650/JGEOG2025-1568294
AMA Kamran KV, Dhiab AK, Abdulkareem H. Assessing the Interaction Between Agricultural, Hydrological, and Meteorological Droughts in the Tigris River Basin. Journal of Geography. July 2025;(50):39-46. doi:10.26650/JGEOG2025-1568294
Chicago Kamran, Khalil Valizadeh, Ayat Khaleel Dhiab, and Hala Abdulkareem. “Assessing the Interaction Between Agricultural, Hydrological, and Meteorological Droughts in the Tigris River Basin”. Journal of Geography, no. 50 (July 2025): 39-46. https://doi.org/10.26650/JGEOG2025-1568294.
EndNote Kamran KV, Dhiab AK, Abdulkareem H (July 1, 2025) Assessing the Interaction Between Agricultural, Hydrological, and Meteorological Droughts in the Tigris River Basin. Journal of Geography 50 39–46.
IEEE K. V. Kamran, A. K. Dhiab, and H. Abdulkareem, “Assessing the Interaction Between Agricultural, Hydrological, and Meteorological Droughts in the Tigris River Basin”, Journal of Geography, no. 50, pp. 39–46, July2025, doi: 10.26650/JGEOG2025-1568294.
ISNAD Kamran, Khalil Valizadeh et al. “Assessing the Interaction Between Agricultural, Hydrological, and Meteorological Droughts in the Tigris River Basin”. Journal of Geography 50 (July2025), 39-46. https://doi.org/10.26650/JGEOG2025-1568294.
JAMA Kamran KV, Dhiab AK, Abdulkareem H. Assessing the Interaction Between Agricultural, Hydrological, and Meteorological Droughts in the Tigris River Basin. Journal of Geography. 2025;:39–46.
MLA Kamran, Khalil Valizadeh et al. “Assessing the Interaction Between Agricultural, Hydrological, and Meteorological Droughts in the Tigris River Basin”. Journal of Geography, no. 50, 2025, pp. 39-46, doi:10.26650/JGEOG2025-1568294.
Vancouver Kamran KV, Dhiab AK, Abdulkareem H. Assessing the Interaction Between Agricultural, Hydrological, and Meteorological Droughts in the Tigris River Basin. Journal of Geography. 2025(50):39-46.